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Abstract. The relationship between a standard local quantum field and a net of
local von Neumann algebras is discussed. Two natural possibilities for such an
association are identified, and conditions for these to obtain are found. It is
shown that the local net can naturally be so chosen that it satisfies the Special
Condition of Duality. The notion of an intrinsically local field operator is
introduced, and it is shown that such an operator defines a local net with which
the field is locally associated. A regularity condition on the field is formulated,
and it is shown that if this condition holds, then there exists a unique local net
with which the field is locally associated if and only if the field algebra contains
at least one intrinsically local operator. Conditions under which a field and
other fields in its Borchers class are associated with the same local net are
found, in terms of the regularity condition mentioned.

1. Introduction

In the attempts to formulate a mathematically satisfactory theory of particles
consistent with special relativity and incorporating the notion of locality, two
main approaches stand out. One of these is the general theory of (finite-compo-
nent) local quantum fields [21, 28] and the other is the algebraic relativistic quan-
tum theory [16, 1, 17, 7]. In the latter theory the primary object of interest is a net
of algebras of local observables, and experience has shown that such a theory
provides a suitable framework for the analysis of the general structure of a
relativistically covariant, local quantum theory. Quantum field theory deals with
operator-valued distributions and algebras of closable, but in general unbounded
operators. The study of such objects entails considerable technical difficulties
involving domain of definition questions. In spite of this, the notion of a local
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quantum field is attractive in many respects. It has been easier to imagine the
formulation of a genuine dynamical principle in terms of fields than in terms of
bounded operator algebras, and the notion of a field is also basic in the
perturbation-theoretic approach for the explicit computation of physically
interesting quantities.

It is of obvious interest to explore the connection between finite-component
quantum fields and nets of local algebras. It is the purpose of this paper to discuss
the nature of the connection and to present results which amount to a substantial
reduction of the apparent complexity of the problem. In particular we give an
answer to the following question of principle: when does a quantum field have a
net of local algebras to which it is associated, and what is the mathematical nature
of this association? Moreover, we show how local nets can be constructed from the
fields if these satisfy certain additional conditions. We do not discuss the converse
problem - the construction of local fields from local nets - but we note here that
considerable progress has been made recently on this question [13, 18, 27, 29].

In the formulation of Haag and others [16,1,17, 7], a net of local algebras is a
specific assignment <P->91(0) of a C*-algebra 2t(0) to each 0 in a suitable set ffl of
subsets of Minkowski space. This association is required to satisfy certain well-
known minimum conditions of isotony, locality, and Poincare-covariance. The
framework is very general, but we shall here be concerned solely with the vacuum
representation of such a net. The algebras are then algebras of operators on a
Hubert space #P, and for our purposes it is convenient to assume that all the
algebras of the net are von Neumann algebras. The Hubert space carries a strongly
continuous, unitary representation λ->U(λ) of (the universal covering group of)
the Poincare group, and the Poincare-covariance of the net is then expressed in an
obvious fashion in terms of this representation.

In this paper we shall be concerned with a particular kind of local net,
introduced in [2] and called an AB-system. The set 31 then consists of all (closed)
double cones, all (open) causal complements of these, and certain wedge-shaped
regions which are bounded by two non-parallel characteristic planes. In Sect. 2 we
give the technical definition of an ^45-system, and we discuss the features of such a
net which make it particularly suited as the object with which the fields can be
related. In the interest of simplicity, the discussion in this paper is confined to a
standard quantum field theory [21, 28] of a single, irreducible hermitian scalar
field, with the exception of Sect. 6 in which we discuss the case of two local and
relatively local fields. The generalizations of our considerations to the case of an
arbitrary number of /zmίe-component quantum fields is straightforward. In the
presence of Fermi-fields the conditions of locality and duality have to be
appropriately modified, but this does not affect the essence of our reasoning. The
generalization to fields of the kind considered by Jaffe [19], which are strictly
localizable but not necessarily operator-valued tempered distributions, also seems
to present no essential difficulties.

A natural and desirable relationship between a field and a net of local von
Neumann algebras is the following. For any Θ e 31 all, or at least a "sufficiently
large" subset of, the operators in the algebra of averaged field operators which are
associated with 0 have closed extensions affiliated with 21(0) (in the sense of von
Neumann [25] - see Sect. 2). In Definition 2.4 we give a precise formulation of this
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idea, and we identify two specific possibilities for the association, which we call
Scenario G and Scenario A. The first of these is the "better" scenario in the sense
that every operator in the algebra 0*O(R) of field operators associated with any
Re3% has a closed extension affiliated with the corresponding von Neumann
algebra of a local net. In Scenario A such an association obtains only for a subset of
the set of field operators. In both cases the association implies that the net is a local,
TCP-covariant ,45-system, which satisfies the special condition of duality. This
latter condition, which emerged in [2], seems to be characteristic for theories of
finite-component fields. It is a specific form of the well-known duality condition for
local theories: see Definition 2.1 for a precise statement. The reader can regard
Definition 2.4 as a description of goals of this paper. In Theorems 2.7 and 2.8 we
show that some seemingly much less restrictive conditions on the field actually
imply the scenarios in Definition 2.4. Our interpretation of Theorem 2.8 is that if
the field is locally associated with a local net in any reasonable sense, then at least
Scenario A must obtain.

In Sect. 3 we continue the discussion of the nature of the association. As a
preliminary we first state and prove, in Lemma 3.1, a principle akin to the Reeh-
Schlieder Principle. On the basis of the lemma we find, in the form of Theorem 3.2,
conditions under which the vacuum vector Ω is cyclic and separating for a local
algebra associated with a double cone. In Theorem 3.3 we present results
concerning the existence of (local) selfadjoint extensions of symmetric field
operators.

The entire system of local von Neumann algebras might very well be
"generated" by a single averaged field operator, and in Sect. 4 we discuss how this
can come about. In Definition 4.1 we introduce the notion of an intrinsically local
operator Xs in the algebra of field operators. Somewhat loosely stated, the closure
of Xs, relative to a subdomain (determined by Xs itself) of the usual domain of the
field operators, generates a von Neumann algebra which is locally associated with
the same double cone Ks to which Xs "belongs." In Theorem 4.6 we show that an
intrinsically local operator Xs defines a local ^-system such that at least Scenario
A obtains. If the intrinsically local operator is of the form Xs = <p[/J, i.e., is linear in
the field, stronger conclusions can be drawn, as shown in Theorem 4.8. Here fs is a
real test function with support in Ks, and such that its Fourier transform vanishes
nowhere. These premises imply a uniqueness of the local ,422-system, as stated in
Theorem 4.8.

In Sects. 5 and 6 we discuss quantum fields which satisfy a certain regularity
condition, which is essentially that there exists an α, with 1 > a ̂  0, such that for
every test function /, φ[/]exp( — Ha) is a bounded operator: here H is the
Hamiltonian. See Definition 5.1 for a precise statement. Conditions of this general
type have been considered before, and most examples of massive fields which have
been constructed are known to satisfy such a condition [9, 15, 18].

In Theorems 5.5 and 5.6 we present the consequences of such a regularity
condition. We thus show that if fs is any test function of compact support, with a
Fourier transform which vanishes nowhere, then φ[/s] is intrinsically local if and
only if it has some closed extension affiliated with a double-cone algebra of some
local net. Moreover, if φ[/s] is intrinsically local, then the closure of φ\_f^\
generates a unique local ^-system for which Scenario G also obtains, i.e., every
operator in the algebra of field operators has a closed extension affiliated with the
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appropriate von Neumann algebra in the ^-system. Hence, if φ[/s] is intrinsi-
cally local, so is φ[/] for any other (real) test function / which satisfies the same
premises as fs. The assumption of the regularity condition, which we call a
generalized H-bound, thus has remarkable implications for the connection between
fields and local nets. The problem of determining whether all field operators, linear
or multi-linear, have closed extensions affiliated with the algebras of some local net
is seemingly a formidable problem. The observation that it reduces to the study of
just one single operator amounts to a substantial simplification. The results in
Sect. 4 are of interest from this same point of view, but the results with a
generalized ϋ-bound are much stronger.

In addition, Theorem 5.5 makes explicit the following significant result. If the
quantum field satisfies the regularity condition, then either there exists a (unique)
local ^-system such that Scenario G applies to the field and the system, or there is
nothing even remotely resembling a net of local algebras with which the quantum
field can be in any sense locally associated.

In Sect. 6 we extend these considerations to the Borchers class of the "original"
field φ(x). In Theorem 6.1 we show that if there is an intrinsically local operator Xs

in the algebra of the averaged field operators φ[/] , and if xp(x) is a field in the
Borchers class which satisfies a generalized if-bound, then Scenario G obtains for
the field ψ(x) and the ^4£-system generated by Xs, i.e., every (local) element in the
field-operator algebra generated by xp(x) has a closed extension affiliated with the
^5-system. Furthermore, if / is a real test function of compact support, with a
non-vanishing Fourier transform, then ψ\_f~\ is intrinsically local, and its closure
generates the same unique ̂ jB-system as Xs. These results have some obvious
potential applications, which we discuss in Sect. 6. In particular they are relevant
for the theory of Wick polynomials of a massive free field. The question of what
local algebras such a Wick polynomial generates has been discussed much earlier
[23], and these earlier results now emerge rather naturally within our theory.

The conclusions reached in this paper, taken in conjunction with recent results
concerning the reconstruction of fields locally associated with a net of local
algebras from limits of sequences of operators from the algebras [13, 18, 27, 29],
suggest that local ^E-systems satisfying the special condition of duality are likely
to play an important role in quantum field theories which fit into the framework of
algebraic relativistic local theories.

2. Some Generalities About Local Nets Associated with a Local Quantum Field

We consider a theory of a single irreducible local hermitian scalar field φ(x), and
we adhere to all the standard assumptions and conventions as described in Chap.
Ill of the monograph by Streater and Wightman [28]. For any subset R of
Minkowski space Jί we define &0(R) as the smallest unital *-algebra which
contains the averaged field operator φ\_f~\ for every test function / with
supp(/)Ci£. The elements Xe^0(Jί) are regarded as defined on a domain
customarily denoted by Dl9 which arises when the algebra generated by all
averaged linear and multilinear field operators acts on the vacuum vector Ω. The
star-operation referred to above is hermitian conjugation φ\_f~\-+φ[fV
= φίfl* \ Du an<3 since φ(x) is hermitian we have φ [ / ] f = φ[/*] . In what follows
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the overbar will always be used to denote the closure X of any X e 0>Q(M\ as
defined on Dv We define Do = £P0(Jί)Ω, and we assume that the subdomain Do of
Dί is dense in the Hubert space Jf. It is well-known that the closures of any
I e ^ 0 ( l ) on Do and Dγ are the same: X = (X \D0)**.

The Hubert space J f carries a strongly continuous unitary representation
λ-+U(λ) of the Poincare group P. For the elements of the subgroup of translations
we also employ the notation T(x) = U(I, x). This subgroup is subject to the usual
spectrum condition. The canonical TCP-operator is denoted <90, and we have
Θoφ(x)Θo = φ(-x), Θ0Ω = Ω and Θ% = I.

The discussion in this paper depends critically on some results in [2], which we
shall now review very briefly. We define the wedge-regions WR and WL in
Minkowski space by

WR = {x\x3 > \x4\} , WL = {x\x3 < - |x4|} .

The vector Ω is cyclic and separating for ^0(WR) and ^0(Wj). It was shown in [2]
that

JV(-iπ)YΩ= YfΩ, (2.1)

for all Xe^0(WR\ all Ye0>o(WL). Here J is the antiunitary involution
J=U(π3,0)Θ0, where π 3 denotes the rotation by angle π about the 3-axis. The
operators V(iπ) and V( — iπ) are positive selfadjoint operators obtained by analytic
continuation of the unitary operators V(t) = U(v3(t), 0) which represent the one-
parameter abelian group of velocity transformations in the 3-direction. The
parametrization is so chosen that the action of v3(t) on the rest state of a (classical)
particle leads to a state of velocity tanh(ί) in the 3-direction. It was also shown in
[2] that SP^WR)Ω is a core for V(ίπ\ and that 0>o(WL)Ω is a core for V(-ίπ).

For any subset R of Minkowski space we denote by Rλ the image of R under the
Poincare-transformation λ, and by Rc the causal complement of R, i.e., the set of all
points of Jί strictly spacelike relative to R. We define IV = {WR λ\λ e P} as the set of
all wedge-regions Poincare-equivalent to WR (and to WL\ and we denote by Jf the
set of all closed double cones K with a non-empty interior. For any K e Jf we have
K = r\{W\Weϋr, WDK}, and for the (open) causal complement we have
Kc = v{W\Weir, WCKC}.

