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The Limiting Absorption and Amplitude
Principles for the Diffraction Problem with Two
Unbounded Media

D. Eidus
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

Abstract. We consider the classical diffraction problem for the wave propag-
ation in the case where the propagation speed is piecewise constant, and the
surface separating two media is unbounded. The validity of the limiting
absorption and amplitude principles is proved.

1. Introduction

We deal with the asymptotic behaviour (as ί-> + oo) of the following Cauchy
problem

μ(x)wtt-Δw = e-iωtf(x\ (1.1)

w|f = o = wt|f = o = 0> (1-2)

in the space U" = {x}, x = (x l 5 . . . , xn) (we denote the radius vector of the point x by
the same letter), where n ^ 3, ω = const > 0, / belongs to some L2-weighted space,

a(x) is a wave propagation speed.
We assume that μ(x) has only two values:

= μj iixeΩp 7 = 1,2 (1.3)

where μ7- = const > 0,

Ω1 = {x xeIR", xn > φ(x)},

Ω2 = {x:xeUn, xn<φ(x)},

where x = (x l 5...,xπ_1)6ίR' I~1, φ(x) is some given function, defined on R"" 1 and
satisfying the condition

(1.4)
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Let S be the media separating surface

xn = φ(x), (1.5)

v = (v1 ?..., vn) be the unit normal at the point xeS, where

vn>0. (1.6)

< V > be the scalar product in the complex rc-dimensional space C". We shall impose
the following conditions on S: for any xe,S\{0},

(i) v^C l>0. (1.7)

(ii) | < x , v > | ^ c 2 , (1.8)

where cj9j= 1,2, do not depend on xeS\{0}.

Let us assume the continuity of w and dw/dv on S.

Note 1.1. The following condition implies (i), (ii): if | Jc | —> oo, then

(ϊ) φ(x) = Q(x) + O(l) (1.9)

(ii') Vφ(x) = Vβ(x) + O(|xΓ 1 ), (1.10)

where

β(ic)eC(R"-1)nC1(R l l"1\{0}),

Q(kx) = kQ(x)9 V/c>0, JceR11"1.

In the case φ = β, S is a smooth cone with the vertex x = 0. Let us notice that our
problem is not trivial in this case either, because it is impossible to separate space
variables when μ1 Φ μ2-

Introduce the functional spaces Lj,H™ with the norms

dx, (1.11)

where we integrate over the whole Un and τ is a multiindex (i.e., τ = ( τ l 5 . . . , τn), τ7- are
non-negative integers),

dxγ- dxτ

n

n

is a distribution derivative, βeU.
In this paper, we prove the validity of the limiting absorption principle (LABP)

for the operator

A=-μ~1Δ9 (1.13)

corresponding to the problem (1.1), (1.2), and the validity of the limiting amplitude
principle (LAP) for the problem (1.1), (1.2). The last statement means that the
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following asymptotic formula

w = e-iωtu + o(l) (1.14)

holds is L2. β as t —• + oo, where β = 3 for n > 3 and β > 3 for n = 3, u is the solution of
the equation,

zlu + ω2μu + / = 0, (1.15)

given by LABP:

M= lim RJβ'1/). (1.16)
z—>ω2 + oΐ

Here # 2 is the resolvent of the operator (1.13) treated in the space L2 with the weight
μ, and the convergence in (1.16) takes place in I A 2 The proof of LAP is based on the
following theorem (see [2]):

Theorem 1.1. Let H be a Hilbert space, A be a linear self-adjoint operator in H,
(Au, u) > 0 if u φ 0, Rz be the resolvent of A. Let H be continuously embedded in a
Banach space B, and the following conditions be satisfied:
i) For some feH the limits

lim RJ=u± (1.17)
z-*λ±oι

exist in B for any λ>0.

ii) The function

Θ(λ) = ut-ul (1.18)

with values in B satisfies the Holder condition in any interval a^λ^b,a>0.
iii) In some interval 0 < λ S b

