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Abstract. We construct a family of representations 3Γξ>w of the Neveu-
Schwarz and Ramond algebras, which generalize the Fock representations of
the Virasoro algebra. We show that the representations Jίfξ'w are intertwined
by a vertex operator.

The above results are used to give the proof of the conjectured formulas for
the determinant of the contravariant form on the highest weight represen-
tations of the Neveu-Schwarz and Ramond algebras. Further results on the
representation theory of the latter are derived from the determinant formulas.

1. Introduction

In Superstring theory physicists consider two supersymmetric extensions of the
Lie algebra of vector fields on the circle (Vect^1)) called the Neveu-Schwarz [19]
and Ramond [20] algebras. The Neveu-Schwarz algebra has basis {1̂ , Lί? Gj}
(ieZjG^ + Z), where LQ is central, and the bracket of two noncentral generators is
given by the relations

The Ramond algebra has the same relations, but the G; are indexed by TL. These
algebras are "Z2-graded Lie algebras," i.e., Z2-graded vector spaces with a grading
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preserving bracket operation that satisfies Z2-graded versions of anticommutativ-
ity and Jacobi's identity.

In [13,14] Kac gave a formula for the determinant of the Shapovalov form for
(a central extension of) Vect(S1). Kac's formula was later proved by Feigin and
Fuchs ([2])1. In [14] Kac also gave a brief introduction to the highest weight
theory of the Neveu-Schwarz algebra, and stated (without proof) a formula for its
Shapovalov determinant. An interesting application of this formula is found in the
recent work of Friedan et al. ([8]) where the formula is used to obtain a series of
(conjectured) unitary representations. In [8] the authors also considered the
Ramond algebra, for which they conjectured a determinant formula. In the present
paper we prove the determinant formulas for both the Neveu-Schwarz and
Ramond algebras2 (Sect. 4). We then use the determinant formulas to prove that
the highest weights of a Verma module and that of an irreducible subquotient are
"linked" (Theorem 5.1). For the Neveu-Schwarz algebra this result was first stated
by Kac [14].

Our proof of the determinant formulas follows the general lines of that of
Feigin and Fuchs for Vect^1) and is, like theirs, based on the construction of a
concrete family of representations. Rather than generalizing the construction of
[2], however, we generalize the one obtained by Goodman and Wallach [11].
One can show that these constructions are isomorphic via the boson-fermion
correspondence [see Frenkel, I.B.: J. Funct. Anal. 44, 259-327 (1981)]. In this
approach, the operator that was used in [2] to obtain highest weight vectors
becomes a vertex operator.

We would like to point out that the theory of Verma modules for the Ramond
algebra, developed in this paper, is quite a bit different from that of the Neveu-
Schwarz algebra. For example, the Ramond algebra admits "half Verma modules
as well as Verma modules. The former explain the extra factor in the determinant
formula of this algebra.

Finally, we hope that our findings on the Ramond algebra, as well as our
detailed follow-up and proofs of the results announced in [14] can serve as a basis
for further investigations on the subject.

In Sect. 2 we review the background material on Z2-graded Lie algebras and
their representations that will be needed in the paper. In Sect. 3 we present some
basic results on the Neveu-Schwarz and Ramond algebras and their highest weight
representations. The determinant formulas are stated at the end of this section. In
Sect. 4 we construct the representations Jf^'w (Theorem 4.2) and prove that they
are intertwined by a vertex operator (Theorem 4.4). We then use the latter to
obtain maximal weight vectors in jf ^'w (Corollary 4.8). We conclude this section
with the proof of the determinant formulas which consists of two parts: The degree
computation (Proposition 4.10) and the proof of the vanishing of the determinant
on the variety of its irreducible factors (Proposition 4.13). In Sect. 5 we construct
Jantzen type filtrations following the general lines of [23], and then use them to
obtain character sum formulas (Proposition 5.2). The latter imply Theorem 5.1

1 After this work was completed we received reference [27]
2 After this work was completed, D. Friedan informed us that Curtright and Thorn had also
succeeded to prove these formulas
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mentioned above. Finally, in the Appendix, we extend to TL2 -graded Lie algebras,
some definitions and classic results about central extensions of Lie algebras.

We denote by N the set of positive integers, Z+ the set of nonnegative integers,
and SQtZ2

2. Preliminaries

First we recall the necessary definitions pertaining to Z2-graded algebras
([1, 15, 16, 18]). All algebras and vector spaces are defined over C.

A Έ2-graded algebra is an algebra α with a vector space decomposition
α = do + αj such that αα α^ C αα + β for all α, β e TL2. The elements of QQ are called even
and those of αx are called odd. By a subalgebra of a Z2-graded algebra we will
always mean a Z2-graded subalgebra. Also, by a homomorphism Φ:α->α' of
Z2-graded algebras we will always mean one that preserves the Z2-grading, i.e.,
such that Φ(αα) C α^ for all α e ΊL2.

A ΊL2-graded Lie algebra is a Z2-graded vector space I = Iδφlϊ equipped with a
bilinear map [,] such that [Iα,y ClΛ+β, α,βeZ2, and satisfying the following
conditions:
(LI) [X,y]=-(-l)«'[y,X],XElβ, Yelβ9v9βeZ29

(L2) (-i)βy[^,[y,z]]+(-i)^[y,[z,r|]+(-i)^[x,[z,y]]=o,
Xe\Λ9 Yelβ,ZεlΓa,β9γeZ2.

The subalgebra IQ of I is clearly a Lie algebra in the usual sense.

Note. We warn the reader that the terminology for the objects just defined is
varied. [15, 16] use the term "Lie superalgebras." In [18] the authors consider
what we would call "Z+ -graded Lie algebras" and refer to them simply as "Lie
algebras."

If α is an associative Z2-graded algebra, set [X, Y] - XY- ( - l)α/? YX, X e αα,
Ye dβ, α, β e TL2. We denote by αL the resulting Z2-graded Lie algebra.

The universal enveloping algebra of a Z2-graded Lie algebra I is a pair (C/(I), σ)
where £7(1) is an associative Z2-graded algebra and σ:l-+U(ΐ) is a linear map
preserving the Z2-grading, with the following universal property: σ[X, Y]
= σ(X)σ(Y)-(-l)«βσ(Y)σ(X) for all Xela, Yelβ, α,βeZ2, and given an
associative Z2-graded algebra α and a linear map τ:l->α preserving the
Z2-grading, and such that τ[Jf , Y] = τ(X) τ(Y) - ( - ί)aβ τ(Y) τ(X) for X e Iα, Y e I,,
α,/?eZ2, then there is a unique homomorphism ψ: U(\)^a such that τ = ψ°σ.

Let V=VQ®VΪ be a Z2-graded vector space. Let, for p^l, (®pF)α

Σ Vβl®...®Vβ9 α,fteZ2, i = l,...,p, and set

T°(F) - C. The tensor algebra T(V)= 0 TP(V) is clearly a Z2-graded associative
algebra. p=0

Concretely, U(l) = Γ(I)/7, where / is the two-sided (Z2-graded) ideal in Γ(l)
generated by the elements of the form X® Y- (-l)«β 7® X-[X9 Y]9XelΛ, Yelβ9

and σ:I->l/(I) is induced by the restriction to I of the canonical map
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Let {xt} (i E A) be a homogeneous basis of I, where A is a totally order set. Let
p e %+ . By a p- tuple of A we mean a sequence of p elements of Λ. We write 0 for the
0-tuple. If I is a p-tuple we set yl = y0 = 1 in 17(1), for p = 0, and yl = ytl . . . yip in [/(I)
if I = (i1? . . . , ip), iy e /L, j = 1, . . . , p, for p ̂  1, where yί = <τ(xf) for all i e /L A p-tuple of
Λ is said to be admissible if its elements are in nondecreasing order and if no index
of an odd basis element appears more than once in the sequence.

Lemma 2.1 [1], Let {xj (i e Λ) be an ordered basis of I. Then the monomials yl9 for
all the admissible p-tuples I of A, and all p^O, form a basis of (7(1).

From Lemma 2.1 we immediately obtain the following:

Proposition 2.2. The canonical map σ\ g->l7(g) is injective.

Proposition 2.2 allows us to identify xt and yt. Now set xl = xil...xi. for
/ = (/!, ...,/,-), y'^1, X0 = l. By Lemma 2.1 we have

Theorem 2.3 [1]. Lei {xj (i e Λ.) fee an ordered basis of I. Γfte monomials x, /or a//
admissible p-tuples I o/ /I, ami a// p ̂  0, /orm a basis of 17(1).

Next, we will state the Poincare-Birkhoff-Witt theorem for Z2-graded Lie
algebras. First, we need a few more definitions.

An associative Z2-graded algebra α is said to be commutative if [α, α] = 0. The
symmetric algebra of a Z2-graded algebra I is a pair (5(1), ρ), where 5(ί) is a
commutative associative Z2-graded algebra and ρ:l->S(I) is a linear map
preserving the Z2-grading, with the following property: Given any pair (α, τ) where
α is a commutative associative Z2-graded algebra and τ:ί-»α is a linear map
preserving the Z2-grading, there is a unique homomorphism ψ: S(I)-»α such that

τ = φoρ. Concretely, S(ΐ)=T(ί)/J9 where J is the two-sided (Z2-graded) ideal in
T(I) generated by the elements of the form X®Y-(-iγβY®X, Xε\Λ, Yelβ,
a,βe TL2, and ρ is induced by the restriction to I of the canonical map ε : 17(1) -> 5(1).
It is clear that ε maps I injectively. For this reason we will identify ε(I) with I.

We define a filtration of T(I) by Tp(l) = T°(I)0 . . . ® Tp(\\ and let Up(ϊ) = π(Tp(l))
[respectively SP(I) = ε(Tp(ί))] be the corresponding filtration of U (I) [respectively of
5(1)]. Consider the Z2-graded vector spaces G |Ϊ(I)=C7J,(I)/I/P_1(I) and G(I)

00

= ®G\ΐ), where we have set l/_1(I) = (0). Since Up(ϊ) Uq(ΐ)cUp+q(ΐ), the multi-
i = 0

plication in [/(I) induces a multiplication in G(l). The resulting associative
22-graded algebra is called the graded associative 2£2-graded algebra associated to
the filtered 2£2-graded algebra [7(1).

Clearly, G°(I) - U°(ΐ) = <C 1 and I is canonically identified with G^I) thanks to
Proposition 2.2. Since

in C72(I), X e Iα, Ye Iβ9 α, β e Z2, we conclude that there is a unique homomorphism
ψ: S(I)-»G(l) such that φ|r= identity. [Here, we have identified I with its image in
5(1).] ψ is called the canonical homomorphism of 5(1) in G(I). The next theorem is
readily obtained from Theorem 2.3.
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Theorem 2.4 (Poincare-Birkhoff-Witt) [1]. The canonical homomorphism of S(l)
into G(ΐ) is an isomorphism.