The notion of an AB-system of von Neumann algebras was introduced and
discussed in [2] and [3]. It is a particular kind of local net, with special properties
of interest for this paper: the admittedly awkward term is used because some name
is necessary to distinguish this kind of local net from other kinds of local nets. Some
general properties of an y4jB-system were discussed in [30], and we shall here quote
some definitions and results from this paper.

Definition 2.1. a) An ,4£-system is a set {stf(W\ &(K),JZ?(KC)} of von Neumann
algebras such that to every We iV* corresponds an algebra jtf(W) and to every
KeJf correspond two algebras &{K) and stf{Kc\ the correspondence being such
that the following conditions hold:

U(λ)s/(W)U(λy1=s/(Wλ)9 all λeP, WeΨ~\ (2.2a)

ΰ, whenever WDWt; (2.2b)

iΓ, WcKc}"

(2.2c)



54 W. Driessler, S. J. Summers, and E. H. Wichmann

b) The ^4B-system is said to be local if and only if

s/(W)/Dsί(We)9 ^(KYD^(KC), (2.3)

for all WeiT, Ke JίΓ. The set (algebra) °U of operators is defined by

Jίr}. (2.4)

If the ,4£-system is local the set °U will be called the set of all (strictly) local
operators.

c) The v4jB-system is said to be generated by its ^-algebras if and only if

st(W) = {&(K)\K e Jf, K C WY. (2.5)

If the ^β-system is furthermore local it is said to be generated by its local
operators.

d) The ,45-system is said to be TCP-covariant if and only if

Θo^{W)Θo ^^(-W), Θo@(K)Θo ι=@(-K), (2.6)

for all WeiT, Ke jf. We here use the notation -R = {-x\xeR}.
e) The 4̂22-system is said to satisfy the condition of duality if and only if

s/{W Y = d(yVc), Λ{K)f = sd(Kc), (2.7)

for all Weif,Ketf.
f) The AB-system is said to satisfy the special condition of duality if and only if

the following conditions hold [in which case the conditions (2.6) and (2.7) also
trivially hold]:

^(WL) = ̂ (WRY = J^(WR)J. (2.8)

The vector Ω is cyclic and separating for srf(WR). The linear manifold stf(WR)Ω is a
core for V(iπ\ and

JV{iπ)AΩ = A*Ω, all Ae^(WR). (2.9)

These definitions, which correspond to Definition 1 in [30], involve a certain
amount of obvious redundancy. The relation at right in (2.3) thus follows from the
relation at left [and the general relations (2.2)], and likewise the relation at right in
(2.7) follows from the relation at left. It is important to note that the ^B-system is
completely determined, through (2.2c), by the wedge-algebras s$(W\ and the
conditions (2.2a) and (2.2b) then imply conditions of covariance and a variety of
conditions of isotony for all the algebras of the ,412-system. For instance,
U(λ)38(K)U(X)"x = @(Kώ for all K e jf, λ e P. Since the relationships in question
are quite obvious, it is hardly necessary to present a complete list. We note here
that the condition of duality is stronger than the condition of locality: the former
implies the latter. The special condition of duality is stronger still in that it also
implies ΓCP-covariance.

In the context of quantum field theory we expect that a relevant ^45-system is
local, and that it has the property that it is generated by its local operators in the
sense that (2.5) holds. For a truly "local" theory the set °U in (2.4) of all local
operators ought to be "sufficiently large," which reasonably means that this set is
irreducible.
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Any system of local operators can be embedded in a natural way in a local AB-
system. We state the matter as follows.

Lemma 2.2. For each KeX, let <g(K) be a selfadjoίnt set, i.e., A*e&(K) if
A e ̂ (K), of bounded operators, and let ̂ =KJ{^(K)\K e Jf }. We assume that the
operators in & are local in the sense that U{X)^{K^)U{X)~1 C(£(K2)' for any two
KuK2EJt and any λeP such that Klλ is spacelike relative to K2. Then:

a) There exists a local AB-system {srf(W), &(K), stf(Kc)}, said to be generated by
0, such that

stf(W) = {U(λ)g(K)U(λy1\Kejr, λeP, KλCW}". (2.10)

This AB-system is generated by its local operators, and it satisfies the condition
9{K)QSHK) for allKeJf.

b) The following five conditions are equivalent: 1) The AB-system is irreducible;
2) The algebra m in (2.4) is irreducible; 3) The set u{l7(vl)#ϊ/(λ)-1|;ie/>} is
irreducible; 4) Ω is a cyclic vector for ύU, and 5) Ω is a cyclic vector for jtf(WR).

c) // the AB-system defined by (2.10) satisfies the condition of duality it is the
only AB-system for which the inclusion relations ^(K)C^(K) hold for all K.

For the proof, which is almost totally trivial, we refer to [30] (see in particular
Theorem 2). Note here that K-^^{K) is not assumed to be a local net, nor is it
assumed that this mapping satisfies the conditions of Poincare-covariance or
isotony. It might thus well happen that ̂ (K) is empty for all but one single Ko e JΓ,
and furthermore it could happen that &(K0) consists of just one single (selfadjoint)
operator.

In the terminology of [30] the set 0 is a "primary set of local operators." A
particular example of such a primary set is a local net 0-»2l(0) defined on the set of
all open double cones G. We define 0(0) = 21(0), and we then have 21(0) C^(0).
Furthermore it is easily seen that s/(W) = {(Ά(G)\GcW}//.

In order to study the possible local association of a quantum field with a local
y4£-system we must first discuss a notion of affiliation due to von Neumann [25].
Let Q be any closed linear operator, with the polar decomposition Q = VP. In this
paper we shall denote by a(Q) the von Neumann algebra generated by the partial
isometry Fand the spectral projections of the non-negative selfadjoint operator P.
The operator Q is said to be affiliated with a von Neumann algebra $ί if and only
if α(Q) C s$. This condition is equivalent to the condition

QAJAQ, for all Aesd'. (2.11)

In the following we shall say that a bounded operator A commutes in the strong
sense with a closed operator Q if and only iϊ Ae a(Q)', which is thus equivalent to
the conditions that QADAQ and QA*DA*Q.

Let ̂ 0 be an algebra (over the complex field) of closable operators defined on a
common dense invariant domain D, and let ̂ 0 be a hermitian algebra in the sense
that for each X e^0 the domain of X* includes D, and such that X f is contained in
3?0, where X* =X* ϊ D. We shall say that a bounded operator A commutes weakly
with 0>o on D if and only if
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for all X e ^ 0 , and all φ', φ" e D. We note that this condition, which is equivalent to
the condition

X**ADAX, all I e # 0 , (2.12)

implies that A* also commutes weakly with ^ 0 on D. The set of all bounded
operators A which commute weakly with ^ 0 on D is the weak commutant oϊ£P0. It is
a weakly closed, linear manifold, closed under the star-operation, but it is in
general not an algebra. We also note that the condition (2.12) implies that
X^*ADAX**, which condition should be contrasted with the condition (2.11).

For later reference we state the following simple

Lemma 2.3. Let 3P§ be a hermitίan algebra of closable operators on a common dense
invariant domain D. Then:

a) A von Neumann algebra stf has the property that each I e ^ 0 has a closed
extension Xe affiliated with stf and such that X J D X 1 " if and only if every Aesd'
commutes weakly with £PQ (on D), in which case we say that stf' commutes weakly
with gP0 (on D).

b) Suppose that sί; commutes weakly with £P0. Let De = span {stf'D}. Then De is
included in the domain of X* for every X e ^ 0 , and for each such X the operator
e(X) = X f * \DeDX is a well-defined closable operator, with the property that its
closure e{X)** is affiliated with si. The set {e(X)\X e ^ 0 ) ι s a hermitian algebra on
De, and the mapping X-+e(X) is a *-representation of the algebra 3?0 such that
X* D e(X)* D e(Xf) D X f for all X e 0>o.

For the simple proof, and for further elaborations on this theme, we refer to [3]
(see in particular Lemma 10 in Sect. V), and also to the papers of Powers [26] and
of Jorgensen [20].

In the above the operator e(X)** is closed extension of X which is affiliated
with efl/7. It should be noted that this does not mean that the closure X** of X
relative to the original domain D is also affiliated with si. Nor is the possibility
excluded that X has other closed extensions besides e(X)** which are also
affiliated with si.

We now continue the discussion of our local field theory.

Definition 2A. Let φ(x) be an irreducible local hermitian scalar field, subject to the
general conditions stated in the beginning of this section. Let
{st(W)9 &(K), <sz?(Kc)} be a local, TCP-covariant ,4£-system which satisfies the
special condition of duality and which is generated by its local operators. The
following two possibilities for a local association of the field with the 4̂J5-system
are hereby identified:

Scenario G. For each KeJΓ every X e &0(K) commutes weakly on Dx with every
A e stf(Kc), and every X e ^O(KC) commutes weakly on Dx with every A e όg(K).
For each WeΨ* every Xeί?0(W) commutes weakly on Dx with every Aes$(Wc).
Equivalently stated, every Xe^0(K), ^O(KC), respectively ^0(W\ has a closed
extension Xe affiliated with 8l(K), sd{K% respectively s/(W)9 and such that
X*DXf.

Furthermore Ω is cyclic and separating for 8%(K) for all KeJΓ, and si(W)
ίλ)\λeP,KλC Wγ for any Ke Jf.
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Scenario A. 1) To each subset RQJί corresponds a unital *-algebra
^ O S (JR)C^OCR)> where the correspondence R^^0S(R) satisfies the conditions of
isotony and Poincare-covariance, i.e., ^Pos{R^U{λ)0>

os{R)U{λ)~1 whenever
Ro D Rλ. Furthermore ̂ 0S(R) is the smallest *-algebra which contains &Ό8(K) for all
K C JR, K e Jf. In particular this applies for R = Jί, and every element X e £P0S{Ji) is
thus a local operator in the sense that X e SP0S{K) for some K e Jf.

2) The linear manifold Όos~0>

olM)Q is dense in 2tf.
3) For each KeJf every X e ^ s ( K ) commutes weakly on Dos with every

^ e jtf(Kc), and every X e ^>S(KC) commutes weakly on Dos with every
For each WG lίΓ every X e ^0S(W) commutes weakly on D o s with every A e
Equivalently stated, for every X e 0>OS(K), 3POJ^C\ respectively SP0S{W\ there exists
a closed extension Xe of X \ Dos such that X*DX f \ Dos and such that Xe is
affiliated with J*(X), stf(Kc\ respectively s/(W).

We regard the state of affairs described as Scenario G, which is clearly a sub-
scenario of Scenario A, as the good situation. The demonstration that this situation
always obtains in a quantum field theory would represent a very satisfactory
resolution of what might be called the "selfadjointness problem of field theory."
Positive solutions of the selfadjointness problem under a variety of special
conditions on the field have been known for some time [5, 2, 3], but whether
Scenario G obtains in general remains an open question, and so does the question
of whether Scenario A might actually imply Scenario G. A field theory for which
Scenario A (but not Scenario G) obtains could still be regarded as a physically
acceptable local theory. Irrespective of what the actual situation may be, the
totality of the statements in A is a useful theoretical stepping stone for the
statement of intermediate results. The above definition is also a statement of goals
for this paper: we shall show that with certain assumptions on the field it can be
concluded that Scenario G, respectively A, obtains.

For both scenarios the statements in part b) of Lemma 2.3 should be kept in
mind as a further elaboration of the description. The field-operator algebras (for a
particular region) thus have specific extensions by hermitian algebras such that the
closures of the extended operators are all affiliated with the corresponding von
Neumann algebras of the AB-systzm.

In Theorems 2.7 and 2.8, which follow shortly, we show how the situations
described in the above definition can arise. It will then be clear that if Scenario A
does not obtain, then the field operators are not locally associated with any local
von Neumann algebras at all. For the discussion of these theorems we need to
review some further properties of AB-systems. We shall summarize miscellaneous
relevant facts in the form of two (overloaded) "working lemmas" for later reference.

Lemma 2.5. a) Suppose that an AB-system is generated by its ^-algebras, i.e., the
relation (2.5) holds. Then the set °lί defined in (2.4) is irreducible if and only if
jtf(WR)Ω is dense.

b) With the premise in a) above the algebra <stf(WR) equals the strong closure
of the set κj{@(K)\KeJίT, KcWR}.

c) Suppose that for a local AB-system the linear manifold stf(WR)Ω is dense in X
and contained in the domain of V(iπ), and that furthermore the relation (2.9) holds.
Then the AB-system satisfies the special condition of duality.
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d) Let stf{WR) be the wedge-algebra corresponding to WR in an AB-system which
satisfies the special condition of duality.

