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The Limiting Absorption and Amplitude
Principles for the Diffraction Problem with Two
Unbounded Media
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Abstract. We consider the classical diffraction problem for the wave propag-
ation in the case where the propagation speed is piecewise constant, and the
surface separating two media is unbounded. The validity of the limiting
absorption and amplitude principles is proved.

1. Introduction

We deal with the asymptotic behaviour (as t— + o0) of the follow/ing Cauchy
problem

M)Wy — Aw = e~ f(x), (1.1)
W|t=0=wt|t=0=0> (1-2)

in the space R" = {x}, x = (x,,...,x,) (we denote the radius vector of the point x by
the same letter), where n = 3,w = const > 0, f belongs to some L?-weighted space,

1
=20

p(x)
a(x) is a wave propagation speed.
We assume that u(x) has only two values:
wx)=p; ifxe;, j=12 (1.3)
where p; = const > 0,
Q= {x:xeR", x,> (%)},
Q, = {x:xeR", x,< (%)},

where % = (xy,...,X,_;)eR""!, ¢(%) is some given function, defined on R"~! and
satisfying the condition

@eC R 1\{0}). (1.4)
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Let S be the media separating surface

X, = @(X), (1.5)
v=(vy,...,Vv,) be the unit normal at the point xeS, where
v, > 0. (1.6)

{*,*) be the scalar product in the complex n-dimensional space C". We shall impose
the following conditions on S: for any xeS\{0},

@) v,=c;>0. (1.7)
(ll) |<X,V>I écb (18)

where c;, j=1,2, do not depend on xeS\{0}.
Let us assume the continuity of w and dw/dv on S.

Note 1.1. The following condition implies (i), (ii): if |X| — oo, then

() @(%) = 0(%) + O(1) (1.9)
(i) Vo(X) = VQ(X) + O(]x|™ 1), (1.10)
where

Q(F)eCR"™ )N CR"~1\{0}),
Qkx) =kQ(%), Vk>0, xeR" L
In the case ¢ = Q, S is a smooth cone with the vertex x = 0. Let us notice that our
problem is not trivial in this case either, because it is impossible to separate space

variables when u; # u,.
Introduce the functional spaces Lf,, Hp with the norms

117 = J + [x] Y[ Pdx, (1.11)
Il'llf;,m=j(1+l><|)"0 ; |D*|2dx, (1.12)

where we integrate over the whole R” and 7 is a multiindex (i.e., T = (14,...,1,), T; are
non-negative integers),

n
lTI = 'Zl Tja
j=
b0l
axil...ax;n

is a distribution derivative, feR.
In this paper, we prove the validity of the limiting absorption principle (LABP)
for the operator

A= —p 1A, (1.13)

corresponding to the problem (1.1), (1.2), and the validity of the limiting amplitude
principle (LAP) for the problem (1.1), (1.2). The last statement means that the
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following asymptotic formula
w=e Y+ o(1) (1.14)

holdsis L2 ;ast — + oo, where = 3for n > 3and f8 > 3 for n = 3, uis the solution of
the equation,

Au+ o’uu+ f=0, (1.15)
given by LABP:
u= lim R, (u"'f) (L.16)
z= w2 +oi

Here R, is the resolvent of the operator (1.13) treated in the space L* with the weight
u, and the convergence in (1.16) takes place in L2 ,. The proof of LAP is based on the
following theorem (see [2]):

Theorem 1.1. Let H be a Hilbert space, A be a linear self-adjoint operator in H,
(Au,u) >0 if u#0,R, be the resolvent of A. Let H be continuously embedded in a
Banach space B, and the following conditions be satisfied:

i) For some feH the limits

lim R,f=uf (1.17)
zoAtor
exist in B for any 1> 0.
il) The function
ON)=ui —u; (1.18)

with values in B satisfies the Holder condition in any interval a <A <b,a> 0.
iil) In some interval 0 < A £b

@M= CiAT, (1.19)

where c,T are constant, 0 St < 1/2.
Let w be the solution of the Cauchy problem in H:

2

%+Aw=e”"“"f, t>0, (1.20)
dw

WL:O_%:=0=0' (1.21)