Remark. The Poincare-Birkhoff-Witt Theorem for Z-graded Lie algebras was
first proved in [18].

Corollary 2.5. Let ϊc l be a subalgebra of I with an ordered basis {Xi}ieM. Let
{xJίeMuJv be an ordered basis of I extending {xJίeM, and such that i<j for ϊeM,

J E N . Then the inclusion f c l induces an injective homomorphism U(ΐ)-*U(ΐ), and
17(1) is a free U(ΐ)-module with basis {x7} for all admissible p-tuples I of JV, all p ̂  0.

For a Z2-graded vector space V=V^®Vι we let End(F) be the associative
Z2-graded algebra of (graded) endomorphisms, End(F) = (End(F))o®(End(F))j,
where

(End(F))α = {TeEnd(F)|T(Fy)cFα+/, for all yeZ 2},

α E Z2. We set I(F) = (End(F))L. A representation π of a 5£2-graded Lie algebra I is a
homomorphism π: l->l(F). We set Xv = π(X)v, for X E I, v e V. It is clear from the
definition that

X(Vβ)CVΛ+β for all

and that

υ, foral l

We will also use the terminologies of "I7(l)-module" and "I-module" in place of
"representation of I." A submodule of an I-module is always meant to be
Z2-graded, and a homomorphism Φ: M-+M' of I-modules, means one such that
Φ(Mα)cM^(α), where ιp:2£2-»Z2 is a bijection.

Let IcI be a subalgebra of I, W a ϊ-module. Thanks to Corollary 2.5 we can
view l/(ϊ) as a subalgebra of [/(I). One can consider 17(1) as a right C7(ϊ)-module and
therefore may form the left I7(l)-module V=U(ΐ)®mW. I.e., let M be the
5£2-graded subspace of U(l)®W generated by the elements of form XΎ®υ
-X®Yv for all XeU(\\ YeU(ΐ) and veW. Then V is the Z2-graded space
(17(1)® WO/M. F is made into a l/(I)-module by setting

^(y®t?) = Jf y®t?, Jf, Fe U(l\veW.

Fis called the U(ί)-module induced from the U(t)-module Wand denoted Ind}(FF).
By Corollary 2.5 the homomorphism wι->l®w from W to F is injective. We
identify W with 1 ® W by this map.

Proposition 2.6. Let icl be α subalgebra of I, Wai-module, V = Ind\(W)andV and
{-module. Any l-homomorphism ψ:W-^V can be uniquely extended to an
l-homomorphism φ\ V-* V' ' . Furthermore, ψ ι-> φ is a bijection from Homt(W, V) to
Hom^F, FO.

Proof. Let φ(X®w) = Xψ(w). If XeU(ΐ), YeU(l\ then φ(XY®w-X® Yw)
= XYψ(w) — Xψ(Yw) = 0, so φ is a homomorphism from F to F'. The restriction of
φ to 1®W gives a map from Homt(F, Fx) to Hom^PF, V) inverse to
ιp\-^φ. Q.E.D.
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3. Highest Weight Representations

Let ns (respectively r) denote the complex vector space with basis {L/5 G3] (i e TL,
je^+Z) (respectively {Li9Gj} (iJeZ)), and set

[Lf,L,] = 0'-OW

[G i,GJ=-2L ί+J ,

Letυ = 0 CLί9 and set nsό = rό = o,τίsϊ= © CGf. rϊ = φCG;. It is easy to see

that ns and r are Z2-graded Lie algebras and that υ is a subalgebra of n* and r. t> is a
Lie algebra in the usual sense. Now let

It is also easy to see that C satisfies the cocycle condition for Z2-graded Lie
algebras. The central extension3 of ns (respectively r) corresponding to the cocycle
C is called the Neveu-Schwarz (respectively Ramond) algebra and is denoted by ffe
(respectively f) (See Appendix for the definitions of cocycle condition and central
extension corresponding to a cocycle, for Z2-graded Lie algebras.) The central
extension of υ corresponding to C|0 x Ό is called the Virasoro algebra and is denoted
by 6.

From now on, in this section, we let g denote either one of the Z2-graded Lie
algebras ns and f. The 2£2-grading is given by

,n5ΐ= © <C
ί"eZ / ϊ'ei+Z eZ

where ef = (Lί? 0), βf = (Gί? 0), and e'0 = (0, 1) in the notation of the Appendix. (We
sometimes drop the superscripts of e*, e^ if g = ιίs.)

If I is a Lie algebra in the usual sense, then 17 (ϊ) is isomorphic to a polynomial
ring. Therefore, by the P-B-W theorem, U(l) is an integral domain. If I is a
Z2-graded Lie algebra, however, S(l) is not in general isomorphic with a
polynomial ring. Nevertheless one has the following

Proposition 3.1. ί/(g) is an integral domain.

Proof. We let JB = {β I I |nεZ}u{em |meZ + i}u{e/

0} if g = τΐs, and β = K+ |neZ}
u{e~|meZ}u{eό} if g = ϊ We enumerate the elements of B by X:Z-»β, where

if g = τfe, and

(_2 B ) = er_B, neN, if g = r. Let xn = X(m)9 meZ. By
Theorem 2.3, a basis of C/(g) consists of the monomials xI = xίl ... xίw, where
I = (i1,...,im) is an admissible m-tuple of ΊL. If x; ego and I = (il9...,ind is an

s By Proposition A.2 and the results of [21] one sees that these are universal central extensions
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admissible m-tuple of Z, let Z(/,I) denote the set of all ik9 k = \, ...,m, such that
either ik = j or xik e gj and [xίk, xίk]e — 2Xj+(Cx0. For ieZset a^2if x ^ e g o and
at = l if x^egi. We define the j-degree of x, as j — deg(x,) = 0 if Z(j,I) = Φ and
j — deg(x,) = Σ αίfc, otherwise. We define the total degree of x, as t — deg(x,)ίfc,

ί k e Z ( j , l )

= Σ aik N°te that ί-deg(x,)= Σ J-deg(x,). Given I = (i1,...,/J and
fe=l ./I*; ego

J = OΊ> ••• Jn)? I=M such Λat ί — deg(xI) = ί — deg(xj), we choose the leading
monomial between x, and Xj as follows: Letj0 be the largest even index (i.e. xy 0 e g^)
such that j0 — deg(x,) φ Ό — deg(xj). The leading monomial is the one with greatest
j0-degree. If x= Σαιxι we set ί-deg(x) = max{f-deg(x,)}. If £-deg(x) = p, the

leading monomial of x is, by definition, the leading monomial of total degree p. We
note: 1) t — deg([xί? x; ]) < t — deg(xίx7 ) if xt or Xj e gδ. 2) Let xi9 x7 e gτ, i Φj, and say
ϊ <j. There are fc, kf e Z such that [xj? Xj] = — 2xk + CjXQ and [xί? xJ = — 2xk,
-1- cyx0. Clearly k > k' '. If cj φ 0, then Cy = 0, and if ctj φ 0, then c 3 = 0 and fc> 0. Now,
fc — deg(XjX7 ) = l. This implies that xpcj leads the terms of [Xj, x7 ] if iφj. 3) xf
= ̂  [xi? X j = — x7 + qx0, where xy e gδ, if xz e gj. Let %xκ be the leading monomi-
al among the monomials of x,Xj obtained by bracketing only an odd element
with itself. By 1 )-3) ί - deg (x,x j) = ί - deg (ακxκ) = ί - deg (x,) + 1 - deg (x j),
j — deg(ακxκ) = j — deg(xj) +j — deg(xj) for all j such that x7 e 95, so that ακxκ is the
leading term of x,Xj. Now, if x, is the leading monomial of x and yΛ is the leading
monomial of y, then the leading monomial of XjXj constructed above is the leading
term of xy. Hence xj; φ 0 if x Φ 0, y φ 0. Q.E.D.

Let t) = (C^o Θ<Ceό C g. We define δ e ί)* by requiring that <5(e0) = 1 and <5(eό) = 0,
ifg-n5,andthat^)-land^ό) = 0,ifg = iLetβ
if g = r. For ηeQ, let

Q" = {XeQ\lH,X] = η(H)X for all

We then have τfδ°-(Ce0®Cβό and n5ί5 = C^ for all ieZ\{0},
r° - Ceί ΘC^o ©Ceo and ίίδ = C^+ 0Cef~ , for all i e Z\{0}. Hence g - 0 g* and

ηeQ

[G^^lCg771"^^2 for all ηl9η2eQ. We write iδ>0 (respectively ίδ<0) if ί>0
(respectively i < 0), where i e ̂  ΊL. Let β + denote the set of all η e Q such that 77 > 0.
We define the subalgebras n and n" of g as n = φ . g1' and n~ = 0 g*. Then

ηeQ+ ~ηeQ+

. Let b = g°0n. If M is an ί)-module, and μeί)*, let

for all H e ΐ ) } .

Definition 3.2. A g-module M is said to be a weight module if M= φ Mμ, with
dimM^<oo for all Aeί)*. Mμ is called the μ-weightspace of M. μeί)*

Definition 3.3. Let M be a g-module, μ 6 1)*, v e Mo\{0} such that Hυ = λ(H)v for
all H e t), m; = 0 and M = t/(g)^. Then M is said to be a highest weight module with
highest weight λ.

Remark. Any highest weight module is a weight module with weightspace
decomposition M= φ Mμ, where λ is the highest weight of M, and
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Mλ = <Cv, Mλ~η=U(n~Γηυ, if g = ns, and Mλ

weightspaces of l/(n~) and I7(n~~)0l7(n~)eo , respectively, viewed as ^-modules,
and M=U(§)v. Any nonzero homogeneous element of Mλ is called a highest
weight vector.

Let Λeϊ)* and let λ(e£) = h, Λ,(e'0) = c. If g = ns, let <C(λ) denote the one-
dimensional even b-module C defined by e0l =Λ1, ex

0l = cl, nl =0, degl =0. If
g = f we denote by R(λ) the two-dimensional Z2-graded b-module generated by υλ,
where n ϋλ = 0, eQΌλ = hυλ, e'0Όλ = cΌλ, deg(uA) = 0. If g = f, and λ is such that

h = — — , we denote by S(λ) the one-dimensional even b-module (C defined by
16 c

nl =0, ejl =M5 e'0l = cl, ̂ 1=0, degl = 0. If Λ Φ - — thus #(/ί) is irreducible (as
c 16

a Z2-graded b-module). If ft = — — , then e^ υλ generates a proper L7(b)-submodule
of R(λ) isomorphic to S(λ). 1 6

Definition 3.4. Let λ e I)*, and let F(/l) be one of the b-modules <C(/l), #(/l), or S(/l) if
λ(e%)= -λ(e'0)/ί6. Set M(F(A)) = Indg(7(A)). If V(λ) = <C(λ) or Λ(A), M(7(Λ)) is
called the Verma module associated with g, I), and λ. If i(βo ) = ~ ̂ (^ό)/ί 6, M(S(Λ,)) is
called the half Verma module associated with g, ί), and /I. (This terminology will be
justified by Proposition 3.12.)