Suppose that jtf1 Cstf(WR) is a von Neumann algebra such that sdγΩ is dense in
2tf, and V{f)s4γV{f)~γ^sdγ for all velocity transformations V(t) in the 3-direction.

Suppose that stf2 D s/(WR) is a von Neumann algebra such that s$2Ω is contained
in the domain of F(iπ), and such that the relation (2.9) holds for all A e srf2. Then

e) Suppose that an AB-system satisfies the condition of duality and is generated
by its local operators. Suppose that Θ -• 2ί($) is a local net defined for all open double
cones Θ, with the property that 21(0) D^(K) whenever ΘjK. Here &(K) is the
algebra of the AB-system corresponding to KejΓ. Then (Ά(Θ)C^(&) for all open
double cones Θ.

Proof. The assertion in a) follows by a standard argument in quantum field theory,
based on the spectrum condition: see also [30]. The assertion in b) follows from
(2.5) and the obvious geometrical fact that any compact subset of the (open) set WR

is contained in some K C WR, KeJf. For the assertions in c) and d), see Theorem 2
in [2]. The assertion in e) is a triviality. D

The first lemma reveals the rather tight structure of an ^B-system. The lemma
which follows has to do with the implications of the relations (2.1).

Lemma 2.6. a) Let the linear manifold DLCJ^ be a core for V{ — iπ). If X is a
closable (linear) operator such that Ω is in the domains of X and X*, and if

= (JV(-ίπ)φ\XΩ}, all φeDL, (2.13)

then XΩ and X*Ω are in the domain of V(iπ) and

JV(iπ)XΩ = X*Ω, JF(iπ)X*ί2 = XΩ. (2.14)

b) Let <£bea linear manifold of operators in ̂ 0 ( W L ) SUC^ that DL = !£Ω is dense
in tf, and such that V{t)^V{tyγ = ̂  for all t. Then DL is a core for V(-iπ).

If X is a closable operator such that Ω is in the domains of X and X*, and if

all 7eJ2% (2.15)

then the relations (2.14) hold. Furthermore the relation (2.15) holds for all

c) Let $£ satisfy the premises in b). Let stfR be a von Neumann algebra such that
sdRΩ is dense and such that V(t)stfRV(t)~ * = s$R for all t. Suppose furthermore that
(2.15) holds for all Xe^R.

Then

9 (2.16)

and Ω is cyclic and separating for srfR and stfR. Furthermore s$RΩ is a core for V(iπ)
and s$RΩ is a core for V( — in), and

JV(-iπ)BΩ =

for all A e stfR, all B e s4'κ.



Quantum Fields and Local von Neumann Algebras 59

d) With the premises in c) above, suppose in addition that s^R = s^{WR) is the
wedge-algebra corresponding to WR in a local ΛB-system. Then this system satisfies
the special condition of duality.

Remark. Analogous statements apply to the situations in which the objects
associated with the "right wedge" WR are interchanged with the corresponding
objects associated with the "left wedge" WL, in which case the roles of V(iπ) and
V( — in) are also interchanged. We omit the explicit statements, which should be
obvious.

Proof. The assertion in a) is a triviality. We consider b), and note that DL is
contained in the domain of V( — iπ), in view of (2.1). Since DL is assumed dense, and
since V(t)DL = DL for all t, it follows that DL is a core for V{ — in). Taking into
account (2.1) the remaining assertions in b) follow readily.

The assertions in c) are paraphrases of assertions in Theorem 2 in [2]. (From a
mathematical point of view the conclusions can be regarded as standard results
within the Tomita-Takesaki theory.) The assertion in d) follows from the result in
c), and from part c) in Lemma 2.5. D

Part d) of this lemma describes how an extremely weak condition of "relative
locality" between the field and a local v45-system implies the special condition of
duality for the latter. This theme recurs in the two theorems which follow. The first
of these is almost a special case of the second, and the two might have been
combined into a single theorem. The reason for our approach is that the first
theorem is particularly clean, and deserves an explicit statement, whereas the
second may at first appear complicated and contrived. We hope that it will be
palatable as a generalization of the first in the same sense that Scenario A is a
generalization of Scenario G.

Theorem 2.7. Let φ(x) be a local, irreducible hermitian scalar field.
a) Suppose that there exists an AB-system {<stf(W),&(K), s/(Kc)} such that the

set <tί=v{08(K)\KeJf} is irreducible, and such that for each KeJf every
Aejtf(Kc) commutes weakly on Do with every averaged field φ [ / ] for which
supp(/)cK

Then Scenario G in Definition 2.4 obtains for this AB-system, which means in
particular that it is local, TCP-covariant, and satisfies the special condition of
duality.

b) Suppose, instead, that there exists a local net 0->5I(#) of von Neumann
algebras defined for all open double cones Θ, and with the property that every
operator X = φ\_f~], withs\xpp(f)cΘ, has a closed extension XeCXf* affiliated with
U(Θ). Then the AB-system defined through

^(W) = {U(λ)SΆ(Θ0)U(λy1\λGP, ΘOtλCWY (2.17)

for a particular non-empty Θo is independent of the choice of Θo. It satisfies the
premises in part a) above, and hence all the conclusions apply. The relation
^(Θ)DSΆ(Θ) holds for all G.

Furthermore, if 0->2Iβ(0) is any local net such that 2Iβ(0)D2l(0) for all open
double cones Θ, and such that 3ϊe satisfies the condition of duality in the sense that
ςHe{Θy={SΆe{Θo)\&ocΘcγ, then SΆe(Θ) = ̂ (Θ) for all Θ.
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Remarks, a) The following differences in the premises for parts a) and b) should be
noted. In part b) the locality of the net is assumed, whereas it is a consequence in
part a). In part a) the irreducibility of the set u{ <%(K)\K e Jf} is assumed, and the
locality of the ^45-system then follows from this and from the other assumptions,

b) Part b) reveals the canonical nature of the ^E-system as a local net. The
original net need not satisfy the condition of duality, but it has an embedding into a
"larger" net which is unique if it satisfies the condition of duality, in which case it
satisfies the special condition of duality. This, of course, applies only to local nets
which are related to /m/ίe-component quantum fields in the manner stated.
Examples exist of local algebras satisfying duality but not the special condition of
duality (see, e.g. [11]) and of local algebras associated with certain infinite-
component (free) fields for which the special condition of duality does not hold.

Theorem 2.8. Let φ(X) be a local, irreducible hermitian scalar field. For each
KsJf, let the subset ^(K)C^O(K) be a hermitian set of local operators, i.e.,
X f e #XK) ifXe #XK). For any RQ_M, let 0>Os(R) be defined as the smallest unίtal
*-algebra which contains U{X)^{K)V{X)~l whenever KλcR, KeJf. Hence
^ o s ( # K ^ o ( # ) It is assumed that D0s = ̂ 0s(^)Ω is dense in jf.

a) Suppose that there exists an AB-system {s/(W)9 &(K), stf(Kc)} such that the
set <% = v{&(K)\KeJf} is irreducible, and such that for each KeJΓ every
Xe^{K) commutes weakly on DOs with every Aejtf(Kc).

Then Scenario A in Definition 2.4 obtains for this AB-system and the algebra
g?Os{Ji), which means in particular that the AB-system is local, TCP-covariant, and
satisfies the special condition of duality.

b) Suppose, instead, that there exists a local net 0->2l(0) of von Neumann
algebras defined for all open double cones Θ, and with the property that for each
KeJf there corresponds to every X e ^{K) a closed extension Xe C (X f f #Os)* °f
X ί DOs which is affiliated with 21(0) for any Θ such that ΘDK. Then the AB-system
defined through

(2.18)

satisfies the premises in part a) above, and hence all the conclusions apply. The
relation Jf(0)}2l(0) holds for all Θ.

Furthermore, if Θ^^&Jβ) D 21(0) is any local net defined on all open double cones
which satisfies the condition of duality in the sense explained in Theorem 2.7, then

Remarks, a) The remarks following the statement of Theorem 2.7 also apply to the
present theorem.

b) The set ^ = u{^(K)\KeJf} is thus a generating set for the system of
algebras {^0s{R)\RcJί}. It is not assumed that the mapping K^>tF{K) satisfies
the conditions of isotony and Poincare-covariance. In particular it could happen
that J^ consists of just one single pair X,Xf of local operators.

c) The theorem does not assert that every algebra &(K) is nontrivial: it could
thus happen that for "small" K e J f the algebra <%(K) contains only multiples of
the identity. See, however, part c) of Theorem 3.2 for specific results concerning this
issue.

d) It will be advantageous to prove Theorem 2.8 first, after which we prove
Theorem 2.7.
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Proof of Theorem 2.8. 1) We first note that the algebra &Os(Ji) is obviously
Poincare-invariant, and in particular it is translation-invariant. Every element of
^osiJf) is local, and by a standard argument in quantum field theory involving the
Reeh-Schlieder Principle we conclude that ^0s(W)Ω is dense 2tf for any WEΨ*
since DOs = ̂ Os(Jί)Ω was assumed dense.

2) We next note that it follows immediately from the definition of the algebras
&*Os(R) in the statement of the theorem that these satisfy precisely the same general
conditions as the algebras so denoted and described within Scenario A in
Definition 2.4. In particular the mapping R-+gPOs(R) satisfies the conditions of
isotony and Poincare-co variance, and &Os(R) is the smallest unital *-subalgebra of
# 0(R) which contains ^Os{K) for all KcR, KeJtT.

3) We now assume the premises in part a) of the theorem. We consider a
particular K e jf. Since the AB-system satisfies the conditions of isotony and
Poincare-covariance, and since DOs is Poincare-invariant, it follows from the stated
assumptions that every AES$(KC) commutes weakly on DOs with every
XeUβ^iK^Uiλy1 whenever i^ej f , KUλCK. We now depend on the
following simple principle. If 0>s is a hermitian algebra of closable operators on a
common dense invariant domain DOs, and if a bounded operator A commutes
weakly on DOs with a (hermitian) generating set for this algebra, then A commutes
weakly on DO s with every Xe^s. We thus conclude that every AES^{K°)
commutes weakly on DOs with every X e 0>Os(K). By similar reasoning we conclude
that every A e 0l(K) commutes weakly on DO s with every X e gPOs(Kc), and that
every Aestf(Wc) commutes weakly with every Xe^Os(W% for any WE if. We
omit the details, which involve very simple geometrical considerations. We have
thus established all the weak commutation relations between the AB-systQm and
the algebra ^θ8(JΓ)9 as stated in Definition 2.4.

4) It is assumed in part a) that the set % is irreducible, and it follows, by part a)
of Lemma 2.5, that <stf(W)Ω is dense for any WEΨ. For all t we have
V(t)^(WR)V(ή-ι = ̂ (WR) and V(t)0>θ8(W,)V(t)~' -&Q s{WL). By 3) above, ^(WR)
and ^OS(WL) commute weakly on DO s, and by 1) above, gP0s(Wj)Ω is dense. Hence
sέR = sd{yVR) and & = &OS(WI)C&O(WL) satisfy the premises in part c) of Lemma
2.6, and it follows that

JV(iπ)AΩ = A*Ω, all Ae^(WR). (2.19)

Similarly we have,

JV(-iπ)BΩ = B*Ω, all Bestf{WL). (2.20)

5) Let K e jf, K C WR, and let Wx eif,W^WRr^Kc\ the three sets WL, K, and
Wι are thus pairwise spacelike relative to each other. Let Ye^Os(WLX Ae&(K),
and Xe&ΌJίJVi). Then X and Y commute on Dl9 and hence on DOs, and both
operators commute weakly on DOs with A. It follows that (Y^Ω\AXΩy
= (A*Ω\YXΩ} = (A*Ω\XYΩ} = <v4*XtΩ|7Ω>. By part b) of Lemma 2.6,0>Os(WL)
is a core for V( - in), and since furthermore YfΏ = JV( - in) YΩ for all YE SP^
it follows from the above that AXΩ is in the domain of V(iπ)9 and that

JV(ίπ)AXΩ = A*XfΩ (2.21)

for a&Ae&(K), all I e ^
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Let A and X be as above, and let B e stf(WL). In view of (2.20) and (2.21) we have

(BΩ\AXΩ} = (A*χϊQ\B*Ω). (2.22)

Since AB* e */(Wf) it follows from the result in step 3 that (X*Ω\AB*Ωy
= (BA*Ω\XΩy, and from this, and from (2.22) we then conclude that

<ί2|[β*,,4]Xί2> = 0. (2.23)

Let XuX2e ^0s{Wγ\ Setting X = X\X2 in (2.23), and taking into account the
fact that [B*9A~\esf(W& we obtain <^X1Ω\lB*,A']X2Ωy = 0 for all
Xl9X2e0>O8(W1)9 all Ae&(K) and all BG^(WL). Since ^(WJΩ is dense it
follows that [B*, A'] = 0, i.e., we have 3S{K) C ^(WJ for any KcWR,KeX.

