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Abstract. We show that for most non-scalar systems of conservation laws in
dimension greater than one, one does not have BV estimates of the form

F e C(R), F(0) = 0, F Lipshitzean at 0,

even for smooth solutions close to constants. Analogous estimates for U norms

\\u(t)-ύ\\LP^F(\\u(0)-ΰ\\LP), p + 2

with F as above are also false. In one dimension such estimates are the
backbone of the existing theory.

The assertions of the abstract are fairly direct consequences of the fact that, except
for trivial cases, linear hyperbolic systems in dimension greater than one are not
well posed in If for p + 2. One might hope that the conservation laws are better
behaved than the linear systems. For example, in one space dimension the solution
operator κ(0)->w(t), ί>0, maps L00 to BV, a smoothing property not shared by
linear equations. It is the purpose of this note to dash such hopes. The analysis is
made entirely within the framework of smooth solutions so that neither
conservation form nor entropy conditions play a role.

The k x k systems for w(f, x ) , ί , x e R x Rd, u e Rfc are assumed to have the form

Λ0(u)dtu + Σ Aj(u)djU + B{ύ) = 0, (1)

where dj = d/dXj and

: Hom(lRfe)), B e C°°(Rfe: Rfc).
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We assume that the system is symmetrizeable hyperbolic or strictly hyperbolic (see
[5]) on a neighborhood of a vector ΰe]Rk

i and B(u) = 0. The hyperbolicity
guarantees the existence of classical solutions, local in time.

Local Existence Theorem. There is ans = s(d)>d/2 + 1 and ρ>0 such that for all
φeCoQR*), IMIjjsQRd^ρ, there is a unique solution to (1) on | ί | ^ T = c / | | φ | | H S with
u\t=o = ΰ + φ, u-ΰeC^d-T, Γ] x R d ) . The map φ-*u-ΰis C0 0 from # s(IRd) to
C([ —T,T~\\Hs(TR.d)) with derivative calculated using the linearized equation.

This is a result dating from the work of Schauder in the thirties (see [3] for
references and a classical proof). Modern proofs are presented in [4; 5 Chap. 2,6].
Our main result is the following theorem:

Theorem. // there are positive constants c, η and t> 0 so that for all φ e C^(ΊR.d) with

\\ψ\\H"(Rd)<rl the solution of (1) with Cauchy data ύ + φ satisfies

J \Vxu(ϊ,x)\dx^c j \Vxu(0,x)\dx9 (2)

then for all j , I

lA0(ΰ) ~ U/u), A0(u) - 1Aι{Uf\ = 0, (3)

where [ , ] denotes commutator.

Thus, the algebraic identities (3) are necessary conditions for the existence of
BV bounds.

Example 1. In the one-dimensional case, d = ί, there is only one matrix AQ1A1

and (3) is trivially satisfied.

Example 2. In the scalar case, k = 1, the matrices A$1Aj are l x l and therefore
commute.

Example 3. All the inviscid equations of compressible fluid dynamics violate (3),
so there is no hope for BV estimates in these important cases. A simple case is two-
dimensional isentropic flow (see [3, p. 600] for the equations) where condition (3) is
violated for all u. Increasing the number of dimensions, passing to the nonisen-
tropic case, adding electromagnetic or relativistic effects, ... makes matters only
worse.

Proof of Theorem. Consider Cauchy data uε(0, ) = ύ + εφ( ), φ e C^(Rd). Then
where v is the solution of the linearized equation,

j(ύ)dj + B\u)-]v = 0, v\tss0 = φ, (4)

and for any s > 0

sup \\rε(t)\\HS{md) = O(82).

In particular, | |Pxr ε(ί)| |L 2 ( 1 Rd ) = 0(ε2). Using the finite speed of propagation for (1)
we see that the rε are supported in a fixed compact subset of [ — t, t ] x R d so
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From (2) we have:
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Dividing by ε and letting β-*0 yields

(5)

Let M(ξ) be the Hom(Cfc) valued function

d

tA0(ay Σ^

and let Maβ be the components of the matrix M. In (5) consider φ all of whose
components are zero except the βth component and look at the gradient of the αth

component of υ to find that (D = (<91?..., dn))

Let ψ = \ξ\χ. Then

L1

(6)
L1

Now, the hyperbolicity of (1) shows that (5) is valid with L1 replaced by L2, with a
new constant c. Interpolating, (5) is valid for Lp, l ^ p ^ 2 with a constant
independent of /?. Repeating the derivation of (6) we find that (6) is valid for LP,
1 ^p^2. Now for 1 <p< oo, D/|D| is a bounded operator on LP(Rn) so

This holds for all ψ e |D|C^(1R") which is a dense subset of I/, so DjMα/?(D)/|D| is a
bounded operator on LP(RM) for all 1 <p^2.

To show that M(D) is itself bounded, multiply by DJ\D\ e Horn (I/) and sum
on /.

We now appeal to the result of Brenner [1,2] which states that (3) is a necessary
and sufficient condition for M to be an LP multiplier for some I<p<oo,/?φ2. D

Remark. It is even easier to show that the commutation relation (3) is also a
necessary condition for strong LP estimates for p φ 2. Precisely, if there is a p φ 2
and FG C(R), with F(0) = 0 and F Lipshitzean at 0 such that

u(0)-M II (7)

for the solutions discussed above, then (3) must hold. The proof is exactly like the
proof of Theorem 1 with the exception that one finds immediately, at the level of
Eq. (5), that M(D) is in Hom(Lp). Temple [7] calls the estimate (7) strong LP
stability of the constant state ΰ. Looking at the interaction of weak nearly constant
shocks, he has shown that such estimates are false for all p φ 1. Thus for non-trivial
systems of conservation laws in dimension greater than one, constant states are not
strongly stable in LP for any p\
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