Remark. M(V(λJ) = U(n~)®€V(λ) by Corollary 2.5. We have M(V(λ))λ'η

= U(n~Γη®V(λ) and M(F(A))= 0 M(K(λ))λ"lί.
ι/eβX;{0}

The following is an immediate consequence of the universal property of the
tensor product.

Proposition 3.5. // λ(e£)= -λ(eό)/16, then M(S(λ)) is a submodule of M(R(λ)).

We denote by ρ(ή) the number of partitions of n and by ρ(S, n) the number of
partitions of n that belong to the subset S of the set of all partitions. For a subset H
of the set of positive integers, we denote by "#" the set of all partitions with parts in
H, and by "H" (^d) the set of all partitions with parts in H, in which no part
appears more than d times. Let H0 (respectively H^) denote the even (respectively
odd) positive integers. Finally, let pe(β, n) [respectively p0(β, n)) be the number of
partitions of n into an even (respectively odd) number of distinct parts, and let
p(®, n) be the number of partitions of n into distinct parts.

If M is a weight module we set Mη

y = MμnMy, μe ϊ)*, γ eZ2.

Proposition 3.6. Let /lei)*,

άimM(€(λ))λ-nδ = p(n) = p(2n), (1)

where s

= l,p(s)= Σ K"H0",Op("tfΓ(^l),s-
i = 0

"' = #(«), (2)

where

= \,p(n)= Σ p(ί)p(®,n-ί),n>0,γeZ2 ,
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If λ(e0)=-λ(e£)/16, then

dim M(S(λ))* ~nδ = i p(n)) for n>0, p(n) as in (2) . (3)

Proof. By the remark that follows Definition 3.4, M(R(λ))§~nδ is a linear
combination of elements

where

s even, w odd. Hence,

Σ p(ΐ)p0(9,n-ί)
i = 0

Similarly, for M(Λ(Λ))f ~Λί. This proves (2).
To prove (3) we use a similar argument and note that

Σ P(ί) Pe(®, n~ί)= Σ P(0 P0(^? n - i), for all n > 0 ,
i = 0 i = 0

since

Σ P(n)(f}( Σ (pe(@,n)-Po(®,n))
= 0 / \n = 0

(see, e.g. [10]). (1) is even easier. Q.E.D.

Let υλ = ί®Όλ in M(R(λ)) and ι?λ = l®l in M(C(A)) or in M(S(λ)).

Proposition 3.7. Let M be a highest weight module with highest weight λ and let v be
a generating highest weight vector of M. // g = ns, we let V(λ) = (C(/l); if g = r we let
V(λ) = R(λ) if evVφO, and V(λ) = S(λ) if e^v = 0 (in which case λ(ej)
= —λ(e'0)/16). Then there is a unique surjectiυe homomorphism φ:M(V(λ))~^M
such that φ(vλ) = v.

Proof. This is immediate from Proposition 2.6. Q.E.D.

Proposition 3.8. Let M be a highest weight module. Then M has a unique maximal
proper submodule.

Proof. Let λ be the highest weight of M. If g = its, or if g = r and λ(e^ ) Φ A(βx

0)

then every proper submodule of M is contained in @ Mλ~nδ. If g = ί and λ(e$ )
«>o

= — λ(eό)/16, then every proper submodule of M is contained in 0 Mλ~nδ®M{.
n>0

In either case, the sum of all proper submodules is itself a proper
submodule. Q.E.D.
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Definition 3.9. L(V(λJ) = unique irreducible quotient of M(F(/l)), V(λ) = <C(λ),
R(λ) or S(λ).

Proposition 3.10. Let λ(e£)= -λ(eΌ)/16. Then L(R(λ))~L(S(λ)).

Proof. Let M(R(λ))(ί) [respectively M(S(λ))(l)] denote the unique maximal
proper submodule of M(R(λ)) [respectively M(S(λ))~]. By Proposition 3.5, e$ (1®
uλ)eM(R(λ))(1). Therefore the image \®Όλ of \®Όλ by the quotient map is
annihilated by e$ . By Proposition 3.7, there is a unique surjective homomorphism
φ:M(S(λ))->L(R(λ)) such that ^(l<g)l) = ϊ®ϋΓ. This implies that

) ~ M(S(λy)/keτφ = L(S(λ)). Q.E.D.

Definition 3.11. If M is a weight module, we define the character of M as

chM- Σ (dimMΌ<f.

From now on we abbreviate qnδ by qn, nδεQ.

Π (1+9"")
Proposition 3.12. (1) chM(<E(λ)) = qλr^Ξ^ =^—

(2)

(3) chM(S(λ)) = qλ Π - i/ λ(e+)= -λ(e'0)/16.
netl(ί—q )

Proof.

Σ p(»)«~"= Π (i+g""+^2"
«odd 1

nev

p(n) as in Proposition 3.6. By Proposition 3.6,

Π
chM(<C(λ))= Σ p(2n)q^ = q^Σp(n)q-"/2 = qλneN

π

1

«eiZ+ neZ 11
neN

By Proposition 3.6,

= 2ql Π (l+^" + ̂ 2"+...) Π (1 +«-") = V Π -
«eN «eN ne lNvl"""^

This proves (1) and (2). (3) follows from (2) and Proposition 3.6. Q.E.D.

Proposition 3.13. Let V(λ) = <C(λ), V(μ) = V(μ)9 or V(λ) = R(λ), V(μ) = R(μ)9 or
V(λ) = S(λ), V(μ) = S(μ), if λ(e$)= -λ(e'Q)/16 and μ(e+)= -μ(e/

0)/16. Every
homomorphism φ:M(V(λ))->M(V(μ)) is injectiυe or zero.
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Proof. Let φ:M(V(A))->M(V(μJ) be a nonzero homomorphism. Then
φ(vλ}=Yυμ, ΓΦO, YeU(n~)®U(n-)eo if V(λ) = R(λ), V(μ) = R(μ) [respectively
yel/(n-) if V(λ) = V(X), V(μ) = C(μ), or V(λ) = S(λ), V(μ) = S(μϊ]. If
v e M(V(X))\{0}, say v=Xvλ, Xή=0, Xe l/(n")Θ£/(n~)βo if V(λ)=R(X),
V(μ) = R(μ) [respectively XeU(n~) if F(A) = C(A), F(μ) = <C(μ), or F(/l)
= S(A), V(μ) = S(μϊ], then JCYΦO by Proposition 3.1. Now,

M(Λ(μ))aί(y(n-)ei7(n-)βo)®c<cθμ» M(C(μ))= t/(τr)®c(C and Λf(S(/i))
= [7(n")®cC, hence ΛΓFi φO. Q.E.D.

We now define the contravariant form on M(F(1)) for V(λ)=<L(λ), R(λ), or
)ifλ(et)=-λ(e'0)/l6.
We set σ(e;+) = eί;, σ(e; ) = e_; and σ(eό) = eό Clearly,

<*lef9eϊl) = [σ(eϊ)9σ(eΐ) ] , (1)

<fe"^7]) = [^"),σ(O], (2)

, (3)

(4)

This implies that σ extends to a Z2-graded linear bijection from g to q such that
σ2- identity and σ([X, Y]) = [σ(Y),σ(X)], for all X, Yeq. By the universal
property of t/(g), σ therefore extends to a Z2-graded linear bijection from [/(g) to
E7(q) such that σ2 - identity and σ(XY) = σ(Y) σ(X\ for all X, Ye C7(g). From the
decomposition g = n~0g°0n and Corollary 2.5, one sees that L/(g)
= tf(g°)Θ(τΓl/(g) + t/(g)n). Let ^: t/(g)e ί/(g°) be the projection on the first
factor, and let Π^: C/(g°)->(C7(g°))o be the projection on the even component of
C7(g°). Let β = Π^oφ: [7(g)-^(7(g0)0. For X, YE l/(g), Ael)*, we set

(AΓ^Yt J^ίλojSXσίJOy), (5)

where we have extended /lei)* canonically to an algebra homomorphism
λ: t/(g°)o^C, and vλeM(V(λj), V(X) = C(λ), R(λ), or S(λ)9 if λ(e+)= -λ(

Proposition 3.14. (a) ( , )λ defines a symmetric, bilinear form on M(V(λj) such that

for all Xe t/(g), t?, weM(7(Λ)), (6)

(b)
(c) Tfe radical of ( , )λ, Rad( , )A, Ϊ5 ίAe maximal proper submodule of M(V(λ)};
(d) ( , )λ is ίftβ unique symmetric bilinear form on M(V(λJ) such that

λ = 0, (̂ ,1?^ = ! and such that (6) is satisfied.

Proof, (a) If Jti^ = 0, then X is in the left ideal of C7(g) generated by n and
{H-λ(H)\Hel)}, if V(λ)=€(λ) or R(X) [respectively generated by n, €e^ and
{H~λ(H)\Heϊ)} if V(λ) = S(λ), λ(e+)= -1(4)/16]. Therefore (Jfy,
Now,

(Xϋ,, yUA)λ = (λoβ) (σ(X) Y) = (λo β) (σ(σ(X) 7)) = (λ o /?)

hence ( , )Λ is symmetric. Also,

(ZXυλ, Yvλ)λ = (λoβ) (σ(ZX) Y) = (λo β) (σ(X) σ(Z) 7) = (Xυλ, σ(Z) 7ι;,)λ .
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(b) tf(g)rt/(g)jCl/(gX— , σ(l/(g)r)Cl/(g)τ, i = 0,l, and β(Ufa)τ) = (0). Hence,
β(σ(X)Y) = 0 if X e U f a f c YE t/(g)— i = 0,l. Let now i^ eM(F(Λ))μι,
ϋ2 e M(V(λ))μ2 and μ!φμ2. Then (ffϋι,t;2)λ = μ1(fO(ϋι^2)λ and (^1,^2)
= μ2(H)(ij1,ι?2)forallHekBy(6)(μ^

(c) Let t; e Rad( , )/l. Then (Xv, Ufa)vλ)λ = (v, σ(X) Ufa)vjλ = 0 for all X e Ufa).
Hence, Rad( , )λ is a proper submodule of M(F(1)), since (vλ, vλ)λ= 1. Therefore
Rad( , )λ C largest proper submodule of M(F(/l)). Conversely, let v be in the largest
proper submodule of M(V(λ)). Then veί® M(V(λ))λ~nδ\ 0M(F(/l))f, and so,

by (b), (iM^O. Now, (ϋ, t7(g)ι?A) = (σ([7(g))t;,ι;Λ)A = 0 and *;eRad( , )A.
(d) Let < , yλ be a symmetric bilinear form on M(V(λ)) such that

(M(F(Λ))ό, M(7(A))ϊ) = 0 and such that <J£u, w>λ = <u, σ(JSO\v>λ for all Jf e I7(g),
υ9weM(V(λj). Then <^A, Yvλyλ = (vλ,σ(X)Yvλyλ. By (b), < ,̂ σ(^ Yυλyλ

λyλ. Q.E.D.