6) We define the AB-system {^O(W\^O(K)^O(KC)} through

sίo(W) = W(K)\K ejf,KC WY, (2.24)

and we then have 0#O(K) = &(K). Since % is irreducible it follows by part a) of
Lemma 2.5 that jtfo(WR)Ω is dense. By the result in step 5 above we have 8fio(K)
= @(K)Crf(WJZs4o(WJ for any KcWR, KeJf [since obviously
s/iW^D^oiWJ]. In view of (2.24) this implies that s/0(WR)C^0(WJ9 and hence
the ^45-system defined through (2.24) is local The relation (2.19) holds for any
A e stfo(WR)Cstf{WR\ and by part c) of Lemma 2.5 it follows that the ,422-system
defined through (2.24) satisfies the special condition of duality. By part d) of
Lemma 2.5 we readily conclude that stf(WR) = J/0(WR), i.e., the two y45-systems are
identical. We have thus proved that Scenario A obtains with the premises in part a)
of the theorem.

7) We assume the premises in part b). The AB-system defined through (2.18) is
then, by Lemma 2.2, local, and we have 91(0) c @{Θ) C s4{Θc)' for all open double
cones ΘAϊ KeJf,KC&, and X e ^{K\ it follows from the above, and from the
premises in part b), that X commutes weakly on DOs with sί(Θc\ From the relation
at right in (2.2c) in the Definition 2.1 of an ̂ β-system it is obvious that the algebras
s/(Kc) are "continuous from the inside" in the sense that stf(Kc) is equal to the weak
(or strong) closure of the set v{jtf(Kc

o)\Koe Jf, KC

OCKC}, and we thus conclude
that every I e « f ( K ) commutes weakly on DO s with every Aej^(Kc), for any

8) To show that all the premises in part a) are in fact implied by the premises in
part b) it remains to be shown that the set °U = v{3ί(K)\K e jf} is irreducible for
the AB-system defined through (2.18). Let QeW, and hence Qε0S(K)' for all
KeJf.lt follows that Q commutes weakly on DOs with ^Os(K) for all K, and hence
Q commutes weakly with 3?0s{Jί) on DOs. Since DOs = ̂ Os{Jί)Ω is dense, it follows
by a standard argument in quantum field theory (based on the spectrum condition)
that Q is a multiple of the identity. Hence % is irreducible. Thus all the premises in
part a) obtain, and the conclusions follow.

9) Let 2Ie be a "larger" (local) net which satisfies the condition of duality, as
stated in the theorem. Applying all the earlier considerations to this net we obtain
an ^B-system which satisfies the special condition of duality, and in particular we
obtain a wege-algebra 9le(P^)Dj^(Wi) through the construction in (2.18). By part
d) of Lemma 2.5 we have (Άe(WR) = stf(WR), i.e., the two AB-systems are identical.
We have ^(0)i)9lβ(0) for all open double cones, and since 9lβ satisfies the
condition of duality, equality must obtain. D
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Proof of Theorem 2.7. 1) For each X G J Γ we define the hermitian set
= M / ] | / e ^ ( # 4 ) , supp(/)cK}, and we define the algebras &θ8(R) in terms of
the &{K) as in Theorem 2.8. Since Ώγ^Ώς)^Ό^ = 0>

ςilJί)Ω, it follows that the
premises in part a) of Theorem 2.7 imply the premises in part a) of Theorem 2.8. All
the conclusions in part a) of Theorem 2.8 thus apply to the algebra ^Qs{Ji) as
defined above.

Likewise the premises in part b) of Theorem 2.7 imply the premises in part b) of
Theorem 2.8, and the corresponding conclusions apply to the algebra ^O s(y#) and
the ,4£-system defined through (2.18).

2) The algebra gPOs(Ji) is smaller than the algebra ^0{J() since the former is
generated by all operators φ\_f] for which / is of compact support, whereas the
latter is generated by all φ[/] with / unrestricted. If R is a bounded subset of M we
have, of course, 0*os(R) = 0*o(R)- We now appeal to a well-known consequence of
the field being an operator-valued tempered distribution. If X e ̂ 0(R), for an
arbitrary (open) RcJi, then there exists a sequence {Xn\ n = 1,2,...,} of operators
in 0>Os(R) such that the sequence {Xnφ\n= 1,2,...,} converges strongly to Xφ, for
any φeDί. Furthermore, each φeD1is the strong limit of a sequence of vectors in
DOs. From this we conclude that all the weak commutation relations between the
elements of ̂ 0(Jf) and the AB-systtm hold precisely as described within Scenario
G in Definition 2.4, but with the provision that under the premises in part b) the
.422-system is defined through (2.18), rather than through (2.17).

3) Let Θo be a non-empty open double cone, and let the ,422-system
{jrfo(W)9 SSQ(K)9 s^0(Kc)} be defined such that sto(W) equals the right member in
(2.17). Let % = v{&0(K)\KeJfr}. We shall show that % is irreducible. Let
Q e %, in which case Q e 0ίo(K)' for all KeXΆt follows from the premises that
Q commutes weakly on Dί with every field operator ψ\_f~\ such that supp(/)
CGOtλ f° r s o m e λεP. This implies that Q commutes weakly (on D J with φ[/]
for any test function /, and it is well-known that this implies that Q is a multiple
of the identity. Hence % is irreducible, and by part a) of Lemma 2.5 it follows
that jtfo(WR)Ω is dense. Since s/0(W^Cs/(WR)9 it follows from part d) of Lemma
2.5 that ^0{WR) = ̂ {WR\ and hence the two ̂ [jB-systems defined through (2.17)
and (2.18) are identical.

4) Let KeJf. From the above it follows at once that s4(W)
= {@(Kλ)\λeP, KλCWγ. It is well-known that Ω is cyclic for &>0(K), which
implies that Ω is separating for jtf(Kc). This, in turn, implies that Ω is cyclic for
38(K) = stf(Kc)'. The vector Ω is trivially separating for 08{K). We have now shown
that Scenario G obtains under the premises of the theorem. D

Concerning Theorem 2.7 we note that it can well happen that the local net
mentioned in part b) is "much smaller" than the ^4£-system. For any G the closed
extensions of the field operators φ [ / ] G%(Θ) which are affiliated with 21(0), and
with &(G), generate locally an algebra 2ϊm(0) which can be regarded as belonging
to a minimal local net. It is known [22] that such a net 9Im need not satisfy the
condition of duality, in which case 2ϊm(0) cannot equal $(G). The local net is
accordingly not unique, whereas the ̂ 4£-system is uniquely determined by the
particular closed extensions of the field operators.

Theorem 2.8 permits us to say the following. If Scenario A does not obtain, then
there does not exist any irreducible subset of local operators in %(J?) such that its
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elements have closed extensions affiliated in the manner stated with the algebras of
some local net. At first the situation described in Scenario A may appear rather
"special," but we now see that it corresponds to minimum requirements for the
field to be locally associated with a local net.

Concerning Scenario G we emphasize that it is not said that the closed
extensions of the field operators X which are affiliated with the local algebras of the
^5-system are actually the closures X of the operators X as defined on Dv It seems
to us to be unreasonable to believe that this could be the case for all the local
operators in £P0(Jί\ but it might be the case of some subset of these, say the
operators φ\_f~\ which are linear in the fields. We shall explore this possibility in
Sect. 4.

3. A Principle Akin to the Reeh-Schlieder Principle.
Further Discussion of the Properties of Local A 2?-Sy stems

In this section we shall discuss two general properties of ^-systems associated
with quantum fields in the manner described in Definition 2.4. We first digress, and
state and prove a lemma which is of particular interest for this paper, but which
may also have other applications in quantum field theory.

Lemma 3.1. Let {<stf(W\08(K\stf(Kc)} be an AB-system with the property that
stf(WR)Ω is in the domain of V(ίπ). In particular this applies to the case when the AB-
system satisfies the special condition of duality. Let {An\n= 1,2,...,N} be an
N-tuplet of (bounded) operators contained in M(K) for some Kejf. Let
{On\n = 1,2,..., N} be an N-tuplet of non-empty open subsets of the Poincarέ group
P. We write An(λ) = U(λ)AnU(λ)~1 far any λeP. Then:

\... AN(λN)Ω\λne0n, for n=l, ...,N}

•:P,forn=l,...,N}, (3.1)

where the overbars indicate strong closures.

Remark. The above assertion resembles the celebrated Reeh-Schlieder Principle
[21, 28] (as applied to bounded operators). This principle asserts an identity such
as (3.1) with P replaced by the translation subgroup and with the On being non-
empty open subsets of this subgroup. Now it should be noted that the Reeh-
Schlieder Principle applies to any ΛΓ-tuplet of bounded operators, and it is a simple
consequence of the spectrum condition for the translation group. In contrast with
this, our conclusion is manifestly false for an arbitrary set of operators An. It can
also be false for an ΛΓ-tuplet of local operators if the additional domain conditions
do not hold.

Proof. 1) The crucial step is the proof of the case JV= 1, which we now consider. We
have to show that if for some vector φ the function f(λ) = (κφ\V{λ)AιΩy satisfies the
condition f(λ) = 0forλeOu then f(λ) = 0 for all λeP. For a fixed φ, let Po be the
largest open subset of P throughout which / vanishes. We then have Po J Oi9 and,
by the Reeh-Schlieder Principle, Po = (/,x)P0 for any x e l , i.e., Po is invariant
under left multiplication by any element (/, x) of the translation subgroup of P.
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2) Let X^EPQ and let λ2 be an arbitrary element of P. There then exists a
translation λx = (/, x) such that the image Kλ of K under the Poincare trans-
formation λ = λ2λxλί is contained in WR. Let v3{t) denote a velocity transfor-
mation in the 3-direction, as before. We can then write

λ2

 xv3(t)λ2λxλx = λ3λ2

 1υ3(t)λ2λ1, (3.2)

where λ3 is a translation. We temporarily regard λu λ2, and λx as fixed. The group
element in (3.2) is in Po if and only if λ2

 1v3(ήλ2λί e Po, which is certainly the case
for sufficiently small t, say for | ί | < ί 0 f° r some £ 0 >0. We consider

h(t)^f(λ2

ίυ3(t)λ2λxλ1) = (U(λ2)φ\V(t)U(λ)A1Ω} (3.3)

as a function of t (with λ and λ2 fixed). We then have h(t) = 0 whenever |ί| < tQ. Since
KλC WR, and hence U{λ)AγU{X)~1 es/(WR), we conclude, in view of the special
property of the ,422-system, that U(λ)AγΩ is in the domain of V(iπ). Hence the
function h(t) in (3.3) has an analytic continuation to the strip π > I m ( ί ) > 0 in the
complex f-plane, and we can thus conclude that h(t) = O for all real t. This means
that λ2

1v3(i)λ2λί eP0 for all real t. Since λ2 was arbitrary, and since λί was an
arbitrary element of Pθ9 we conclude that λ2

 1v3(t)λ2P0 = P0 for all real ί, and all
λ2 e P. From this it readily follows that Po = P, and we have thus proved the
theorem for the case N = 1.

3) The validity of the identity (3.1) for any JV>1 is now easily proved by
induction on N. We write λk = λγλ'k for k = 2,3,..., N, and assume that (3.1) holds
for any (N — l)-tuρlet. We then apply the result in step 2 to the variable λl9 keeping
the λ'k fixed, and it readily follows that (3.1) holds for any iV-tuplet. D

We can now draw some interesting conclusions.

Theorem 3.2. Let {s/(W), &(K), s^{Kc)} be an AB-systern which satisfies the special
condition of duality.

a) Suppose that for some K{eX the algebra $(Kt) satisfies the condition that
the set g^viUiλ^iKJUiλy^λeP} is irreducible. Then Ω is cyclic (and
separating) for every algebra &(K) such that Kitλ is contained in the interior of K
for some λeP.

b) The vector Ω is cyclic for SS{K) for every KeJf if and only if sί{W)
= {^(Kλ)\λeP,KλC W}ff for every KeJT.

c) Assume Scenario A in Definition 2.4, and suppose that there exists, for a
particular K{e%\a hermitian subset yKjC^Os(^i) such that Ω is a cyclic vector for
the hermitian algebra 0>b defined as the smallest unital *-algebra which contains
U{λ)Jr

iU{λ)~1 for all λeP. Then Kt satisfies the premises in part a) above.