Then for each w =const >0 in B

lim (w—e~u},)=0. (1.22)

t—+
Note 1.2. The well known radiation principle, which coincides with the
Sommerfeld principle when p; = y1,, is connected generally with LABP and LAP
(see[1,3]). But we did not succeed in finding a radiation condition for our operator
A. Thereis a large literature about these three principles. (See for instance [ 1, 3,4, 57].)
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2. The Operator of the Problem and the Main a priori Estimates

Let us introduce the Hilbert space L*(u) of functions, defined on R", with the scalar
product

(u,v) = [ puvdx 2.1
and the corresponding norm | -||. It is obvious that the norms ||-|| and ||, are
equivalent. Let us define the operator 4 in L2(u) by the equality (1.13) on the domain

D(A) = H3. (2.2)

The condition (2.2) generalizes the classical condition of the continuity of the
solution and its normal derivative on S. It is well known that 4 is positive and self-
adjoint in L2(p).

Now we shall prove that the resolvent R, of 4, where

z=2A+¢i, &#0, 2.3)
treated as follows

R:L3—L%, >0, (2.4)

where f is sufficiently large, is uniformly bounded near the real axis (i.e. [|R,[ is
bounded).
Let feL2,z be defined by (2.3),

u,=R,f. (2.5)
Then a.e. on R"
Au, +zuu, + uf =0. (2.6)
Hence
§(plu|? = |Vu,[?)dx = — Re(f,u,), 2.7
ellu,1* = —Im(f,u,). (2.8)
Since (2.7), (2.8), then
ellu.l|g < c(L+ 141+ e f1; usl)os 2.9

where (:,"), is the scalar product in L3 and
C = max(uy, 4y).
Lemma 2.1. Let felL3, f>3 for n=3,=3 for n>3,
0<le|s1 (2.10)
—1isM (2.11)
(see (2.3)), where M is some constant, and the conditions (1.4), (1.7) be satisfied. Then
11250 < (| f 1, ] + (Vi )o. (2.12)
where ¢ does not depend on f,1,¢ (but may depend on M, f).
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Proof. Multiplying (2.6) by d,u, where 0,¥ = 0 ¥/0x,, and integrating over R" we
obtain

'1(:“2 - #1)/2fluz,2vndx —¢lm (uza anuz) = (f) anuz)‘ (213)
S
Since (1.7), (2.9), (2.13) then
|4 uy — 1y Isfluzlzdx S (1 f1, luz] + 10,4z 1o- (2.14)

Here and below ¢ does not depend on f, ¢, 4. First, let us consider the case where
feCHR"). (2.15)
Then, ueC'(2)), j=1,2. Let x,eR"\S, xeR",
F=X—X,.
Multiply (2.6) by 6,i,, where x, is fixed,

¥
ow=""
" or

and integrate over R" with respect to x. Then for x,eQ;,j=1,2,
(— DAk, _#1)/2£|uz|2<305 vydx +(n—3)2f1r] (| Vu|? — Aplu,|*)dx

+[Ir 7 (10u.1? — Apfu.|?)dx = e Im(u,, O,u.) — Re (£, ,u). (2.16)

Now we multiply (2.6) by |r| ~'u, and integrate over R". After simple calculations, we
obtain

fIrl= (Vu, > = Aulu,|*)dx = U + Re(|r| ™ f,u,), (2.17)

where U = —2mt|u,(xo)|? if n=3, U= —(n—3)/2(|r| 3|u,|*dx if n>3. Forn=3
we obtain from (2.9), (2.14), (2.16) and (2.17) as follows:

[uoxo)|* < C1(If1, lul + Vul)o + Collr| ™1 f1, luzl)o- (2.18)

Let us multiply (2.18) by (1 + |x,|) %, B > 3, and integrate over R with respect to x,.
Then we obtain

uzl12 5 < CU S, uz| + [ Vug]Yo. (2.19)
Since (2.6), (2.19), then
IVu 125 < CUf I luz] + Vg ])o. (2.20)

Now (2.12) follows immediately from (2.19), (2.20) when (2.15) takes place. But the set
L2~ CYR") is dense in L2, therefore (2.12) is valid for any feL3.