Let /lei)* and set h = λ(βQ\ c = λ(e'o). For ne\TL+ and ye22, we denote by
( , kc,Λ [respectively ( , )Λ>c,Λ,y] or by ( , )A >« [respectively ( , )λ>π?y] the restriction of
( , )λ to M(F(/l))A"^ [respectively M(V(λ))λ~nδ^ where F(/l)-(Cμ) or R(λ). We
now state the formulas for the determinant of ( , ) Λ , C j M > y (we omit the subscript γ if
g = /is). The formula for the Neveu-Schwarz algebra was conjectured by Kac [14],
and the one for the Ramond algebra was conjectured by D. Friedan, Z. Qiu, and S.
H. Shenker [7, 8]. Let r,se^N, r^s. Set, for g = ns

ft±s(c) = —i [(r2 + s2) (5 - c) ± |/c2-10c + 9(r2 - s2) - 8rs - £ + £ c] , (7)

and, for g = r

— 5 ) — 8rs— 2+ ~2^}~Tβ (70

Also, set, for
1 (̂1 -c)(4r2-!). Let jp(ί) be as in Proposition 3.6. Then, if g = ιfe,

)M f l l= Π Vr,.(Λ,^-2">,[14] (8)
2rs^n,r-se%

and, for g = r,

det( , ) Λ i C f l l i y = Λ + TT Π Vr,,(Λ, ̂ (n"2rs) (9)
\ ID/ 2rs^M,r-sei- + 2

if n^O, and det( , )Λ,c,0 fό = l> det( , ) Λ i C . 0 f ϊ = ft+ ̂  [7, 8].

JVoίe. The nonzero constant depending on the choice of a basis of M(V(λ)) has
been omitted in (8), (9).

4. The Representations
and the Proof of the Determinant Formulas

We retain the notation of Sect. 3. In this section we prove the determinant formulas
for the restriction of ( , )λ to M(V(λ))% (see Sect. 3). The main ingredients are the
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construction of the representations 3fξ'ω of g (Theorem 4.2), which generalize the
construction of [11], and the vertex operator.

Following [6] let t be a one-dimensional space, t = (CT, and let < , > be a
symmetric, bilinear form on t such that <T, T> = 1. Let t = t®(C[ί, Γ ^©Cz, and
let

n.0z, (1)

[t,z] = 0, (2)

where we have set X(m) = X®tm for all xet , meZ. We let

D(X®f) = n, Xet.neZ, (3)

D(z) = 0. (4)

We note that t^ = ( 0 t(χ)(CίΛ 0Cz is a ̂ -graded Heisenberg algebra with the
V«eZ\{0} )

Z-grading given by the degree map D. Let t~ = 0 t®CinCi#, and
n < 0

n= f 0 t®(CίΛ ΘCzCt^. Let C(l) denote the one-dimensional u-module such
V«>° /

that (X®tn)l=0 if Xet, π>0, and zl = l, and form the left E7(t*)-module:

Indί

u*C(l). Note that S(t~) is linearly isomorphic with Ind^<C(l). Using this

isomorphism we can define a t^ -module action on S(t~) and identify S(f ~) with

Ind*Γ<C(l). Let C[t] denote the group algebra of t, C[ί]= 0 eωT, where e*eβ

= e«+β, α,jSet, and let ωe(C

α β t . (5)

Let F=S(ϊ~)®C[t]. We define a representation (π1? V) of t as follows:

(6)

(ϊ-), α e t , (7)

- identity. (8)

Let

π2(e«)(υ®eβ) = v®e«+β, α,j8et, t?eS(ί"). (9)

The pair (t,C[t]) is called a Heisenberg system ([6]) and (π1? π2) is an irreducible
representation of (t, C[t]) ([6]).

Next we describe the spin representation of [4, 17]. We denote by Z
the set Z-f i or the set TL. Let U= 0Cα(m), J7+= 0 <Cα(m), and

meZ m > 0 , m e Z

[/-= 0 Cα(m). Let < , > : l 7 x t / - > C be the symmetric bilinear form

satisfying

)> = δm + Π, 0, (10)

and let ^(C7) be the corresponding Clifford algebra. That is,
where T(ί7) is the tensor algebra of U and J is the two-sided ideal of T(17)
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generated by the elements of the form: ϋ®w + w(x)ί; — <ι;, vv>. Let

Da(m) = m.

We define, for JSf e t/~, Ye C7+,

ι ( .Y)( t ; 1 Λ.. .Λt? Λ )=
j=ι

(11)

(12)

(13)

(14)

^ e C7~ , / = 1 , . . . , n. ρ extends to an irreducible representation ofW(CT) on <
= yl(l7~), also denoted by ρ, called the spin representation corresponding to the
polarization 17 = £7+©t/~ ([4, 17]). Let W= V®Λ(U~). Welet(ί,<C[ί])act on W
by letting it act trivially on Λ(U~), and let ΉS(U) act on W by letting it act trivially
on V. We make W into a Z2-graded vector space W= φ WJ, by setting degy^O
for all v ε V and degw = T for all ueU. yeZ2

From now on we omit the representation symbols and indicate the action of an
element of (t,(C[ί]) or «7([7) on W by the element itself.

The ordered products: :T(m) T(ri): and :α(m)α(n): of the operators T(m) and
Γ(n), and α(m) and α(n), respectively, are defined as follows:

T(m)T(n) if m<n,

:T(m)T(n):= i[Γ(m)T(n) + Γ(n)Γ(m)] if m = n, (15)

T(n)T(m) if m > w ,

α(m) α(w) if m<n,

^α(m) α(n) — α(n) α(mj] if m = n, (16)

— α(n) α(m) if m>n.

We now define the operators that give a special case of the representations of g
that will be constructed. From now on, Z = Ίί + ̂  if g = its and Z = ΊL if g = r.

Let, for n

Σ k:α(k)α(n-k): (17)

if =

if g = r, and, for n e Z,

(We sometimes drop the superscripts if g = ns.)
The degree map D given by (3), (4), (5), and (11) extends uniquely to a degree

derivation on W which we also denote by D.
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If A,B,C are operators we have the following obvious identities: [AB, C]
- \_A, C\B + A[B9 C], [ΛJB, C] = -[A, C] + B + A[fl, C]+ and [ΛLB, C] +

= -[A,C]B + A[JB,C] + , where [A,B] + is the anticommutator AB + BA.
Let dn

+'° = -\ Σ :T(k) T(n-k):9 nzΊL. Then one has:
fceZ

[iC ' °, T(n)] = nT(m + n), m, n e Z ([6], see also [1 2]) (20)

[d^0,ί/n

+ 0] = (n,m)^4.°n+
!!^^+n,o,m,WeZ: (21)

([6], see also [12]). The relations of the next lemma were also known ([5]).4 We
give their proof for completeness.

Lemma 4.1. Lei dΛ

+ > 1=ί Σ k:a(k)a(n-k): if g = ιfs and d+ 1

keZ + i

= i Σ fc:e(*)fl(n-fc): -^«5n if g=ί.
fceZ

(i) ld+>1,

(ii) [ίtt S

Proof, (i) K'1,α(w)] = iΣfc[«(fe)α(wί-fc),Φ)]5 by (16). Assume that
fceZ

—2n. Then [̂  ' 1, α(w)] — i [ ~ w^( ~ w) β(m -f «) -f- OH -f «) Λ(W + ri)a( — n), a(n)~\
by (10). If m=-2n, then, [dmf2,φ)]

(ii) [K'1, iC'1],
m-hn) — (fc + ^m) (/c + m + ̂ n) α(fc-f m + n) = (n — m)

= [(n-m)d+4.1

n,α(fe)] for all fceZ, by (i). Therefore,
td*'1,d*'1] — (n---m)dn+1

n is constant, by the irreducibility of Λ.(t/~). Since
[^m>1^«h'1]~~(n~m)^m+1ι is homogeneous of degree m + n relative to D, we
conclude that this constant is zero unless m + n = Q. Now, if g = ft$

-0--2d+'1(l®l®l). Similarly,

and

[dί 1,dίi1](l®l®l) = i(l®l®l) = (-4dί 1 + i)(l®l®l) if 8 = r.

Proceeding by induction, we assume that (ii) has been proved for n = — m and

m^2. Now, write d^\ = ̂ ~^ \d^ and dΐ^-^-^-CdΐiSdί^].
m — i in — i

It is now a simple exercise to see that [d^1

1,dί^1_1] = — 2(w-hl)d ( j~' 1

, which proves (ii). Q.E.D.

4 Similar calculations were also carried out in [3]
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Lemma 4.1, (20) and (21) imply that the formulas (17)-(19) give a represen-
tation of g on W where the central element acts as the identity operator. To ob-
tain arbitrary central action, we let, for ξ e (C and n e TL,

and, for n e Z,

(We sometimes drop the superscripts if g = ns.)
We note that \_A®B, C®D] = \_A,C]®BD + CA®[B,D~] and [A®B,

Theorem 4.2. Let £e(C and set πξ(e^ = e^(ξ), neZ, πξ(en")-β~(ξ), neZ, and
πξ(eo) = 1 — 8£2 Tfen Ttξ extends to a representation of g on W.

Proof. (a) [e;(α

2^m+n,0 by (20), (21), and
Lemma 4.1.