Proof. 1) Suppose that Kt satisfies the condition in part a) above, and suppose that
K e J f is such that Kitλis contained in the interior of the (closed) set K. There then
exists a non-empty open subset Ot of P such that KiλcK for all λ e 0 ί. This means
that the product of any number of operators of the form U(λn)AnU(λny

ι, with
An e &(Ki) and λn e Ob is an element of &(K). It follows at once from Lemma 3.1

2) The assertion in part b) follows trivially from the result in part a), in view of
part a) of Lemma 2.5.
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3) We consider part c), with <§i defined as in part a). Let Q e <&'i9 and hence
β e ^ K J ^ ^ X J J for all λeP. It follows that, for each λeP, the set
U{λ)JίiΌ{λ)~1 commutes weakly with Q on DOs, and hence 0)

i commutes weakly
with Q on DOs. Since gPficD^ was assumed dense, we conclude, as in step 8 in the
proof of Theorem 2.8, that Q is a multiple of the identity. Hence ^ is irreducible,
and Kt thus satisfies the premises in part a), as asserted. D

We note that it is a feature of Scenario G in Definition 2.4 that 0β{K)Ω is dense
for every KeJf. Part c) of the above theorem can thus be regarded as an
amendment to the description of Scenario A.

We next consider the question of selfadjoint extensions of symmetric local
operators in the algebra ^0(J^) of field operators.

Theorem 3.3. For any KeJfJet &(K) be the von Neumann algebra corresponding
to K in a local AB-system, and suppose that Ω is cyclic for M(K) for any K. Let Q be
a closed symmetric operator affiliated with &(K), for a particular K e JΓ, and
suppose that Q is not maximal-symmetric. Let K0GJf be such that K is contained in
the interior of Ko. Then Q has a selfadjoint extension Qe affiliated with

Proof. 1) Let F+, respectively F _, be the selfadjoint projections onto the deficiency
subspaces Jί?+, respectively Jf_, of the operator β, such that Q*F+ =ίF+ and
Q*F_ = -iF_.Ψε then have F + e a(Q)CSS{K) and F_ e a(Q)C3S{K\ where a(Q)
denotes the von Neumann algebra generated by Q. Since Q was assumed not to be
maximal-symmetric we also have F+ >0, F_ >0.

2) Although it is known [8, 24] that the wedge-algebras s/(W) are Type 111^
factors, it is not known in general whether the double cone algebras &(K) are
factors, nor is it known what type they are (but see [14] for partial information).
However, it was shown by Borchers [6] that the local algebras have properties
which justify the statement that they are almost Type III factors. With the stated
premises it thus follows from Borchers' work that there then exist isometries V+

and F_ in &(K0) such that V+Vf = F + , V_V* = F_, and V?V+=I=V*V_. We
define the partial isometry Fby V= V_ V?, and we then have F_ = VV*, F+ = V*V,
je_ = V34?+, and Ve 3S(KQ).

3) Let D(Q\ respectively D(Q*\ denote the domain of Q, respectively Q*. We
define a dense linear manifold De by

We then have D(Q*)DDejD(Q\ and the operator β e = β* \De is selfadjoint.
4) For any φ e D(Q) and any ψ e jf we have

Let A e &(K0)' C 0S(K)'. We then have AQφ = QAφ, A V= VA, and AF + - F+A,
and hence ADecDe, and, by a simple computation,

This means that A commutes in the strong sense with Qe, and since this holds
for all A e @{K0)\ it follows that Qe is affiliated with ^(Ko). D



Quantum Fields and Local von Neumann Algebras 67

If &(K) were actually a Type /// factor we could conclude, by an obvious
modification of the above reasoning, that Q has a selfadjoint extension affiliated
with St{K) itself. (See also in this connection [20].) If @(K) is not a Type /// factor,
our theorem does not decide this question, but it says that a selfadjoint extension
can be found which is affiliated with the algebra of a slightly larger region.

The circumstances noted in step 2 of the proof imply that all deficiency spaces
of closed symmetric operators affiliated with &(K) are either empty or infinite-
dimensional. Such an operator Q thus has an infinite number of local selfadjoint
extensions, unless it is maximal-symmetric. If Q is not maximal-symmetric, it also
has non-local selfadjoint extensions, which can be constructed by replacing the
partial isometry Fin the above proof by V= F_ UVf, where U is a suitably chosen
unitary operator not contained in any local algebra.

Let us here note that because of the TCP-co variance of any local quantum field
theory there always exists a great multitude of operators in £?0{Ji) for which
selfadjoint extensions are guaranteed to exist. Let K e J f be symmetric with
respect to the origin, and let X be a symmetric operator in &*0(K). Then
Xs = X + Θ0XΘ0 is also in @*0(K), and since it is symmetric, and since it commutes
with the antiunitary involution <90, it has at least one selfadjoint extension.

The above theorem is of obvious interest in the situations when either Scenario
G or A obtains. In the case of Scenario A it is important to note the statements
about the domains of the operators which have closed extensions affiliated with
the local algebras. If X e 0>Os(K), then X \ DOs has a closed extension affiliated with
&(K), but if Scenario G does not obtain, it might happen that X, as defined on Do,
has no closed local extension at all.

4. On the Association of a Single (Unbounded) Field Operator
with Local von Neumann Algebras

As we have seen in the preceding sections a local ^-sys tem associated with a
quantum field has a rather tight structure. Such a system is generated by a variety
of sub-algebras, and in this section we want to consider the possibility that the AB-
system is generated by a sub-algebra defined in terms of a single local operator in

'). We begin with a definition.

Definition 4.1. Let Kse jf, and let Xs = Xj e &>O(KS). For any subset RcJΐ we
denote by &*Os(R) the smallest unital *-algebra which contains U(X)XsU(X)~ι

whenever Ks λQR.
We shall say that the hermitian operator Xs is intrinsically local (and locally

associated with Ks) if and only if the following two conditions hold:
a) The linear manifold DOs = 0>OS(Jί)Ω is dense in Jtf.
b) The von Neumann algebra as = a((Xs \ DOs)**) generated by the closure of

the restriction of Xs to DOs is locally associated with Ks in the sense that
U{λ)asU{λ)~1 commutes with as whenever Ks λ is spacelike relative to Ks.

For the discussion in this paper we find it convenient to restrict the notion of
intrinsic locality to hermitian operators, as stated above, but it is clear that
generalizations to non-hermitian operators, and to sets of operators, could be
considered.
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It follows at once from Lemma 2.2 that an intrinsically local operator generates
a local ,4£-system: we define &(KS) = as and <g(K) = 0 if K φ Ks. We shall now study
the properties of such a system. The main results are presented as Theorems 4.6
and 4.8. Since the proofs involve many considerations of detail we shall proceed to
the goal in a step-wise fashion.

Proposition 4.2. Let KseJ>Γ and suppose that Xs = Xj e 0*O(KS)is intrinsically local
in the sense of Definition 4.1. Let the notation be as in this definition, and let an AB-
system {^{W\@(K\srf(Kc)} be defined through

^(WP0 = { I / α ) α s I 7 μ ) - 1 μ e Λ K8tλcW}\ (4.1)

Then Scenario A in Definition 2.4 obtains for this AB-system and the algebra
0>QS(Jί). If KeJίΓ is such that Ks λ is contained in the interior of K for some λeP,
then Ω is cyclic for <J8(K).

Proof. The relation (4.1) corresponds to (2.10) in Lemma 2.2, and the ^5-system
defined above is thus local. We define &(KS) = {Xs}, 3F{JC) = 0 if K + K& and define
SJϋ{Θ) = &(Θ) for all open double cones Θ. The premises in part b) of Theorem 2.8
are then satisfied, and hence all the conclusions follow, i.e., Scenario A obtains. If
we select Jίs = {Xs} C ^Os(Ks) the premises in part c) of Theorem 3.2 are satisfied,
and hence Ω is cyclic for any <8(K) such that Ks λ is contained in the interior of K
for some λeP. D

Proposition 4.3. Let the premises and notation be as in Proposition 4.2. Suppose that
A is a bounded operator such that

* (4.2)

for all φ\ φ"6DOs, and every X of the form X = U{λ)XsU(λ)~\ where λePis such
that KsacWL. Then A

Proof. We define ^ L = {C/(λ)JSfsC7(λ)"1μeP, KStλcWL}. The set ^L generates
^Os(WL) in the sense that ^(Wj) is the smallest unital *-algebra which contains
#£. By (4.2) the set J^L commutes weakly with A on DOs, and since ^LDOscDOs, we
conclude that ^Os(WL) commutes weakly with A on DO s, i.e., the relation (4.2) holds
for all Xe0>Os(WL). Since V(t)0>Os(WL)V(tyΛ = @0s(WL\ and since 0>OS(WL)Ω is

dense, it follows from part b) of Lemma 2.6 that AΩ and A*Ω are in the domain of
V(ίπ), and that

JV(iπ)AΩ = A*Ω. (4.3)

2) Every XetFL is intrinsically local. Let λeP be such that Ks λcWL, and
hence X= U(λ)XsU(λyι e J ^ . The closed operator X = (X\DOs)**
= U(λ)(Xs ID^Uiλy1 is affiliated with Ό{λ)asU{λy1C^{KsΛ\ and hence
with J/(WL). It follows that X commutes strongly with^s/(WR) = s/(WJ. The
relation (4.2) implies (since X is actually hermitian) that (Jίφ'^Aφ"^ = (A*φ'e\Xφe}
for any φf

e and φ"e in the domain D(X) of X. In particular, this relation holds for
φ'e = Aγφ' and φl = A2φ

f\ for any Aί,A2€<stf(WR) and any φ',φ"eDOs. With this
choice we thus have

(A1Xφ'\AA2φ") = (XAίφ
/\AA2φ

//} = (A*A^'\XAJ"} = (A*Aγφ
f\A2Xφ"y,
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since X commutes strongly with A1 and A2. From the equality of the first and
fourth members we conclude that the operator A\AA2 satisfies the same premises
as the operator A, for any AuA2estf(WR). In view of (4.3) we then have

JV(iπ)A\AA2Ω = A\A*AγQ (4.4)

for <ύlAuA2ejtf(WR).
3) Let B e stf(WL). We then have JV(- ίπ)B*Ω = BΩ, and from this relation and

from (4.4) it readily follows that (B*Ω\AfAA2Ω} = (A2

<A*A1Ω\BΩ}. Since B
commutes with Aγ and A2 we conclude that (A^\[_B, A~]A2Ω)> = 0. Since <
is dense it follows that [£, A~\ = 0, and hence A e rf(WJ = ̂ (WR). D

This proposition in effect establishes a uniqueness property of the local AB-
system generated by a single intrinsically local operator. One may ask whether it
holds more generally, within Scenario A. This could be the case, but the above
proof does not apply without the assumption of intrinsic locality: the reasoning in
step 2 depended critically on the fact that DOs is a core for the closed extension of
Xs ϊ DOs which is affiliated with &(KS). If Xs is intrinsically local, the extension is
simply (Xs\DOs)**.

Proposition 4.4. Let the premises and notation be as in Proposition 4.2. Then

ζχiφ'\Bφ"> = <B*Φ'\Xφ"y (4.5)

for all φ\ φ" e DOs, all B e s/(WL% and all X e 0>O{WR).