In the case n >3 we obtain from (2.9), (2.14), (2.16), (2.17) in the same way as
above:

1712 lul?dx < Co( 1, Juz| +1Vul)o + Collr] ™1 f 1 us]o- 221
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Multiply (2.21) by (1 + |x,])"#°, B, > n, and integrate over R" with respect to x,.
Using the inequality

(o <] dx, < c .
(T4 1x1) =21+ IxolYPolx — xo|” = (1 + | x])?
where 0 <y <n and C',C" do not depend on xeR", we obtain
lull -3 < CU S, Jugl + [Vul)o. (2.23)

As above (2.12), where =3, follows from (2.23). The proof is complete.

Theorem 2.1. Let the conditions (1.4),(1.7) be satisfied, ¢ # 0, 1 < M, where M is some
constant, feL;,B=3if n>3, >3 if n=3. Then

luzl2 g1 S Clfllgs (2.24)
where C does not depend on f,¢, A.

Proof. 1f (2.10), (2.11) are valid, then (2.24) follows from (2.12). f A< — 1 or |¢| > 1,
then (2.24) follows immediately from (2.7), (2.8). Thus (2.24) is proved.

Corollary 2.1. Let the conditions (1.4), (1.7) be satisfied. Then the spectrum of the
operator A is absolutely continuous.

(2.22)

Corollary 2.2. Let the conditions of Theorem 2.1 be satisfied. Then the following
inequality holds:

luzll-p,2 = ClLf M- (2.25)

In fact (2.25) follows immediately from (2.6), (2.24) and the well known inequality (see
for instance [1])

Igll-p2=C(I1Agl -5+ 1Igll-p,1). (2.26)

Corollary 2.3. Let the conditions (1.4), (1.7) be satisfied, and w be the solution of the
following problem:

d*w
e + Aw =0, (2.27)
Wl=o= /1, (2.28)
dw
—| =1 2.29
Gl =t 2.29)

where fieD(A)n L2, f,eD(\/A)NL3, B as above. Then |w| _;,—0 as t— co.
This result follows from (2.25) and from the corresponding considerations of [1].

Lemma 2.2. Let £(x) 20, j= < 1,2 be Lebesgue measurable functions on R",0; <
o, <as. Then

P& rdx < (JE71&,dx) 1 P([ E12E,dx) e, (2.30)
where
O3 — 0y _ U3 — 0y

p= .
Oy — 0Oy oy — Oy
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The inequality (2.30) is a special case of the Holder inequality with p,q as above.

Corollary 2.4. Let o, <o, <az,veHy

a3’

ol gpm S Nollaimmllv 2 (2.31)

ap,m asz,m3

m =0 be an integer. Then

where p, g as above.
Lemma 2.3. Let (1.4), (1.7), (2.10), (2.11) be satisfied, feL3, 0 <a < 3. Then

1241 < Ce™ 74P £l u,] + Vg o, (2.32)
where [ as in Theorem 2.1, C does not depend on f, A,¢.
Proof. Because of (2.9), (2.10), (2.11)

13,10 < Ce™ (11, [zl + [V o (2.33)
Since (2.12) and (2.31), where v =u,,a; = — f,0, = — 0,003 =0,m =1, we have
Nt ll = S N 125w 116377 < Ce™2E=4P(| £, u,| + Vi, )5/

and (2.32) is proved.

Corollary 2.5. Let the conditions (1.4),(1.7),(2.10),(2.11),0 < & < 3, fe L? be satisfied.
Then

)l -y < Ce™ 74D £, (2.34)
Indeed (2.34) follows from (2.33) and
(1 ugl +1Vu])o £ Cllug | - g1 | f 1l (2.35)
Corollary 2.6. Let the conditions of Corollary 2.5 be satisfied. Then
(L L luzl + 1 Vu l)o < Ce= 4P| 12 (2.36)

3. The Limiting Absorption and Amplitude Principles

Lemma 3.1. Let the conditions (1.4), (1.7). (1.8), f;eL3,j=1,2 be satisfied. Then
for e£0,a< A< b,a>0,the following inequality is valid:

[P, @) < Ce™° |l f1lla 1 f2 12 (3.1)
where u) = R, f;,z = A+ ¢i,c,0 do not depend on f;,1,6,0<6 <1.