Hence, tt(ξ),eϊ(ξft = (n-m) ϊd^+, + ξ(m + n) T(m + n)+ yέm+M,0

I -
"> Ω ^m + ̂ oV 1 ~~0S Λ

(b) [4(α e.-(5)] = K'°, d;l + l<£<\ d^ + ξmίT(m), d-J^ξn^ 1, a(nj]

1,β(«)]= Σ
/ceZ

+ (n - fc + ^ m) T(fe) ® α(m + n - fc)] + ξm2a(m + n) - 2ξn(n + \ m) a(m + n)
= Σ [(fe-

fceZ

- Σ (n-
feeZ

by (20) and Lemma 4.1.
(c) &„

feeZ

α(m-/c),α(n-0]+]-2ξn Σ T(/c)®[α(m-/c),α(n)] +

), β(n - 0] + + 4^2m«fim), φ)] + = Σ [Λα(»» -

It is clear that ka(m-k)a(n + k)-k:a(m-k)a(n + k): = 0= T(m + n-k)T(k)
— :T(m + n — k)T(k):, unless m + n = 0. Assume that m>0. If fc>m, then both
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differences are zero since also /c>0. If fc<0, then ka(m — k)a(n
-k:a(m-k)a(n + k): = kδm+ntΌ and T(m + n-k)T(k)-:T(m + n-
= -kδm+nί0. Therefore, if g = ns, le~(ξ)9e~(ξy]+ = Σ [k:a(m-k)a(n + k):

= m Σ :a(k)a(m + n-k):- Σ k:a(k)a(m + n-k):+ Σ :T(K)T(m + n-k):
fceZ

0=-2e^+n(^

+ = Σ [fc:φι
m-l m

Σ fa5m+«,o + y<
k = o 2

-4ξ2m2δm+nt0 = m Σ :a(k)a(m + n-k): — Σ k:a(k)a(m + n~k):
fceZ 2

 fee^
Wl

+ Σ ;Πfc) Γ(m + π-/c): + τ^m+π,0-2|(m + π) T(m + n)-4£2m2<5m+nιo

= -L;+B(0 + i(m2-i)^+n,0(l -8^). Similarly for m^O. Q.E.D.

For ωeC, let Jίξ ω = S(t')®€eωT®Λ(U~). Then

W= @yΓϊ<ω (22)
ωeC

as representations of g. Let I), n C g be as in Sect. 3. For μ e I)* we denote by ( Jf ξ' ω)μ

the μ-weightspace of tf^ω relative to f). Let (jrξ'ω)5;-(

Proposition 4.3. Let ξ, ωeC.
(i) jΓ^'ω

(ii) (jr* TΦθ oφ i/ χ^) = l-8ξ2 and μ(e^=-- -- n for some
2-2ξ2-ω2

, if Q = ns, and μ(e£)= — - -- ^ -n for some neZ+, if g-r;

(iii) dim(jΓξ'ω)^p(π) for μ as in (ii) and yeZ 2 ? where p is defined in
Proposition 3.5;

(iv) l(x)eωΓ(x)l is an n-invariant vector in 3fξ'ω.

Proof. Let fc1? ...,/c reN, / 1 ? . . . ,/ seiN, and let n= Σ kt+ Σ /,.
i = l j = l

Using (20) and Lemma 4.1 (i) we obtain

if g = us. Similarly, for g = r. This proves (i) and (ii), and (iii) follows from (ii). By
<?2-ω2 £2-ω2

Theorem 4.2, e% acts on e^(\®eωT®\] by ̂ — — +m if g = ns, and by -1— - —

— γ£ + m if g = r. (iv) now follows from (ii). Q.E.D.
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Let ζ be a formal variable and let α e (C. Let

®eaτζ 2<8>1, (23)

where we set

τ~— - - —ζ-Λ -2(e?,τ) = e,aτζ-«»-2} [6]. (24)

We define X^b): W-+ W by

(25)

Then

[Γ(m), XM\ = «*«(»» + *) , m e Z, u,b e C [6] , (26)

(27)

The vertex operator is given by

YJίb) = Σ X«(b - k)®a(k), [5] . (28)
keZ

Theorem 4.4. Let α 6 (C\{0) and let YΛ(b) be as in (28). 5 (̂0) is a Q-homomorphism of
a2-!

(πξ, W) if and only if ξ= — — . 5

Proof. lem(ξ\YJφ)^ = Σ.T(k)®a(m-k)-2ξma(m\ Σ X,(b-l)®
eZ + ±

a(l)]
J +

kj

m-k)T(k)(S)δm-k + lQ]-2ξmX(X(b + m) by (26). This implies that
[>-(£), 7β(6)]+ - Σ [αAr

β(6+fm)(g)α(m-fc)α(fc-m) + JTα(6 + m-fc) Γ(fc)]

-2ξmX(X(b + m). We define :Zα(6 + m-fc) Γ(fc): to be XΛ(b + m-k) T(k) if fc>0,
i[Jfβ(ft + m-fe)Γ(fe) + T(fe)J!fβ(6 + m-A;)]iffc = 0,and
Assume that m>0. If k>m,* then a(m — k)a(k — m) — :a(m — k)a(k — m): = Q

m-k)T(k)-:XΛ(b + m-k)T(k):. If fc<0, then

)® [α(m — /c) α(fe — m) — :α(m — fe) α(fe — m):] = αJ^α(b + m) ,

and XΛ(b + m-k)T(k)-:XΆ(b + m-k)T(k): = -aXa(b + m) by (26). Hence,

Σ αJία

5 The commutativity of Y^Q) with (π°, W) for g = fίs was known [5]
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m)-2ξmX(x(b + m) by (27). Similarly for m<0. Therefore,

. Now,

<y2

if m=-αjS-y.

Furthermore the above implies that [en

+ (ξ), Γα(0)] = 0 for all neZ. The result now
follows for Q = n*. The proof for g = r is similar. Q.E.D.

We now use the operators Yα(0) to construct n-invariant vectors, that is, vectors
that are annihilated by n.

Set, forαe(C\{0},

(29)
neN

and let

E-(α,0= Σ/-.Γ", (30)
rt^O

where /_Me(C[αT(-l),αT(-2), ...] is a polynomial of D-degree -n [see (3)].

Proposition 4.5. (1) The polynomials /_ l 5 /_ 2 , ... are algebraically independent;
(2) C[αT(-l),αΓ(-2),. ..]=

Proof. For a partition v = (n l5 ...,nz) of n we write αv = αT( — n^ ... αT( — Wj) and
/

proceed by induction on the weight \v\ = Σ nj °f v ^Y the induction assumption
7=1

we see that α ve<C[/_ l 5/_ 2, ...] for all vφ(n) such that \v\ = n. Now, /_„

= -- h Σ cvαv? where cv e C and the sum is over all partitions v such that
n v

\v\ = n but vφ(n). Therefore αveC[/_1,/_2, ...] for all v. This implies that the
subspace C7_π of degree — n in C[αT( — 1), αΓ( — 2), ...] is generated by the p(ή)
monomials in the /_fc. Since dim(C/_I l) = p(n), these monomials are linearly
independent. This proves (1) and (2). Q.E.D.

Let α, weC, .ReN, and let ζί9...,ζR be distinct formal variables.

Lemma 4.6.

i = l ί = l \neN

where a2 =

Proof. £+(α,C1)£-(α,C2) = (l-C1/C2)
2ί'£-(α,C2)£+(α,C1) by the Baker-

Campbell-Hausdorff formula. Also,

(eΛTζ-«τ-'ί2)ex for all αeC,Xεt, by (24).

The result now follows by recurrence. Q.E.D.
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α2

Let A = Yl (ζj — Q, the Vandermonde determinant. Let p=— q = αw,

= ΣflμCί"where μ = (m l9 ...,?%), ζ» = W ... ζ%*.

Proposition 4.7. Xa(nι) ... XΆ(nR)l®e(ω~R«)Tή=Q z/ αrcd on/y z/ ί/zere exz'sί
s 9 . . . , s e Z + swc/z ί/iαί Σ«*°

π ranges over the set SR of all permutations in R elements.

Proof. Xj>^...Xa(^)l(x)eω~*a is the coefficient of Cΐ' ίjR* in
JC(a, Ci) . - *(a, C*) 1 ®e(ω- *a)T. By Lemma 4.6, the coefficient of /_Sl . . . f-SR®eωT

in Zα(n1)...^α(nΛ)l®e(ω~Rα)T is a non-zero multiple of 2>v with v as *n the
V

statement of the Proposition. The result now follows from Proposition 4.5
(1). Q.E.D.

Corollary 4.8. Let R e N, α2 = 2p, w/iere P = p — ̂ isa prime number, and vw —
if g = τf$? αw = ̂ eZ + i i/ g = f. Then yα(0)Λ(l(g)e(ω"Λα):r(8)l)φO,
ya(0)Λ(l®β(ω~Λa):r(8)fl(0))Φθ z/ s = r, provided that p>R + ̂  and that

Proof. Let g = us. The coefficient of a( — )̂ a( — f ) . . . a( — K + ̂ ) in
7a(0)*l®e(ω-*a)T®l is Xa(i)Za(|)...Xa(R-i) (l®e(ω-Ra)T). Set S = Rp-q

- e Z + . The coefficient of f*s®eωT in Xβ(i) ...Xa(R-i)(l®β(ω'Ra)Γ) is av9

where the coefficient av is as in Proposition 4.7 and v = (P(R — 1), P(R — 1)
+ 1, ...,P(Λ — l) + jR — 1). From the elementary properties of determinants one
sees that the coefficient of ζf -1 ... C£-1 in A2 is ±#! Now,

and the coefficient of C^~1} ... C^~υ in z!2p is ±K!(modP). Hence, α vΦθ, for
v = (P(Λ - 1), P(Λ - 1) + 1,..., P(Λ - 1) + jR-l) if P>Λ. For 9 = r, the argument is
the same except for the following changes: Instead of a( — %) ... a( — j

and S = Rp-q- take α(-l)...α(-Λ)

[respectively α( - 1 ) . . . α( - J?) α(0)] , XΛ(ί ) . . . XΛ(R) \®eω~Ra [respectively

and S = Rp-q- - eZ+ ? respectively.
Q.E.D.

Next, we will prove the determinant formulas 3 (8) and 3 (9). The proof will
consist of two parts: the calculation of the /z-degree of det( , )h,c,n,y

 and the
divisibility of det( , )Λ > c > h > y by ιpr>s(h, cγ

(n~2rs\ We note that formula 3 (9) is obvious
if n = Q, so we assume that n>0. From now on V(λ) = (C(λ) or V(λ) = R(λ).

For ne^N, let 9n be the set of all (d + /)-tuples I = (z l 9 ...,zd; j l9 ... J/) in
such that i^...^, ;\ >...>;/-, A>0, fe = l, ...,/, and 111 = ̂

+Λ + +//• — n Let ̂ e (respectively ̂  ) be the subset of &n consisting of those
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I = (il5 . . . , id; j l5 . . . Jf) with / even (respectively / odd). We say that I as above is
equal to Γ = (f1?...,^; /ι,.»J/<)e^ if d = d'9 / = /', and iι = i\,...,id = i'Λ,
Λ =/!,... j>=7>. Let /let)* and set h = λ(e%\ c = λ(e/

0). If Ie^n, set
el = e^il ...e+ideljί ...eljf. We now consider the basis of M(<C(λ))λ~nδ formed by
the elements elυλ and the basis of M(R(λ))$~nδ [respectively M(R(λ))ι~nό']
consisting of the elements eλvλ, eκeQVλ, where Ie^M

e, Ke^° (respectively Ie^°,
K e &%). [Recall from the proof of Proposition 3.6 that the number of such eγυλ is
equal 'to the number of such eκeΰvλ and is equal ip(n).]