Proof. 1) Let K e Jf, KC WL, and let Wί e TT, Wί C WLnKc: the three sets K, Wl9

and WR are thus pairwise spacelike separated from each other. Let YE ^OS{W^) and
Bk e 0β(K). By the same reasoning as in step 5 of the proof of Theorem 2.8 we
conclude that JV(-iπ)BkYΩ = B%YfΩ. Let Xe^0(WR), in which case we have
JV(iπ)XΩ = χiΩ. It follows that

(BkYΩ\XΩ) = (XϊΩ\Bt Y^> (4.6)

2) We define ^^{U^X.Uiλy^λeP, K^λCWx}. Every Y1e^r

L1 is her-
mitian and intrinsically local, and the operator Ϋ1 = (Y1 \ DOs)** is affiliated with
s/iWJ.Foτjuch a Y1 we have YγBkY2Ω = BkYγ Y2Ω, iϊBk e d(K) and Y2 e ^ O s ( ^ i )
Since ΫίCY1 (where Y1 denotes the closure of Yγ relative to Dγ\ we have
γ*Dγ*Dγu and hence ΫfXY3Ω=YfXY3Ω=Y1XY3Ω = XY1Y3Ω for any
Xefo{WR) and any Y3e0>

Os(W1)C0>o(WL). We thus have {B^Y^XY^}
= (Ϋ1BkY2Ω\XY3Ω) = (BkY2Ω\XY1Y3Ω). Since this holds for any Yxe^LU and
since ^L1 generates ^0J<W\\ it follows that (BkYfYaΩ\XΩ} = (BkYaΩ\XYbΩ) and
<ZfΩ|jBfc* Yj YbΩ} = (X1" YaΩ\Bt YbΩ} for any Ya, Yb e 0>Os(WJ. From these relations,
and from (4.6) with Y= Yj Ya, we obtain

<BkYaΩ\XYbΩy = (χiγaΩ\BiY1fly (4.7)

for any Ya, Ybe@0s{Wγ\ any Bke@(K\ and any Xe&0(WR).
3) We write T(x) = U(I, x) for the translations in P. It follows from (4.7) that

the relation

(BkYaΩ\XT(x)YbΩ) = (χϊγaΩ\BtT(x)YbΩ} (4.8)
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holds for all T(x) with x in some non-empty open subset of Jί (since there is an
open subset of translations which map W1 into itself). Both members in (4.8) can be
continued analytically to the forward imaginary tube, and it follows that (4.8)
holds for all x. This means that (4.7) holds for all Bke@(K), all Xe0>o(WR), all
Yb e £PQs(Jί), and all Ya e ^ 0 s ( ^ Ί ) By similar reasoning we then conclude that (4.7)
also holds for all Ya e ̂ Os{Jί). Hence (4.5) holds as stated when B = Bke @{K), for
any KcWL,KeJf. By part b) of Lemma 2.5 it then follows that (4.5) holds for all

D

This proposition thus establishes a certain property of relative locality. That it
is rather weak can be seen if we compare it with the following more desirable, but
purely hypothetical situation: The relation (4.5) holds for all I e ^ 0 ( i ( ) , all
Bestf(K% and all φ',φ'ΈD0, for any KeJf. The reason why our proof of
Proposition 4.4, which is concerned with wedge-regions, cannot be trivially
extended to the case of double cones is that we depend in an essential manner on
the relation (2.1) which refers specifically to wedge-regions. We do not have
available an analogous relation for double-cone regions at this time, and it is even
possible that no such analog of the same generality exists.

It is tempting to believe that any two intrinsically local operators generate the
same AB-system. We note here that the attempt to draw such a conclusion directly
from Propositions 4.3 and 4.4 founders on the domain restrictions for φ' and φ" in
(4.5). There are, however, special cases in which progress is possible, as we shall see
later.

Proposition 4.5. Let the premises and notation be as in Proposition 4.2. Let
Ks Θ = — Ks. Then the operator XsΘ = Θ0XSΘQ * e ^0{KSi Θ) is an intrinsically local
hermitian operator (in the sense of Definition 4.1), and it generates the same ΛB-
system as Xs.

Proof. It is trivial that XsΘ is hermitian and intrinsically local. By Proposition 4.2
the AB-system generated by Xs is ΓCP-covariant (since it satisfies the special
condition of duality), and we thus have 0o^(Ks)0Qi=^(Ks Θ). Since
as = a{{Xs\DOs)**)C@{Ks) it follows that a((XsΘ \ Θ0D0s)**) = Θ0asΘ^
C@(KSίΘ). This implies that s/(W) = {U(λ)ΘoasΘό1U(λy1\λGP, KStθtλcW}"9

and hence Xs and XsΘ generate the same AB-systcm [through (4.1)]. D

We shall now summarize the facts concerning an intrinsically local operator as
follows.

Theorem 4.6. Suppose that for some Ks e J f there exists a hermitian, intrinsically
local operator Xs e ^O(KS)9 in the sense of Definition 4.1. Let ^ O s (R) and DOs be as in
Definition 4.1, and let as = a((Xs \ DOs)**) be the von Neumann algebra generated by
the closure of Xs \ DOs. Let {sd{W), ^(K), stf{Kc)} be the AB-system generated by
Xs in the sense that

Then:
a) Scenario A in Definition 2.4 obtains for this AB-system and the algebra

S?QS(Jί), and in particular the AB-system is local and TCP-covariant, and it satisfies
the special condition of duality.
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b) The operator XSΘ = Θ0XSΘQ1 is hermitίan and intrinsically local, and it
generates the same ΛB-system as Xs.

c) If KeJf is such that Ks λ is contained in the interior of K for some λeP, then
Ω is cyclic and separating for &(K).

d) Let We W. A bounded operator B is an element of sί{W) if and only if it
commutes weakly on DOs with every X e SPos{W% which is the case if and only if B
commutes weakly on DOs with every operator U(λ)XsU(λ)~1 such that λeP,

κs,λcw<.
e) Let KeJf. A bounded operator B is an element of S6(K) if and only if it

commutes weakly on DOs with every X e ^Os(Kc), which is the case if and only if B
commutes weakly on DOs with every operator Ό(λ)XsU{λ)~ι such that λeP,

κs,λcκc.
f) Let We Ψ*. Then &>0(W) commutes weakly on DOs with ^{Wc\
g) Let { J ^ ( W 0 , J ^ K ) , ^(K*)} be an AB-system, and let &Osl(Jΐ) be a sub-

algebra of &Q(Ji) such that Scenario A obtains for this sub-algebra and this AB-
system. If Xse0*Osί(Ks), then the AB-system is identical with the one generated
byXs.
Proof. 1) The assertion in a) follows from Proposition 4.2, and the assertion in b)
follows from Proposition 4.5. The assertion in c) follows from Proposition 4.2, and
the assertion in d) follows from Proposition 4.3 (and from the Poincare-co variance
of the ^5-system). The assertion in f) follows from Proposition 4.4 and Poincare-
covariance.

2) We consider the assertion in e). Let Kejf, and suppose that B is a bounded
operator which commutes weakly on DOs with every operator U(λ)XsU(λ)~1 such
that λeP,Ks λQKc: in particular this is the case if B commutes weakly on DOs with
^0s{Kc). Let We iΓ be such that K C W. Then B also commutes weakly on DOs with
every operator U(λ)XsU(λ)~1 such that λ e P, KSfλCWc, and hence, by part d), we
have B e s/(W). Since this holds for every Wj K, *We if, it follows that B e @{κ).
The converse statement is an aspect of Scenario A in Definition 2.4.

3) We consider the assertion in g). Let DOsl = 0>Osl(Jΐ)Ω. If Xse0>Osl(Ks) we
have DOscDOsί, and it is a feature of Scenario A that for any We if, every

commutes weakly on D O s l with ^Osl{Wc). Since obviously ^Osl(Wc)
we conclude, by part d) of the present theorem, that Bejtf(W). Hence

\ and since both AB-sy stems satisfy the special condition of duality
it follows that they are identical. D

The scenario described in the above theorem can be regarded as an
"improvement" of Scenario A, which derives from the circumstance that the
algebra g?Os(Jί) contains an intrinsically local operator. In particular the
association of such an operator with a local ^45-system is unique. Note, however,
the domain conditions in part f) of the theorem. The statement in f) is equivalent to
the statement that for every X e &0{W) there exists a closed extension Xe of X \ DOs

which is affiliated with stf(W) and such that (Xf \ DOs)* DXe, but from this it does
not follow (as far as we can see) that X as defined on Dx also has a closed extension
affiliated with sf(W).

The domain considerations simplify substantially if the operator Xs in the
theorem is linear in the field φ(x)9 and we shall now study this case. We first
consider a technical preliminary.
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Lemma 4.7. Let Ks e Jf be a fixed double cone, and let fs(x) be a real test function
with support in Ks and such that its Fourier transform fs(p)φ0 for all p. Let
Xs = φ\_f~\ = X\, and let DOs be defined as in Definition 4.1 in terms of Xs. Then:

a) DOs is dense in Jif.

b) ?=(Y\DOa)** (4.9)

for all Ye&Q(Ji\ where 7 is the closure of Y as defined on Dγ.

Proof. 1) If the functions f(x) and g(x) are elements of the test function space
5^(R4), then their convolution f*ge<^(R4), and for a fixed g the linear mapping
/->/*# of <S (̂R4) into itself is continuous in the test function space topology
relevant for tempered distributions. Furthermore, if / see9

ί7(R4) and if
{gk|/c=l, ...,rc} is any fixed n-tuplet of elements of ^ ( R 4 ) , then the element
(fs * 9i)®(fs * #2)® ••- ® (fs * 9n) of ^ ( R 4 n ) is the image of the element
fs®fs®'"®fs of ^ ( R 4 π ) under a linear mapping of ^ ( R 4 " ) into itself which is
continuous in the test function space topology.

2) Let Ye &0(Ji\ and let φ be any vector. Let {gk} be an n-tuplet of test
functions in ^ ( R 4 ) as above. We write hk=fs*gk for fc=l,...,n, and Xs(x)
= T(x)XsT(x)~1 for the translate of Xs by x. In view of what was said above, and in
view of the nature of the quantum field as an operator-valued tempered
distribution, it follows that

(4.10)

where the integral at left makes good sense as a Riemann integral, since the
function (φ\YX Xx^X s(x2).. .X s(xn)Ω} is a jointly continuous function of the
variables (xί9x2, •..,*„).

3) From our crucial assumption that fs(p) φ 0 for all p it readily follows that the
s e t Us * Q\Q e ^(IR4)} is dense in ^ ( R 4 ) in the test function space topology. From
this we conclude that the span of Ω and all vectors of the form φ[h1~\...φlhn]Ω,
where n is an arbitrary positive integer, and where hk =fs * gk for arbitrary
elements gk e ^ ( R 4 ) , is a dense sub-manifold of Do, and hence dense in J«f.

We consider (4.10) in the special case Y=I. If the vector φ is orthogonal to DOs,
the left member in (4.10) vanishes, and in view of what was said above we conclude
that φ = 0, i.e., DO s is dense in 2/f, as asserted.

4) We consider (4.10) for an arbitrary Ye 0>Q{J{). Let Ϋ= Y \ DOs, and let φ be
in the domain of 7*. Since XXx^.. .Xs(xn)Ω e DOs we conclude from (4.10) that

where the hk are constructed as in step 2). Hence every vector of the form
φ[_hί]φ[h2]...φ[hn]Ω is in the domain of 7** which, of course, also includes Ω.
Since the span of the elements h1®h2®...®hne ^ ( R 4 " ) is dense in y ( R 4 n ) in the
test function space topology, we conclude that Do is included in the domain of 7**,
and that Ϋ**DY. Since YDΫ the relation (4.9) follows, and DOs is thus a core
for 7. D

We remark here that it is easy to construct a great abundance of test functions
fs(x) which satisfy the premises of the lemma.
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The facts stated in the lemma permit an improvement of Theorem 4.6 in the
special case that Xs is linear in the field.

Theorem 4.8. Let Ks e $C, and let fs(x) be a real test function with support in Ks, and
such that its Fourier transform satisfies the condition fs(p)φ0 for all p. Let
Xs = φ [ / J = X\, and let the notation in general be as in Definition 4.1 and Theorem
4.6. Suppose furthermore that U(λ)asU(λ) ~1 commutes with as for allλsP such that
Ks λ is spacelike relative to Ks. Then:

' a) XS = (XS \DJ**9 and hence as = a(Xs).
b) The operator Xs is intrinsically local, in the sense of Definition 4.1, and hence

all the conclusions in Theorem 4.6 apply to the algebra £P0s(Jί) and the AB-system
generated by Xs, in the sense described in Theorem 4.6. In particular Scenario A
obtains.

c) Furthermore, for any KeJf, ^os(^) commutes weakly on Dx with srf(Kc),
and ^O(KC) commutes weakly on D1 with &(K). For any Wε 1V, ̂ 0{W) commutes
weakly on D1 with stf(Wc). Equivalently stated: If X e ^Os(K), then X has a closed
extension Xe affiliated with &{K), and such that X^DXeDX, and similarly
X e SPO{KC) has a closed extension affiliated with srf{Kc). IfXe 0>o(W),_then X has a
closed extension Xe affiliated with jrf(W), and such that Xf*DXeDX.

d) Suppose that Xr = X} e^0(Kr), for some KreJf, is another intrinsically
local operator, not necessarily linear in the field. Then Xr generates the same AB-
system as Xs.

Proof. 1) The relation (4.9) in Lemma 4.7 applies in particular to Xs, and hence the
assertions in a) follow. DOs is dense, by the same lemma, and hence Xs is
intrinsically local, and the assertions in b) follow.