\\Θ(λ)\\B^Cλ-\ (1.19)

where c, τ are constant, 0 ^ τ < 1/2.
Let w be the solution of the Cauchy problem in H:

—^ + Aw = e^iωtf, t>0, (1.20)

w|t-0 = ? =0. (1.21)
at t=0

Then for each ω = const > 0 in B

lim {w-e-ίωtu+2) = 0. (1.22)
ί-* + oo

Note 1.2. The well known radiation principle, which coincides with the
Sommerfeld principle when μx = μ2, is connected generally with LABP and LAP
(see [1,3]). But we did not succeed in finding a radiation condition for our operator
A. There is a large literature about these three principles. (See for instance [1,3,4,5].)
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2. The Operator of the Problem and the Main a priori Estimates

Let us introduce the Hubert space L2(μ) of functions, defined on Un, with the scalar
product

(u,v) = $μuvdx (2.1)

and the corresponding norm || ||. It is obvious that the norms || || and || | | 0 are
equivalent. Let us define the operator A in L2(μ) by the equality (1.13) on the domain

D(A) = H2

0. (2.2)

The condition (2.2) generalizes the classical condition of the continuity of the
solution and its normal derivative on S. It is well known that A is positive and self-
adjoint in L2(μ).

Now we shall prove that the resolvent Rz of A9 where

z = λ + εi, ε/0, (2.3)

treated as follows

Rz:L
2^Llβf β>0, (2.4)

where β is sufficiently large, is uniformly bounded near the real axis (i.e. || Rz || is

bounded).
Let feL2,z be defined by (2.3),

uz = RJ. (2.5)

Then a.e. on Un

Δuz + zμuz + μf = 0. (2.6)

Hence

\(λμ\uz\
2-\Vuz\

2)dx = -Re(/,tιr), (2.7)

ε\\uz\\2= -\m(fuz). (2.8)

Since (2.7), (2.8), then

e | | u z | | g f l ^ c ( l + |λH-|6 |)( |/ | , | t t z | )o, (2.9)

where (v)o is the scalar product in L\ and

C = max(μ1,μ2).

Lemma 2.1. Let feL%,β>3 for n = 3,β = 3 for n>3,

0 < | e | g l (2.10)

-l^λ^M (2.11)

(see (2.3)\ where M is some constant, and the conditions (1.4% (1.7) be satisfied. Then

where c does not depend on /, A, ε (but may depend on M, β).
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Proof. Multiplying (2.6) by dnΰ, where dnΨ = dΨ/dxn, and integrating over Un we
obtain

λ(μ2 - μi)/2j\uz\
2vndx - εIm(iιz, dnuz) = (/, dHux). (2.13)

s

Since (1.7), (2.9), (2.13) then

ux\ + \dnuz\)0. (2.14)

Here and below c does not depend on /, e, λ. First, let us consider the case where

feC\Mn). (2.15)

Then, ueCί{Ωj)J= 1,2. Let xoeRn\S^elRn,

r = x - x0.

Multiply (2.6) by drΰz, where x 0 is fixed,

SΨJ

' dr '

and integrate over U" with respect to x. Then for xoeΩj,j= 1,2,

H l ^ l 2 - λμ\uz\
2)dx = εlm(uz,druz) - Re(/,δΛ). (2.16)

Now we multiply (2.6) by | r \ ~1 uz and integrate over M". After simple calculations, we
obtain

$\r\-\\Vuz\
2-λμ\uz\

2)dx=U + Rε(\rΓ1f,uzl (2.17)

where U= - 2π\uz(x0)\2 if n = 3, 1/= - ( n - 3)/2j|rΓ3 |w z |
2ί/x if n > 3. F o r n = 3

we obtain from (2.9), (2.14), (2.16) and (2.17) as follows:

1 |/ l, |wJ)o. (2.18)

Let us multiply (2.18) by (1 + |x01)~^, β > 3, and integrate over U3 with respect to x0.
Then we obtain

^ 2 | + |Vu2 |)0. (2.19)

Since (2.6), (2.19), then

uz\ + \Vuz\)0. (2.20)

Now (2.12) follows immediately from (2.19), (2.20) when (2.15) takes place. But the set
LlnC\Un) is dense in L2,, therefore (2.12) is valid for any feL%.