If F e (C[/z, c] we let /z-deg (F) denote the /z-degree of F, that is, the degree of F
regarded as a polynomial of h.

The following lemma is the analog for g of [26, Lemma 4] :

Lemma 4.9. Letl = (il9...9id9jl9...9jf) andK = (kl9...9kg; Il9...9ljε0>n. Then
(1) /z-deg (e,ι;A,eκι;λ)hιC>Λϊy^min{d + /,^ + w},

/z-deg (e,£?o ̂  %eo v A, c, „, y ̂  min {d + /, g + m} + 1 ,

Λ-deg (eleoυλ9eκvάh,ctn,y^n^{d + f,9 + rn}
(2) If d + f = g + m and IΦK, then h-deg(eIυλ9eκVt)htCtntγ<d + f and

ft-deg (e,βo v A, %βo ϋ A, c, «, y < rf + / + 1 -
(3) /2-deg (eiϋ^e^^^^d + f and

/z-deg (e,βo ϋ A, e,^o ϋ A, c, Λ f y = d + / + 1 .

Proof. Let t^e{ί;A, £Q ^A) Let rf>0. Using the bracket relations in g we obtain:

e^eκv= Σeκ'(aκ'XM(iltκ') + bκ c)eκ>,v9 (31)

where the sum is over all the lL' = (k\9 ...9£'pl9...9£'pr9...9 k'q,\ /;,..., ξ1? .... ξt) such
that k/

pί + ...+k/

pr+rqι + ...+rqt_ί<ίl9 v^ + ...+^+ι^ + ...+1'^i^
κ//^(^+ι' -•• ''«')» and ^M(ύ,κ') = eM if ί is even, xM(iί,κ>} = eM if ί is odd, where
M = iί — k'pl — ...—kpr — Γqι — ... — ζt, ακ/, bκ, e C. Since ( , )λ is symmetric we may
assume that /c = deg£jz;^degeκw. The lemma now follows immediately from 3 (6)
and (31) by induction on k. Similarly if d = 09 />0. Q.E.D.

Proposition 4.10. For ie^N, set d(ί)= Φ{(r9s)\2rs = i9 r,se^N, r-seZ} if
= r.

(1) /z-deg det( ,) Λ t C t l l = Σ p(n-0^(0 ίf 9 =

(2) /j-degdet(,)Λ ι C,n, y = i/5(«)+ Σ p(n-i)d(i) if g = r.
i= 1

Proof. Let AT = i p(n), and let yί9 . . . , yN be the elements {e^^, I e ̂ f (respectively
I6^n°) in some order and yN+ι, ...,^2^ be the elements {eκ

(respectively Ke^n

e) in some order, so that y1 ? ...9y2N i§ a basis of
27V

[respectively M(K(A))f"πa]. Now det( ,),,,,„, y= Σ sgn(σ) Π, y
σe$2N i— 1

Then, by Lemma 4.9 the term corresponding to the identity permutation is the
n

only term of /z-degree ip(n)-f Σ kp(n,k), hence, by the same lemma,
fc=l

n

/z-degdet(,) Λ,c?n,y-ip(π)+ Σ kp(n9k). Here, p(n,fe)= #{I = (il9 ...9id;
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h,..^jf)e0»\d + f = k}, for g = r. Similarly, ft-degdet(,) „,<,„ = Σ kp(n,k), if
g = πs. Now, *"*

Π(i+χ«")
= 1 + Σ ΣpOα^Y in C[x,ήf]. (32)

~

Taking — at x = 1 in (32), we get

_L y
"

(33)

neJN

Let, for zeN, d(i)= * of divisors of z, and set d(ί) = d(ϊ) + Σ (-l)s+1. If

z e 2N-1, then d(ΐ) = 2d(ί). Noting that if i = rs then r,se2N-l and i = 2^-s = 2r^

we see that S(i) = d(ι). If ze2N, then ί(i) = 2(#{r62N|rs = ΐ, se2N-l})
= 2(*{reN|rs = i, 5e2N-l} = ί/(z). From (33) we obtain

Σ(ΣP(n- 0 J®\ qn = Σ Σ ftn, k} qn . (34)
n s N \ ί 6 N

This proves (2). Similarly, if g = ns,

Π
-— H-= Σ ΣP(n,k)xkqn, where p(«,/c) (35)

is as before, Taking — at x = 1 in (35) we obtain

Π (1+ί"}

" = Σ Σ*#U)V. (36)
welN

Let, for ze^N, <?(/)= #{(r,j)6N2|r5 = 0+ Σ (-^)s+1 If zeN, then
reN — -|-,rs = i,se]N

rf(j) = φ of even divisors of z - ί(z). If z G N - i then <?(i) = d(2ι) = d(ΐ). From (36) we
obtain

Σ (Σ p(n-ί)d(ί)}qn= Σ ( Σ k p ( n , K ) ] < f .
nei-NVίei-ΠSr / n e i N \fc e IN /

Hence Σ p(n-i)el(ί)= Σ kp(n,k). This proves (1). Q.E.D.
fcelN

Lemma 4.11. Let r,se|N be swc/z that s — reZ+ if g = n$ and s — re^+Z + z/

g = f . Lei p 6 \ + N fee such that p — ^ ί s prime and p>2r + ̂ . Let c = l -- ,
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(2p-l)2-4(2rp-5)2 _ 2(p-l)2-4(2rp-s)2 1

~~ 16p ' 16p 16
S = f. Γfcendet(Λ,c,2rβ > y = 0.

Proof. Let ξ = —==, ω = —7=-, α = ]/2Jp and .R = 2r. Then ξ = ——, and so
2J/2p |/2p v 2α

Yα(0)* intertwines the action of g on jfrξ ω~RΛ and Jfξ ω by Theorem 4.4.
Therefore, by Theorems 4.2 and 4.4, and by Proposition 4.3, uω>^R

= Yα(0)*(l®e(ω~*α)Γ(χ)l) and CQuω^R are n-invariant vectors of (Jf ξ'ω)μ, where

μ(£φ) = l — $ξ2 and μ(£o") = — 2rs if g = ns, μ(eo) = — —^ —2rs if
R . Λ

g — f. Let ^ = 2rp — s. Then g e TL and J^p — ̂  ^0 if g = ns, and g e Z + ̂  and
K 1

Rp — q ^0 if g = ί. Also note that α2 = 2p and αw^^f. By Corollary 4.8,

~*α)T®l) and ^^ω,a,R are botrι nonzero. Let ̂  denote the
g-submodule of JΓξ'ω generated by l®eω T®l. By the above and Proposition 3.7
there is a unique surjective homomorphism φ:M(V(λ))^>% such that φ(vλ)

2 ° ' 2 16 °
Let ιp = ίoφ:M(V(λ))-+$rξ>ω, where ϊ:^->jΓξ'ω is the inclusion map. If
uωtΛtReImψ = tft and if ^0 wω α ^elmt/;, then the assertion follows from Proposi-
tion 3.14. If uωtΛtRφlmιp9 then dim(Im 1^)5~2 r s δ<p(2rs) = dimM(V(λ))^~ 2 r s δ .
Therefore, (Kerφ)^2rsδΦ(0), ^nd so, det( , )A>2rs,o = 0, by Proposition 3.14.
Similarly, if βQUω>αtRφlmψ. Q.E.D.

Let ψr s be as in Sect. 3 if r, s e \ N, and let φ0 0(ft, c) = ft + 77 if g = r. Let 1/"γ s16
denote the variety in C2 consisting of all points (ft, c) such that ψr s(ft, c) = 0,
(r,5)eiNxiNu{(0,0)}.

Lemma 4.12. Let r, se^ N, r^5. Γften

—, 1
16p

Proof. Let p ± =

5 c±l/c2 10c + 9, τhen (2p±-l)2 = p±(l-c), i.e. c =
8

-- if g = tfS;^ = s < = _ _ _ _

s2 1 1
τ - if 9 = ΐ Hence h = h*,(c)oh= -± [(1 -

-4(2rp±-s)2] if g = πs, ft= [(l-c)p±-4(2rp± -s)2]-^ if g = f. Let

ψrjS(ft,c) = 0. Then h = h£s(c). Therefore, c = l - ~ - and
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. (2p-\)2-4(2rp-s)2

 A (2p - 1)2 - 4(2rp - s)2 1
fc= - — - rffl = π β ,Λ= - ̂  -- -rfg = r, where

p=p*. Conversely, let c = l- and , = .f2 lop

h=(2p-l) -4(2rp-s) _ 1 .f ^̂  ± ̂  Λ = Λ± i e s(/z,c) = 0.
lop 16 '

Q.E.D.

Proposition 4.13. Lei Λ,ceC, yeZ 2 . Let r,se^N, r^s, and r — seZ ι/ g = ns,
r — se^-fZ ι/ g = r. ΓAen det( , )Λ > C ( 2rs,y vanishes on i^.tS. Furthermore, if g = ϊ,

det( , )f, > c > n > y vanishes on ^0,o

Proof. Assume (r, 5)4= (0,0). Let 0:(C[λ, ̂ -^[p^p"1] be the homomorphism

defined by θ(c) = i-— and 0(λ)=— ' , if 9 = ι
p 16p

s}2 I
— if g^ϊ. By Lemma 4.11, θ(det(, )Λ f C f 2 r S f y) vanishes

at infinitely many values of p. Therefore, θ(det(, )j,,c,2l.s,y)^0. This implies, by
Lemma 4.12, that det(, )Λ > c > 2 r s > y vanishes on ̂  s. Also, if g — r, we saw that

M(R(λ))3M(S(Xj) if h=-^- (Proposition 3.5). Hence, for each nεZ+,
16

det(, )h,c,n,y vanishes on ^0,o Q.E.D.