2) The assertions in c) follow readily from Lemma 4.7 and the corresponding
weak commutation relations asserted in Theorem 4.6. The salient point is that the
domain DOs can be replaced by the domain Dx in the statements of the weak
commutation relations between the elements of SP^{J() and the elements of the
algebras of the ,4£-system, in view of (4.9). We can then conclude that J'(X)
commutes weakly with φ [ / ] on Du for any / with supp(/)C W when WcKc. It
follows that J*(K) commutes weakly on Dx with ψ\_f] for any f with supp(/) C Kc,
and from this it follows that &(K) commutes weakly on Dγ with ^O(KC).

3) We consider the assertion in d). Let {s/^Wl^^K),^^)} be the AB-
system generated by the intrinsically local operator Xr, as in Theorem 4.6. Let
^or(W)C^o(W) be defined in terms of Xr in analogy with the definition of ^Os(W)
in terms of Xs. By part c) of the present theorem, 0*Or(W) commutes weakly on
DOrcDί with stf(Wc). It follows, by part d) of Theorem 4.6, that ^(W^C^^W0),
and since both AB-systems satisfy the special condition of duality we conclude that
they are equal. D

The significant improvements in the present theorem over Theorem 4.6 (and in
particular the uniqueness property expressed in part d) all derive from the domain
relation in (4.9). Hence conclusions similar to those in Theorem 4.8 also apply to
intrinsically local operators which are not linear in the field, provided that they are
such that the relation (4.9) holds.
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As we said before, the notion of an intrinsically local operator could naturally
be generalized to the notion of an intrinsically local set of operators, with
implications analogous to Theorems 4.6 and 4.8. We felt it was of particular
interest to consider the possibility of just one such operator defining the local AB-
system.

5. On Fields Which Satisfy a Certain Regularity Condition

We shall now consider a condition on the field φ(x) which goes beyond the usual
minimum assumptions. It can be described as a condition which "regularizes" the
high-energy behavior of the field. We state it as follows.

Definition 5.1. For any α>0 we employ the notation ωa(s) for the function

ωα(5) = (l+52)α/2 (5.1)

of the real variable s, and we write ωa for the selfadjoint operator ωa = &>α(H), where
H is the Hamiltonian operator.

The field φ(x) will be said to satisfy a generalized H-bound if and only if there
exists a constant α, with 1 > α > 0, such that the following conditions hold:

a) For any test function / the domain £>(φ[/]) of the closure of φ[/] (relative
to Dγ) contains exp( — ωa)Jf.

b) For any test function / the operator φ\_f~\ exp( — ωα) is a bounded operator.
Let α0 be the infimum of all α for which the above conditions hold. We shall

then say that the generalized H-bound is of order oc0.

Regularity conditions of this general character have been considered before, in
studies of the connection between field operators and bounded local operators [15,
9, 13], although with stronger conditions on the field. Instead of the above
condition it was assumed that D{φ\_f~\) contains the intersection of the domains of
all powers of H, and furthermore it was assumed that φ[f~](I + H)~r is a bounded
operator, for some r>0. Such an H-bound is thus, with our terminology, a
generalized H-bound of order 0. Since the considerations which follow are not
more difficult in the case of a generalized H-bound than in the case of a power
H-bound, we felt it worthwhile to discuss the situation under the weaker
assumptions. For other applications of generalized H-bounds, see [10, 29].

The reason for the restriction 1 > α will become clear in the following. The
essential point is that we shall depend on the existence of test functions
f(t) G ̂ ( R 1 ) of (arbitrarily prescribed) compact support whose Fourier trans-
forms f(s) satisfy conditions of the form |/(s)|<f?exp( — ωα(s)). It is well-known
(and easily shown) that such functions exist if and only if α< 1.

The assumption of a generalized H-bound has rather drastic consequences for
the field, which we shall now explore. For this paper the ultimate goals are
Theorems 5.5 and 5.6. We shall proceed through a sequence of lemmas, some of
which are also of interest in other contexts.

Lemma 5.2. Suppose that φ{x) satisfies a generalized H-bound of order α, with
1 > α ̂  0. Let DH(oc) be the linear manifold defined by

DH(oί) = span {exp (— ωβ) J f \β > α}.
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Let f(x)e£f(R*). We denote X = φlfl Then:
a) The manifold DH(oc) is Poίncarέ-ίnvarίant. It is dense in Jjf, and it is contained

in the domain D(X) of the closure of X (on D t ) .

If β > α, and if D is any dense linear manifold in ffl, then exp (— (θβ)D is a core for
X. In particular DH(ιx) is a core for X.

b) Every dense, translation-invariant, linear sub-domain Ds of Dί is a core
for X.

Proof. 1) That DH(oc) is Poincare-in variant follows readily from the fact that if
β'>β>0, and if e and e' are any two (fixed) forward timelike unit vectors in Jΐ9

then there exists a constant c such that ωβ(e -p)<c + ωβ,(e' p) for allpin the closed
forward lightcone. It is obvious that DH(oc) is dense, and that DH(a) is contained in
D(X). The remaining assertions in part a) follow readily from part b), which we
shall now consider.

2) Let Ds be a dense, translation-invariant, linear sub-manifold oϊDv Let u(ή
be a test function of compact support, and such that w(0) = 1. We define the linear
manifoldD s c in terms of uandDsby DStC = span{u(H/ή)Ds\n=l929...,}. ThenD s c

is a dense, linear sub-manifold of Dv For any φeDs the sequence
{φn = u(H/n)φ\n = 1,2,...} is contained in Ds c, and converges strongly to φ. Since
the field is an operator-valued tempered distribution, the sequence
{Xφn\n= 1,2,...,} converges strongly to Xφ, and since Ds was assumed
translation-invariant, it follows that Ds c is contained in the domain of (X \ D s)**
and that (X \ D s)** = (X \ DSJ**.

3) Let β > a. By Definition 5.1 the operator Bβ = X exp (— ω^) is bounded, and
we have XDBβQxp(ωβ). The operator exp(ω/3) is defined and selfadjoint on the
domain exp( — ωβ)J^. Every core for exp(ω^) is also a core for ( l ^ e x p ^ ) ) * * [with
exp( — ωβ)3Ί? regarded as the domain oΐBβ exp(ω^)]. In view of the construction of
Ds c in step 2 above, it is easily seen that Ds c is a core for exp(ω^). By the result in
step 2 we can then conclude that XD(Bβexp(ω^))** = (X \ DSJ** = (X \ Ds)**. If
we select Ds = Dlr> the first and fourth members are equal, from which it follows that
X = (Bβexp(ωβ))**. Hence X = (X \ Ds)** for any Ds which satisfies the stated
premises. It is now trivial that exp( — ωβ)j4? is a core for X for any β > α, and from
this it follows that DH(μ) is also a core for X. D

We remark here that Do and D1 are not contained in the domain DH(a), nor
is the latter domain in general mapped into itself by X, unless the test function
f(x) has special properties. We next state and prove a technical lemma which
has to do with this issue, concerning a class of bounded operators which map
DH{μ) into itself.

Lemma 5.3. Let DH(ot) be defined as in Lemma 5.2. Let Bo be a bounded operator.
Let g(t) e ̂ (IR 1 ) be such that its Fourier transform

± ? dtg{t)e~its

|/2π -o

satisfies the condition

ω.(s)) (5.2)
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for some βxx. Let u(t) e ^ ( R 1 ) be such that supp(w) C [ -1 ,1] , and let the bounded
operator B be defined by

B= ] dtg(t)u(t)eίtHBoe-itH. (5.3)

Then (UWBUiλy^DπMcDπia) and ( ^ ( / l ^ ^ W ^ D ^ C ^ α ) for all
elements λ of the Poincarέ group P.

Proof. 1) Let μ be the spectral measure in the spectral resolution of the
Hamiltonian operator H. For any real q we write F(q) — μ(( — oo, q\) [and we then
have F(q) = O for g<0, in view of the spectrum condition]. Let φ\φ" effl. We
define the function h(t; q) by

Kt;q) = (φ%I-F(2q))e»HBoe-itBF(q)φ">. (5.4)

As a function of t (with q fixed) h(t; q) is continuous and bounded, and we
trivially have

00

ί dt\u(t)h{t;q)\2^k2-\\φ'\\2-\\φ"\\2 (5.5)
— oo

for some constant /c0, independent of q, φ\ and φ".
Furthermore we have

<φ'\(I-F(2q))BF(q)φ") = J dtg(t)u(t)h(t; q). (5.6)
— oo

2) Let gΞ̂ O be fixed. The function h(t; q) of t can be regarded as a tempered
distribution. Its Fourier transform h(s; q) is then well-defined as a tempered
distribution, and by inspection of (5.4) we see that its support is contained in
[q, +00). The convolution of h(s; q) with ύ(s) is the Fourier transform of the
function hγ(t\ q) = u(t)h(t; ήf)eL1(R1)nL2(R1). In view of the assumed support
properties of ύ(s) we conclude that the support of h^s; q) is contained in
[4-1,+oo).

We can regard the integral at right in (5.6) as the scalar product of the elements
g*{t) and h^t; q) in the Hubert space L2QSί1). In view of the support properties of
/^(s; q), and in view of the inequalities (5.2) and (5.5), it follows by an application of
Schwarz' inequality that

|<f \(I-F(2q))BF(qψy\^ko\\φ'|| \\φ"\\I(q), (5.7)

where the positive function I(q) is given by

00

I(q)2= ί ί/sexp(-2ω/!(s))</cfexp(-ω/!(g)) (5.8)
q-1

for some constant k1 >0 (independent of q). It follows from (5.7) and (5.8) that

|| (I - F(2q))BF(q) || < kokx exp(- ωβ(q)/2). (5.9)

3) Let γ > α and let q ̂  0. Since the function ωy(s) is monotonically increasing
for positive s, we have || (/ - F(q)) exp ( - ωy) || ^ exp ( - ωy(q)). From this, and from
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(5.9), it follows that

| |(/-F(2β))βexp(-ω y)| | ύ \\(I-F(2q))BF(q)Qχp(-ωy)\\

+ \\(I-F(2q))B(I-F(q))Qχp(-ωγ)\\

SkoklQχp(-ωβ(q)/2)+\\B\\Qχp(~ωy(q)). (5.10)

4) We now select α '>α such that β>oc', y>α /. There then exists a constant k
such that for all s ^ 0,

kokx exp ( - ωβ(s/2)/2) + || B || e x p ( - ωy(s/2)) < k e x p ( - 2ωβ,(s)),

and hence, in view of (5.10),

||(/ -F(s))B e x p ( - ωy)\\ < k e x p ( - 2ωa(s)).

This implies that B exp (— ωy)φ is in the domain of exp (ωα>) for all φ, and hence
in DH(oc). Since γ is arbitrary, except for the condition y>α, it follows that
BDH(oc) C DH((x). Similarly we conclude that B*DH(a) c DH{a\ since £ * is given by an
integral as in (5.3), with g(t)u(t) replaced by its complex conjugate.

We have thus proved the assertion in the lemma for the operators
U(λ)BU(λ)~1 and U{X)B"U{X)~1 in the special case λ = I. The general case then
follows from the Poincare-invariance of DH((x). D

We note here that Lemmas 5.2 and 5.3 actually hold for all α^O. In the next
lemma the restriction 1 > α ̂  0 is, however, essential, which is why this restriction
appears in Definition 5.1.

Lemma 5.4. Let the field φ(x) satisfy a generalized H-bound of order α, with
1 > α ̂  0. Let f(x) be a real test function. We write X = φ\_f~] = X f . Let Dbe a core
for X. Let Abe a bounded operator. We write A(t) = Qxp(itH)Aexp( — itH) for all
real t. Suppose that for allte( — δ, δ), for some δ>0, the operators A(t) and X satisfy
the weak commutation relation

(A(t)*φ'\Xφ") = (Xψ'\A(t)φ"), all φ\φ"eD. (5.11)

Then A(t) commutes strongly with X for te( — δ,δ), and in particular this holds
for A(0) — A. Equivalently stated: A(t)ea(X)\ where a(X) is the von Neumann
algebra generated by X.

Proof. 1) Let u φ e ί ^ R 1 ) satisfy the conditions u(0) = 1 and s u p p ( ώ ) c [ - l , 1],
where ύ(s) is the Fourier transform of u(t). Let g(t) e ^ ( R 1 ) be a function which
satisfies the conditions: a) supp(#)c( — <5, δ); b) \g(s)\ <feexp( — cofi>(s)) for some β'
such that l>/? '>α, and some constant k\ c)\dtg(i)=\. As we remarked before,
such functions exist. For any λ ^ 1 we define gλ{i) = λg(λt). Hence J dtgλ(t) = 1, and
supp(gλ)C(— <5,δ). Let β be such that β'>β>ot. Since gλ(s) = g(s/λ), it follows that
for all λ^l there exists a constant kλ such that \gλ(s)\<kλQxp( — ωβ(s)) for all s.