In the case n > 3 w e obtain from (2.9), (2.14), (2.16), (2.17) in the same way as
above:

l)o- (2.21)
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Multiply (2.21) by (1 + \x0\)~βo

9β0 > n> a n d integrate over Un with respect to x0.
Using the inequality

C" < f dXo - C (222)

where O^y <n and C,C" do not depend on xeR", we obtain

| | ^ l l - 3 ^ C ( | / | , | i ι z | + |V«,|)o. (2.23)

As above (2.12), where β = 3, follows from (2.23). The proof is complete.

Theorem 2.1. Let the conditions (1.4), (1.7) be satisfied, ε φ 0, λ ^ M, w/zere M is some
constant, feLj,β = 3 if n>3, β>3 if n = 3. Then

l l "*H 2 -/u^C| |/ | | , , (2.24)

C does not depend on f, ε, λ.

Proof If (2.10), (2.11) are valid, then (2.24) follows from (2.12). If λ ^ - 1 or |ε| > 1,
then (2.24) follows immediately from (2.7), (2.8). Thus (2.24) is proved.

Corollary 2.1. Let the conditions (1.4), (1.7) be satisfied. Then the spectrum of the
operator A is absolutely continuous.

Corollary 2.2. Let the conditions of Theorem 2.1 be satisfied. Then the following
inequality holds:

II u II <C\\ f\\ (2 ?ΐ\

In fact (2.25) follows immediately from (2.6), (2.24) and the well known inequality (see
for instance [1])

Corollary 2.3. Let the conditions (1.4), (1.7) be satisfied, and w be the solution of the
following problem:

d2w
-~Y + Aw = 0, (2.27)

w | ( = 0 = / 1 , (2.28)

where fίeD(A)nLj,f2eD(^/rΛ)Γ)L^,β as above. Then \\w\\_βi2-^>0 as t->oo.

This result follows from (2.25) and from the corresponding considerations of [1].

Lemma 2.2. Let ξj(x) ^0,j=^l,2be Lebesgue measurable functions on Rn,aί<
α2 < α 3 . Then

lξVξ2dx ^ (\ξϊξ2dx)1ip(\ξ?ξ2dxγi\ (2.30)

where
OL3 — CC1 α 3 — 0ί1

α, — α , ' α 7 — α /
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The inequality (2.30) is a special case of the Holder inequality with p,q as above.

Corollary 2.4. Let a1 < oc2 < α3, VEH™3, ra ̂  0 be an integer. Then

Hull < l l ? ; l l 1 / p \\v\\1/q (21U
II υ \\<χ2,m = = II u l l α i , m II υ I l α 3 , m 5 \χ"J1)

where p, q as above.

Lemma 2.3. Let (1.4), (1.7), (2.10\ (2.11) be satisfied, feL2,, 0 < α < 3. Then

| | W z | | 2 _ α s l ^ α - ( 1 - ^ ( | / | , W z | + |VWz |)0, (2.32)

where β as in Theorem 2.1, C does not depend on f,λ,ε.

Proof. Because of (2.9), (2.10), (2.11)

| | t t ϊ | |§ i l ^Cε- 1 (l/l, l«zl + |Vttz |)0. (2.33)
Since (2.12) and (2.31), where υ = uz, aί = — β, α2 = — α, α3 = 0, m = 1, we have

and (2.32) is proved.

Corollary 2.5. Let the conditions (1.4), (1.7), (2.10), (2.11), 0 < α < 3,/eL2 be satisfied.
Then

(2.34)

Indeed (2.34) follows from (2.33) and

(l/l,l^l + |Vιι,|)o^C||ιιz|Uβfl||/||β. (2.35)

Corollary 2.6. Let the conditions of Corollary 2.5 be satisfied. Then

(2.36)

3. The Limiting Absorption and Amplitude Principles

Lemma 3.1. Let the conditions (1.4), (1.7). (1.8), fjβLjj= 1,2 be satisfied. Then
for εφO,a^λ^b,a>O,the following inequality is valid:

\(u^\^))\^Cε'a\\f1\\2\\f2\\29 (3-1)

where uψ = Rzfj9 z = λ + εi,c,δ do not depend on f}, λ, ε, 0 ̂  δ < 1.