Proo/ o/ the Determinant Formulas. We proceed by induction on n. Let r, s be as

in Proposition 4.13, neZ+, 2rs^n. Let u = φr>s(h,c\ υ = c. Then

ψrs(h,c). Hence, if r = s, -Λ// x =1=1=0, and if rφs,
3(ft, c)

-. Thus, at h = h*s(c)9 ^l or c —9. This implies
2

that {u, v} is a local system of coordinates near all (h, c) E ̂ r)S\{(h^s(l), 1), (/v;s(9),
9)}. By letting n act on the basis of M(V(λ))λ

y'
md described in the proof of

Proposition 4.10, we see that det(, )h c w > y = 0 if and only if there is a non-zero n-
invariant vector in M(V(λ))^~qδ, q^m. Therefore, if (/ι,c)ei^γ s, then there is a
non-zero n-invariant vector in M(V(λ))y~qδ, q^2rs, by Proposition 4.13. Let

^s(l),l),(/ι;;s(9),9)} U
(ι ',s')Φ(ι ,s)

r's'^rs

if (r,s)φ(0,0), i^o, o = ̂ o,o Arguing as in [23, Lemma 3.2], we see that i^tS

contains all but a finite number of points of i^tS. Let λ0 e i^^s. By the induction
hypothesis there is then a non-zero n-invariant vector in M(F(/10))^° ~ 2rsδ. Let tfl be
the submodule of M(F(λ0)) generated by this vector. Then dim(M(F(/lo))y0~"<5

nW)=p(n-2rs\ where p(n-2rs)=p(n-2rs) if (r,s)Φ(0,0), p(ri) = %p(ri)9 by
Propositions 3.1 and 3.6. Therefore,

detπ( , )h(u,vMu,v),n,y = u^"-^f(u,v), (38)
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where / is analytic near (w0, ϋ0) and MO ? υ0 are the (w, ̂ -coordinates of λQ. Let g(h, c)
be an irreducible divisor of det( , )Λ > C } / J > γ in C [ft, c]. If g(h(u, v), c(u, vj) = uk(u, v),
with k analytic near (MO, i;0X then g(h, c) = 0 for infinitely many (ft, c) in f^ s. Hence
θ(0(A,c)) = 0 for all (ft, c) and g(h,c) = Q for all (ft, c) on f^s as in the proof of
Proposition 4.13. Thus g(h,c) is a nonzero multiple of ψrtS(h,c). This, (38) and
Proposition 13 show that \pr^(h,cY(n~2rs] divides det( , )Λ,c,n,r The degree
computation of Proposition 4.10 gives (8) and (9). Q.E.D.

5. The Irreducible Subquotients of a Verma Module

We retain the notation of Sect. 3.

For n e |N, let φn(h, c) = Π ψr ?s(ft, c), where the product is over all r, s e^-N
2rs = π

such that s — reN if g^n s, s — reN — ̂  if g = r. As in [22], we set, for λefy*,
(±N) + (λ) = {ne$N\φn(h9c) = Q}. Let μ,/let)*. We write μU if μ = Λ or if

/ r \
μ = λ— Σ mj ^ for some m l 5 ...,m re^N such that

\ / = ι /

A subquotient of a module M is a quotient AT/ [7 where UcNcM,U,N
submodules of M. From now on, unless otherwise stated, V(λ) — C(/l) if g = ns and

Theorem 5.1. Lei Λ,μeί)*. // L(V(μ)} is a subquotient of M(V(λ))9 then

In this section we prove Theorem 5.1. The construction of filtrations of Verma
modules given below is a straight-forward generalization of the one given in [23].

Let V= C/(n~), μ e f)*. Let Tμ : F-»M(F(μ)) be the linear (Z2-graded) isomor-
phism defined by Tμ(X) = Xvμ, XeV.We set τμ( Y) t; - Γμ~

 J( YTμ(ι;)) for Ye g, ϋ 6 K
Then (Pζ τμ) is a representation of g. On F x V we define v4μ(y, w) = (Tμ(v), Tμ(w))μ. It
is automatic to see that >4μ defines a symmetric bilinear form onVxV such that

^μ(τμ( Y) υ, w) = Aμ(ι;, τμ(σ( Y) w)) (1)

for all Yeί/(g), ί;,weK
We now let λ be fixed and for each ί 6 C, we set

(πt,F) = (τ;ι+ t»fO, (2)

B t (,) = ̂ +«(,) (3)

Now, F- φ F^'77.
ι/eρXj{θ}

Let (P(C) denote the space of germs f of complex valued holomorphic functions
/ at 0. Let (9(V)F denote the space of germs f of holomorphic functions at 0 with
values in a finite sum of spaces Vλ~n. For X e g, t near 0, f e $(F)F, set

(4)

6 For g = ns> this result was first stated in [14]
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For /ceZ+, set

, = {f e (9(Vγ\Bt(f(t), w) e ί*0C) Vw e V] . (5)

Now, set

V*, = {f(WεβF(V\k}}, (6)

and

. (7)

Clearly, M(V(λ)) = M(V(λ)\^M(V(λ)\^.... By (1), (3),
= Bt(/(t), π(σ(X))w)6 AP(C) for all f e0(F)fk), i.e., π(Z)^(F)(k)C^(F)(fc), by (4).
This implies that π0(X)V£}CV&. Therefore, XM(V(X)\k) = XTλ(V£))
= Tλ(τλ(X)V(^cTλ(V(^ = M(V(λy)(k). This shows that (M(F(A))(Jki)k6Z+ is a
g-module filtration oίM(V(λj). We now show that this filtration is Z2-graded. We
note that Bt(Vy

η

ί

1,Vy

η?) = Q if y !φy 2 or ηΐ*η2. Let Py:F-+Fy be the obvious
surjection. Let v e V^} and f e (9F(V\k} be such that v=f(0). Now, V = VQ + υ\, vy e Vy

and vy = /y(0), where fy is the germ of P o/ Let w e Fr Then Bt(f(t), w) e ίk^(C).
But Bt(/(ί), w) = Bt(/y(ί), w) by Proposition 3.1 4 (b). Applying Proposition 3.14 (b)
again we see that Bt(fy(i), w) e ίk$(<C) for all w e K Therefore, fy e (^F(F)(fc) and so
vy G V(l} for all y e Z2. This proves that (M(F(Λ))(k))fceZ+ is Z2-graded. For any finite
dimensional vector space M we let J^(M,C) (respectively Sym(M)) denote the
space of all symmetric bilinear forms on M (respectively symmetric endomorph-
isms of M). Let (9(M) denote the space of germs of M-valued holomorphic
functions at 0. Let BJ = Bt^v^-rlxV^-η, and let ( | )η be any symmetric bilinear non-
singular form on Vλ~\ Set Bη(t) = B«, ί-0. Then W G&(^(Vλ~\<C)) and

such that β?(t;, w) = (4?t;|w) for all r ,w6K Λ " l ί . Here
ί-0. Set

for some g<E(9(Vλ~η), all ί-0},

(8)

%)}. (9)

Then (Fλ~%)=^)nFλ"lί. Also,

ChM(K(A))(k)= Σ dimί^-'O^^, (10)

where

If f e 0(<C), let /(ί)= Σ ΛfίS ί^O. If α f φ O for at least one i, we can define the
ΐ ^ O

number ord0/(ί) as the smallest i with this property. Applying Lemma 1.2 of [23]
to Vλ~η and A1*, we obtain

Σ (dimFA"%) = ord0detJ^. (11)
fc^l

Combining (10) and (11) we obtain

Σ chM(7(mk )=ΣίA~ l fordodetB?. (12)
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Now, ord0φr s(h + t, c) is one or zero according to whether ψFrS(h, c) = 0 or
φrjS(/z, c) Φ 0. Let a(i) = {(r, s) 12rs = i} 3 (8) and 3 (9) imply

16 ί/ = n

(13')v '

Σ chM(C(λ))w= j g iΣ A α(0 ΣJ(n-ί)qλ-η, (13)

Therefore, we have

Proposition 5.2. T/ze following are valid:

(i) £ chM((cμ))(t)=

(10 Σ

If f,ge^(Fλ^), set <f,gy(t) = B?(f(t),g(t)). Now, let ι;?w6Fλ^, ι?
w = gf(0), f,g6fl?(F λ~n). The argument in [23, Sect. 1] shows that <ι;,w>
= </,0>(0) defines a symmetric, bilinear form on F^"77 which factors to a
symmetric, bilinear, nondegenerate form on Vλ~η/(Vλ~η\ί) ([23, Lemma 1.3]).
This implies that M(F(A))(1) is the maximal proper submodule of M(V(λ)).

If M is a weight module, M=@Mμ, we set P(M) = {μ e f)*|Mμ Φ (0)} . Let if be
μ

the full subcategory of the category of all g-modules M such that

M= 0Mμ,dimAF<oo, (14)
μet)*

P(M)G{v-(β + u{0})} for some veί)*. (15)

If μl9 μ2 e ̂ * we set ̂ ! < μ2 <* μ2 - μ^ > 0. Arguing as in [9, Lemma 4.4] (see also
[24, Lemma 5.1]) we obtain

Lemma 5.3. Let MeΉ. For each ieZ+ there is a submodule tM of M such that
00

(0) = 0MCιMc..., U jM = M5 fM/f-iM is a highest weight module with highest
i = 0

weight v feί)*. Furthermore, μi<μj=>i>j, and if vf = vί + 1, ί/z^n dim(/M/ί_1M)V1

Using Lemma 5.3 we can define for each M e # the multiplicity (M : L(V(μ))) as
in [24, Sect. 5] by first defining (M : L(V(μ)J) for a highest weight module M of if.
The only distinction here is in the case g = ί : If M is a highest weight module with

highest weight λ = (h,c) such that dimMλ = 2 and A(4 )+ -̂  =°> then we set
16

(M:L(V(λ))) = 2. Otherwise, (M:L(V(X))) = ί, for a highest weight module of
highest weight λ.

Proposition 5.4. Let Me%. Then

chM = Σ (M : L(V(μ))) chL(V(μ)) . (16)
μ

Proof. We will show that

dimMξ-Σ(M:L(F(μ)))dimL(F(μ))ξ for all £<ΞΪ)*. (17)
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Let M be a highest weight module with highest weight v. If M = L(F(v)), then
(M : L(F(μ))) = 1 if μ = v and (M : L(F(μ))) = 0, otherwise. So, we may assume that
M is reducible. Now, dimL(V(v — η^)vή=Q only if f/'=0. Furthermore, if
dim AT - 2, then either v(έ£) 4- τ£v(X0) = 0 and dimL(R(v))v - dimL(S(v))v - 1 (see
Proposition 3.10), or v(4) + ̂ v(/0)Φθ and dimL(K(v))v = 2.

In any case, for ξ = v, (17) follows from the definition of (M : L(F(μ))). Assume
that (17) was proved for all ξ = v — η', with η'<η. There are two cases to consider:

1) dimMv = l. Let {Z M(1)}^0 be a filtration of M(1) as in Lemma 3.5,
and let s be the largest index such that (SM(1)/S+1M(1))

V~I7Φ(0). Now,
dimMv-» = dimLF(v))v-» + dimM(V and dimM(

v

17 = dim(1M(

v

1^
I0

+ dim((2M(1)/1M(1))
v - *) + . . . + dim((sM(s)/s _ t M(s))

v ~ *), where each
(i^(i)/i-ι^(i)) is a highest weight module of highest weight v'<v, hence
v — η = v' — η',η'<η. Equation (17) now follows from the induction hypothesis;

2) dimMv = 2. This case is similar but we need to apply the argument of 1)
twice. Finally, for general Me^, we apply Lemma 5.3 and the proof for highest
weight modules. Q.E.D.