Proof. Without loss of generality we can assume that (2.10) is valid. Multiplying the
equations

Au + zpud + pf; =0, j=1,2 (3.2)
by pd,ul® =7, where p = 1x1, and integrating over R” we obtain

(n—2)[ < Vul), VP> dx — nz(u®, i)
2
+ Z(:“Z - ﬂl)f<x’ V>u(zl)u(22)dx + Z (pfj> aﬂa(z3—j)) = 0 (33)
5 =1

From (3.2)
JEVUD, Va2 Y dx = 2(ul), ) + (f 1, 5). 34
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Since (3.3), (3.4)

2(ud, 1P = z(u, — ,qu(x, V>“(zl)”(zz)dx
s

2
+ 2 (pf 0,08 )+ (n = 2)(f1,55).
=1
Because of (1.8), (2.14), Ae[a,b],0 < a < b we have
lz(u, — “1)j<xs vyuluPdx|?
S

S CUS oL 1P+ VU Dol 2] (42| + V)
Using (3.6), f;€L} and (2.36), where o = 2, we obtain

l2(uz —#1|£<x,V>u‘z”u§2’dXI SCe | fillzl f2 2

where 0 <, < 1. Let us estimate the second term in (3.5):

(0S5 0,88~ N = CIl fi12 1 Vil =l
Since (2.33)

IVuP P18 < Ce™ (1 f3 i1, [ul 21 + 1Vl =)o
It now follows from (3.8), (3.9), (2.36) that
l(of; apa(z3_j))| < Cem 002 £, | 21l

In the same way

|(f1, #) < Ce=AH0r2| £ 6|l £ ]2

Now (3.1) follows from (3.5), (3.7), (3.10), (3.11). The proof is complete.

D. Eidus

(3.5)

(3.6)

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Theorem 3.1. Let (1.4), (1.7), (1.8) be satisfied, fe L3. Then for¢ #0,0 <o < A< b the

following inequality.
du,
dz

holds, where 0 <6 < 1,¢,6 do not depend on f,z.

<Ce™?|fll,

-2.2

Proof. Because of the Hilbert identity for R, we have

R _r2.

dz
Hence for any geL3? < [*(u).

R, .\ =
(dZ f’g>'—(sz,Rzg)

With the help of Lemma 3.1

dR
‘( d;ﬁé)‘ §C3_6||f”z||g”2‘

(3.12)

(3.13)

(3.14)

(3.15)
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Put here
_,dR,
g=(1+1x) 2= S,
z
Then
dR, -
7 fll S2Ce?fla. (3.16)
z -2
Now (3.12) follows from the inequality (2.26) and the equation
Av=zv+ u,, (3.17)
where
_du,
T dz’

The proof is complete.
The inequality (3.12) implies the validity of LABP for the operator 4:

Theorem 3.2. Let the conditions (1.4),(1.7),(1.8) be satisfied. Then for each A > 0 there
exist the limits

lim R, = R%, (3.18)

= +0
where z = A + ¢i and the convergence takes place in the space P of L2 — L% ,-bounded
operators. Moreover for ¢€(0,1], Ae[a, b],a > 0, the inequality
IR, — Ry Ip < Ce*~° (3.19)

is valid, where 0 £ 6 < 1, ¢, 6 do not depend on ¢, A. Further for any Ay, 2,,a< A, <
A, £ b, where a,b are arbitrary positive numbers, we have

IR%, = R llp < C(A, — Ay)™, (3.20)

where 0 <8, <1, ¢, 6y do not depend on A, 2,.

Thus the conditions i), 1i) of Theorem 1.1 are satisfied for B= L2 ,, feL%. But the
validity of iii) is obvious (see (2.25)) only for B= L2, feL}, where f8 is defined in
Theorem 2.1. Because of Theorem 1.1 and Corollary 2.3 we obtain LAP in the
following form:

Theorem 3.3. Let the conditions (1.4), (1.7), (1.8) be satisfied, feLj, f,eD(A)nL3,

fzeD(\/Z)an,, where §>3 for n=3 and f=3 for n>3,w >0, and let w be the
solution of the problem (1.1), (2.28), (2.29). Then

lim (w—e ™Rl (u"1f)=0, (3.22)

t—+

where the convergence takes place in the space H? ;.
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