Proof Without loss of generality we can assume that (2.10) is valid. Multiplying the
equations

Δuij) + zμu(

z

j) + μfj = 0, j = 1,2 (3.2)

by ρdpu
{

z

3~j\ where p = lxl, and integrating over IR" we obtain

(n - 2)J < Vwz

1}, Wz

2)>dx- nz(uz

γ\ uz

2))

^ t pdpύί3-J)) = Q (3-3)
s j=i

From (3.2)

z'\ Wz

2))dx = z(u^,uψ) + (f,,ΰψ). (3.4)
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Since (3.3), (3.4)

{u[ι\42>) = z(μ2 - μi)$<χ, v

+ Σ (Pfj> ^X 3 -J)) + (n -

Because of (1.8), (2.14), λe[α,ft],0 < α < ft we have

\z{μ2-μ

(3.5)

Using (3.6), / eL^ and (2.36), where α = 2, we obtain

where 0 ̂  δ0 < 1. Let us estimate the second term in (3.5):

Since (2.33)

It now follows from (3.8), (3.9), (2.36) that

In the same way

Now (3.1) follows from (3.5), (3.7), (3.10), (3.11). The proof is complete.

(3.6)

( 3 . 7 )

(3.8)

(3.10)

(3.11)

Theorem 3.1. Let (1.4), (J.7), (1.8) be satisfiedJeLj. Then for ε^0,0<a^λ^

following inequality.

dz
(3.12)

- 2 . 2

holds, where O^δ < 1, c, <5 do not depend on /, z.

Proof Because of the Hubert identity for Rz we have

Hence for any geLl a L{μ).

With the help of Lemma 3.1

dRz ^Cε-δ\\f\\2\\g\\ 2'

(3.13)

(3.14)

(3.15)
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Put here

g = (l + \A)~2—r-f<
dz

Then

^ / ^Cε-* | | / | | 2 . (3.16)

dz _2

Now (3.12) follows from the inequality (2.26) and the equation

Av = zv + uz, (3.17)

where

duz

v = ΊΓz
The proof is complete.

The inequality (3.12) implies the validity of LABP for the operator A:
Theorem 3.2. Let the conditions (1.4), (1.7), (1.8) be satisfied. Then for each λ>0 there
exist the limits

lim RZ = R}> (3.18)

where z = λ + εi and the convergence takes place in the space P of L2 —• Li 2-bounded
operators. Moreover for εe(0, Y\,λe\β,b~\,a > 0, the inequality

\\Rλ±εi-Rf\\P^Cε1~δ (3.19)

is valid, where O^δ <1, c, δ do not depend on ε,λ. Further for any λί,λ2,a^λ1<
λ2 ^ b, where a, b are arbitrary positive numbers, we have

where 0 < δ0 g 1, c, δ0 do not depend on λ1,λ2.
Thus the conditions i), ii) of Theorem 1.1 are satisfied for B = ίA 2, / e L | . But the

validity of iii) is obvious (see (2.25)) only for B = ίA^, / e L | , where β is defined in
Theorem 2.1. Because of Theorem 1.1 and Corollary 2.3 we obtain LAP in the
following form:

Theorem 3.3. Let the conditions (1.4), (1.7), (1.8) be satisfied, feLj, fίeD(A)nL2

β,
f2eD(yfA)c\L2β, where β>3 for n = 3 and β = 3 for n>3,ω>0, and let w be the
solution of the problem (1.1), (2.28), (2.29). Then

^lim (w - e-iωtRb(μ-7)) = 0, (3.22)

where the convergence takes place in the space Eλ.β.
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