Remark. Proposition 5.4 implies that the numbers (M : L(F(μ)) are independent of
the choices apparently made in their definition.

We denote by K(^) the set of all characters of elements of ^6.

Proposition 5.5. Let aeK(#). // a- Σ «μchL(F(μ))- Σ Z?μchL(F(μ)), then
aμ = bμfor a

Proof. Let μγ be maximal so that αμφO. Then aμιdimL(V(μ1))μίqμί

— bμι dimL(V(μ1))μίqμ\ Hence aμί = bμ2. Suppose we have showed that aμ = bμ for
all μ such that μ1-μ<ηe Q + u{0}, and let μ be so that μ1 ~μ = η e Q + u{0}. Then

Σ aμchL(V(μ))= Σ bμchL(V(μ)).

Then α^
aμi+η = bμι+η. The result now follows by induction. Q.E.D.

Proposition 5.6. Let MeΉ. Then L(F(μ)) is a subquotient of M if and only if
(M:L(F(*μ))Φθ.

Proof. If (M:L(F(μ))φO, thenL(F(μ))is a subquotient ofM, by the definition of
(M : L(F(μ)). Conversely, let M^NDP, N, P 6 ̂  such that N/P~L(V(μ)}. Then

-chP + chL(F(μ)). Also chM-chJV-hchM/JV. By Proposition 5.4
^l. Q.E.D.

If a - chM 6 K(^) we define (a : chL(F(μ)) as (M : L(F(μ)).

Proof of Theorem 5.1. Let L(F(μ)) be a subquotient of M(F(A)). We saw
earlier that the maximal proper submodule of M(V(λ)) is M(F(A))(1). There-
fore, μ = λ or L(F(μ)) is a subquotient of M(F(1))(1). By Proposition 5.6,
either μ = λ or (M(F(/l))(1):L(F(μ)))φO. By Proposition 5.2, μ = λ or

Σ α(i)(chM(F(/l-i(5)):chL(F(μ)))φO. Hence, μ = λ or L(F(μ)) is a

subquotient of M(V(λ — iδ)) for some fe^N+(/i), by Proposition 5.6. By
induction, we obtain μ ΐ λ. Q.E.D.
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Appendix. Central Extensions of Z2-Graded Lie Algebras

In this appendix we extend some definitions and classic results on central
extensions of Lie algebras to Z2-graded Lie algebras.

As in Sect. 2, all homomorphisms of Z2-graded Lie algebras preserve the
Z2-grading. Furthermore, all short exact sequences

0-»b-Ue-^α^O (1)

of 2£2-graded Lie algebras are ZU2-split, i.e., are such that π has a linear right inverse
that preserves the Z2-grading (or equivalently, i has a linear left inverse that
preserves the Z2-grading). (1) is called an extension of α by b. A morphίsm of (1) to
another extension

0-*bx-^-» e'X α'-»0 (2)

is a triplet (ψ, φ, ρ) of homomorphisms: ψ : b-»b', φ : e-»e', and ρ : α-»αx such that
φ o i = \f o ψ and πx o φ = ρ o π.

For any Z2-graded Lie algebra α we denote by 3(01) the center of α, i.e.,
3(α) = {X 6 α|[x, α] = 0}. If b £ g(e) in (1), then (1) is said to be a central extension of α.
A morphism of the central extension (1) to a central extension

0->b'-U e'̂ -> α->0 (3)

is a morphism (ψ9φ9ρ) of extensions from (1) to (3) such that ρ = id|0. (Here, id|0
denotes the identity homomorphism of α, for any Z2-graded Lie algebra α.) The
extension (1) is said to be equivalent to

O-^b-^e'-^α-^O (4)

if there is a morphism (ψ, φ, ρ) of extensions from (1) to (4) such that ψ = id|b and
ρ = id|0. φ is necessarily an isomorphism, i.e., φ has a two-sided inverse homomor-
phism which preserves the Z2-grading. Therefore, equivalence of extensions of α by
b is an equivalence relation.

Let Fbe a 2ζ2-graded vector space: V = VQ® V\. A bilinear map α : α x α-» V will
always mean one that preserves the Z2-grading, in the sense that α(αyι x αy2)
C Fyι + y2, y1? y2 e Z2. A bilinear map α : α x α-> V is skew-symmetric if

α(X,Y)^-(-l)^2α(Y,Z),Jίeαy ι,7eα7 2,71,72eZ2. (5)

We denote by Z2(α, V) the space of all skew-symmetric bilinear maps α : α x α-> F
such that the following condition holds:

l)^2α(Z,[X,7])-0, (6)

where X e αyι, 7e αr2, Z e oys, y1 ? y2, y3 e Z2. The elements of Z2(α, F) are called
cocycles and (6) is the cocycle condition for Z2-graded Lie algebras. Let 52(α, F) be
the space of all skew-symmetric bilinear maps o c : α x α - » F such that
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oί(X, Y)=g([X, Y]) for all X, Ye α and some linear map g : α->F such that g(ay)
C Vr for all γ e Z2. The elements of B2(a, V) are the coboundaήes. We note that
condition (L2) of Sect. 2 implies that B2(a, F)cZ2(α, F). Set H2(a, V)
= Z2(a, F)/jB2(α, F). H2(α, F) is the second cohomology group of α with coefficients
in F

Next, we show how to associate to each element x in Z2(α, b), b abelian, a
central extension of α by b. Let αα denote the Z2-graded vector space oφb, where
(aφb)γ = aγ@bγ, ye%2. For (X,v), (ϊ»e(αjy, set

ί(X,υ),(Y,w) }β = ([X, Y],α[X, 7]). (7)

Clearly, [ , ]α extends to a bilinear map from αα x αα to αα and Γ_(αα)n, (αα)y2]
C (αJ71 + n, y i, y2

 e ̂ 2- Condition (LI) of Sect. 2 follows from (5) and condition (L2)
of Sect. 2 follows from (6), so that (αα, [ , ]α) is a Z2-graded Lie algebra. We
associate to ae Z2(α, b) the central extension

0-+b-^αα-Xα-+0, (8)

where ιΆ is the obvious inclusion and πα is the projection onto α. Furthermore, let
α,α'eZ2(α,b) and α'— αeB2(α,b), i.e., there is g:α->b linear, preserving the
Z2-grading, such that (α'-α)(Z, Y) = g([X, F]), for all X, 7eα. If we define
^:(o.)τ^(oβ.), by φ((X,v)) = (X,v + g(X)), Xear veby, then (id|b, φ, id|0) is a
morphism from (8) to

0^b-^αα,^>o-^0. (8')

Conversely, if (1) is a given central extension of α, i.e., b e ge, let β : α->e be a linear
map which preserves the Z2-grading and is such that π°/? = id|0. Set <xQ(X,Y)
= ΓjφO, β(Yy]-β(ίX,Y]), X,Yea. Clearly, φ0(X,Y)) = Q, so that a0 = ι°a,
where α is a skew-symmetric, bilinear map from α x α to b. Now, let X e αn, Ye o?2,
ZeαV 3. Then

, /»([y, Z])] -/?([X, [7, Z]]))

ri
, Y]]))

- DΦO,
- \β(Y),

Γjβ(Z), o?(x), ̂ ( Y)]])
( - 1)"'" [β(X), JJ([ Y, Z]) - 0?( Y), jS(Z)]]

, X]) - ΓJ(Z), j

-a0(Z,X)]
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by Sect. 2 (L2) and since (i o α) (α x α) C z(b) C 3e. Therefore, α 6 Z2(α, b) and we have
associated to each central extension of α by b, an element of Z2(α, b). It is immediate
to check that the equivalence class of the latter in H2(a, b) does not depend on the
choice of the map β used above. Now, suppose that there is a morphism (id|b, φ, id|α)
from the central extension (1) to the central extension (4). Let β be a right inverse of
π that preserves the Z2-grading, as before. Let α be the element of Z2(α, b)
corresponding to (1) and constructed via β. Since φ ° β is a right inverse of π that
preserves the Z2-grading, it is easy to see that (4) corresponds to the equivalence
class of α in H2(a, b), by the previous observation. We have, thus, associated to each
element [α] of //2(α, b), an equivalence class Φ[α] of central extensions of α by b,
and, to each equivalence class [(z, π)] of central extensions of α by b, an element
^([(^π)]) of #2(α,b). Here (z,π) denotes the central extension (1). Let C£(α,b)
denote the set of all equivalence classes of central extensions of α by b.

Theorem 1. The map Φ : H2(a, b)-»CE(α, b) is a bίjection with inverse Ψ : CE(α, b)
^#2(α,b).

Proof. Let (ι,π) denote the element (1) of CE(α,b). Let 5/([(ϊ,π)]) = [α] as
constructed above. Let (iα, πα) be the central extension (8). It is easy to see that φ : αα

->e defined by φ((X, v)) = β(X) + ι(v), (X, v) e αα, where β is the right (Z2-graded)
inverse of π, is a morphism from (zα, πα) to (ι, π), so that Φ o *F is the identity map on
CE(α, b). It is immediate from the above constructions that Ψ o Φ is the identity on
#2(α,b). Q.E.D.

As in Sect. 2, we consider, for any 2£2-graded vector space V, the tensor algebra
00

T(V) = 0 TP(F). Let K be the two-sided (Z2-graded) ideal in T(V) generated by
/> = o

the elements of the form X® Y + ( - 1)7172 Y®X, X e Fn, YE VJ2, y 1? y2 e Z2. The
00

exterior α/#ebrα of F is yl(F) - T(V)/K = 0 ylp(F), where ΛP(V) is the image of

TP(V) in yl(F) by the quotient map δ : T(V)-*Λ(V).
For any Z2-graded Lie algebra α, let L be the subspace of A2(ά) generated by the

elements of the form

l)^2ZΛ[X,y]. (9)

The second homology group of α with trivial coefficients is #2(α,(C) = y
Following [10, Lemma 1.10], we set a,(X9 Y) = δ(X A Y). By (9) one sees that
α e Z2(α, #2(α, C)). Let Φ([α]) be the central extension

0-»H2(α,C)-X αα-^> α^O, (10)

as constructed prior to Theorem 1.
A central extension (1) of α is said to be universal if, given any central extension

(3) of α, there is a unique morphism from the central extension (1) to the central
extension (3). Proceeding as in the proof of Lemma 1.10 of [10] we obtain the
Z2-graded analog of that lemma.

Proposition 2. // [α, α] = o then the central extension (10) is universal.
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