We define the operator Aλ by

Λλ= ί dtgλ(f)u(t)A(t) (5.12)
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for all λ^ί. It then follows, by Lemma 5.3, that AλDH(a)CDH(a) and AfDH(a)

CDH(α).
2) In view of the construction in (5.12) it follows from (5.11) that

(A*λφ'\Xψ") = <Xφ'\Aλφ"}, all φ\φ"eD. (5.13)

Since D was assumed to be a core for X, this relation also holds for all φ' and φ"
in the domain D(X) of X, and since DH(a)cD(X), the relation (5.13) in particular
holds for all φ', φ" ε DH(a). By Lemma 5.2, DH(a) is a core for X, and since AλDH(a)
CDH(α) and AfDH(ot)CDH(α) by step 1) above, it follows that XAλDAλX and
J?y4J D AfX, i.e., ̂ 4λ ε α(X)'. From the construction of Aλ in (5.12) it follows trivially
that Aλ tends strongly to A(0) = Aa.sλ tends to + oo, and hence A(0) e a(X)'. We
have thus proved the conclusion in the lemma for the case t = 0. The general case
follows by the same reasoning applied to the operator A(t0) instead of A, for any
particular toe{-δ, δ). D

We are now prepared for the main results of this section, which we present in
the form of two theorems; we prove these together.

Theorem 5.5. Let φ(x) be a local, irreducible, hermitian scalar field, which satisfies a
generalized H-bound of order a, with 1 > α ̂  0. Let Ks be a double cone, and let fs(x)
be a real test function, with supp(/j)ci£s, and with a Fourier transform which
vanishes nowhere. We write Xs = φ [ / J = Xl Let Dbea core for Xs, and let a(Xs) be
the von Neumann algebra generated by Xs.

Let ^ be a selfadjoint set of bounded operators, such that the set
^=κj{U(λ)<^U(λ)~1\λeP} is irreducible. Suppose, furthermore, that the elements of
Ή satisfy the following weak condition of relative locality with respect to Xs: For
each Ae^ there exists a double cone K(A) such that U{λ)AU{λ)~ι commutes
weakly with Xs on D, for all λeP such that K{A)λ is spacelike relative to Ks.
Then:

a) The AB-system {stf(W),@{K),srf(Kc)} generated by a(Xs), through the
definition

, Ks>λcW}\ (5.14)

is local and satisfies the special condition of duality, and Scenario G obtains for this
AB-system and the field.

b) Let Ke JΓ, and let f be a test function with supp(f)cK. Let X = φ [ / ] . Then
X is affiliated with &(K). If f is also real, and has a Fourier transform which
vanishes nowhere, then X is intrinsically local, in the sense of Definition 4.1.

c) Every intrinsically local hermitian operator in £P§(Ji) generates the AB-
system defined in a) above, in the sense of Theorem 4.6.

d) For each Ae^, Ae3S(K{A)).

Theorem 5.6. Let φ(x) be local, irreducible, hermitian scalar field, which satisfies a
generalized H-bound of order α, with 1 > α ̂  0.

a) Suppose that Scenario A in Definition 2.4 obtains for an AB-system
{^(W),^(K),^(KC)}, and a sub-algebra ^Or{Ji) of0>o(Jί)9 and suppose further-
more that g?Or(Ks), for some Ks e X, contains an operator Xs = φ [ / J , where fs is a
real test function with supp(fs)cKs, and with a Fourier transform which vanishes



Quantum Fields and Local von Neumann Algebras 79

nowhere. Then Xs is intrinsically local, and Scenario G obtains, and all the
conclusions in a)-c) in Theorem 5.5 apply for this AB-system.

b) Suppose, instead, that for some Kre Jf there exists a hermitian intrinsically
local operator Xre^0(Kr)9

 n o t necessar^y linear in the field. Then Scenario G
obtains for the AB-system generated by Xr in the sense of Theorem 4.6, and all the
conclusions in b) and c) of Theorem 5.5 apply to this AB-system.

Proof. 1) We first prove Theorem 5.5. Let &w be defined as the set
{U(λ)Aϋ(λyγ\λeP, Ae%, K(A)λcKc

s}. Since K(A)λ is closed and Kc

s is open, it
follows that for any Be&w there exists a δ > 0 such that exp(itH)B exp( — itH) e ^w

for all t e ( - δ, δ), and hence these latter operators commute weakly with Xs on D,
by the premises of the theorem. Since D is a core for Xs we conclude, by Lemma 5.4,
that gwCa(Xsy, and hence &lca(Xs)'.

2) Let the AB-system {^x{W),^γ{K\sdγ{Kc)} be defined through

, λeP, K(A)λcW}". (5.15)

By the premises of the theorem, the set v{0i1(K)\KeX'} is irreducible. With
reference to Theorem 2.8 we define ^(Ks) = {Xs}, and ^(K) = 0 for K φ Ks, and we
define ^Os(R) as in that theorem. By part a) of Lemma 4.7 the linear manifold
DOs = <P0s(Jί)Ω is then dense in ffl. From this, and from the result in step 1 above, it
follows that ^0s{Jί) and the ^45-system defined through (5.14) satisfy the premises
in part a) of Theorem 2.8, and we conclude that Scenario A obtains. By part b) of
Lemma 4.7, and by the result in step 1 above, we have a(Xs) = a((Xs \DOs)**) C ̂ w
C^1(KC

SY = ̂ 1(KS). This implies that Xs is intrinsically local, and hence the
conclusions in Theorem 4.8 apply to the ,4£-system defined through (5.14). Since
a(Xs)C@ι{Ks) it follows that ^(W)C^γ{W), and from this we conclude that the
,422-systems defined through (5.14) and through (5.15) are identical. This implies
the assertion in d), and the assertion in c) follows from part d) of Theorem 4.8.

3) Let KeJf, and let WeiΓ, WDK. Let / be any test function with
supp(/)cK. We write X = φ [ / ] . Since K is closed and W is open it follows that
there exists a δ > 0 such that for all t e ( - δ, δ), exp(itH)X e x p ( - itH) e &>0(W). By
part c) of Theorem 4.8, exp(itH)X exp(-itH) commutes weakly on Dx with jtf(Wc)
for all te( — δ,δ), or, what amounts to the same, if Aejtf(Wc), then
Qxp(ίtH)A exp( — itH) commutes weakly with X on Du for all t e (— δ, δ). For any
A e stf(Wc), and any λ^ 1, we define Aλ by the integral in (5.12), as in the proof of
Lemma 5.4, and we then have X**AλDAλX, and hence X^*AλDAλX. By Lemma
5.2 we have DH(oc)cD(X), where D(X) is the domain of X, and by Lemma 5.3 we
have AλDH(a) C DH(oc). Hence XAλ = AλX on DH(a), and since DH(a) is a core for X,
by Lemma 5.2, it follows that XAλjAλX. In a similar fashion we conclude that
XAf J AfX, and hence Aλ e a{X)\ As λ tends to + oo the operator Aλ converges
strongly to A, and hence Aea(X)\ which means that s0(Wc)Ca(X)'. Hence

and since this holds for all WDK, it follows that

From the above result it readily follows that X is intrinsically local if/ is real
and such that its Fourier transform vanishes nowhere. Furthermore we conclude
that Scenario G obtains for the ^5-system and the field.
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4) This concludes the proof of Theorem 5.5, and we now consider Theorem 5.6.
We first assume the premises in part a). From the description of Scenario A in
Definition 2.4 it follows that the operator Xs commutes weakly on DQr with sί(K§.
By part b) of Lemma 5.2 we have XS = (XS \DOr)**, and it follows that Xs

commutes weakly with J#(KD on Dv We can then continue the reasoning as in step
3 above, and the conclusion follows readily.

5) We consider part b) of Theorem 5.6. By Theorem 4.6 the intrinsically local
operator Xr generates an AB-system {stf(W),&(K), J/(K C )}, and a polynomial
algebra ^O r(^#), for which Scenario A obtains. Let K e JΓ, and let / be a real test
function with supp(/)cK Let WeW, WDK. By part f) of Theorem 4.6 the
operator X = φ[/] = Xf commutes weakly on DOr with s/(Wc). By Lemma 5.2 we
have X = (X fDOr)**, and hence X commutes weakly on Dx with s#(Wc\ The
reasoning in step 3 above then applies, and the assertions in part b) of Theorem 5.6
follow. D

As we said in the Introduction, the assumption of an iϊ-bound thus has
remarkable implications for the "selfadjointness problem." By Theorem 5.6 the
existence and uniqueness of a local ^4β-system with which the field is locally
associated is assured if the field satisfies a generalized H-bound and if there exists at
least one intrinsically local operator. It then follows that there also exists a
multitude of intrinsically local operators which are linear in the field. What is
perhaps more remarkable is that, according to part a) of Theorem 5.6, the
requirement of intrinsic locality can be omitted from the premises if Xs is linear in
the field. This provides potential "tests" for whether the field is locally associated
with a net of local von Neumann algebras or not: we can select any single real
test function / of compact support with a Fourier transform which vanishes
nowhere, and then "check" whether φ\_f~\ is intrinsically local or not. We regard
this as a very substantial reduction of the "selfadjointness problem."

We want to say a few words here about generalizations. First of all our
regularity condition could be relaxed in various ways. We might thus assume that
the conditions a) and b) in Definition 5.1 hold only for some test function f(x). Our
reasoning then applies to the corresponding operators φ[/], and it is clear that we
arrive at conclusions similar to (although possibly somewhat weaker than) the
conclusions in Theorems 5.5 and 5.6.

Secondly we note that the "bounding operators" exp( —ωα) could have been
chosen differently, i.e., the functions ωa(s) in (5.1) can be replaced by functions in a
somewhat larger class without upsetting the conclusions in the crucial Lemmas 5.2
and 5.4. For the latter lemma it is required that there exist functions of compact
support with Fourier transforms which are asymptotically similar to the bounding
functions exp( — ω(s)). A function ω(s) which increases linearly with s is not
acceptable, but the arrangements leading to Theorem 5.6 could be carried through for
functions with an asymptotic behavior such as s/(ln(s))2. The more general
permissible bounding functions are to be found in the class of functions discussed
by Jaffe [19] in his generalization of the notion of local fields. Since the handling of
the more general functions is mildly complicated we felt that our results were best
presented within the framework of the simple conditions in Definition 5.1.
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6. About Local Nets Associated with Borchers Classes of Fields

The considerations in the preceding sections can readily be generalized to the case
of a theory of an arbitrary number of finite-component Bose-fields. A particular
case of this is a set of fields in the Borchers class [4] of a single irreducible field φ(x).
The following question then arises. Suppose that φ(x) is related to a local AB-
system in such a way that Scenario A (or G) obtains. Is every field ψ(x) in the
Borchers class of φ(x) then also so related to the same AB-system? At this level of
generality we have no answer to the question, but as we shall see, a rather
satisfactory answer can be given in the presence of a generalized //-bound. We
remark here that the question makes good sense only for local nets which are AB-
systems. It is easy to construct examples [22] (involving generalized free fields) in
which one field is locally associated with a local net, but such that some other field
in its Borchers class is not locally associated with the same net.

We shall now consider the situation in which at least one field in a Borchers
class satisfies a generalized //-bound, as in Definition 5.1. For reasons of simplicity
we shall actually consider only the case of two fields, φ(x) and ψ(x), both defined
on a common dense domain Dl9 as described in [28]. The remarkable circum-
stances which we wish to discuss are already manifest in this simplest special case.
We next state and prove a theorem on this issue.

Theorem 6.1. Let φ(x) and ψ(x) be two irreducible hermitian scalar fields, local and
relatively local. It is assumed that ψ(x) satisfies a generalized H-bound of order a,
with 1 > α ̂  0. For any R C Ji, &Oφ{R) denotes the polynomial algebra generated by
all φ\_f~\ with supp(/)C#, and DOφ = 0>Oφ(Jΐ)Ω and Dlφ denote the standard
domains constructed from the field φ(x) alone. Similarly the objects 0*Oψ(R), DOip and
Dlψ refer to the field ψ(x) alone. Finally it is assumed that there exists an
intrinsically local hermitian operator Xs e &Oφ(Ks), for some Ks e Jf, which
generates the AB-system {si(W), 3t(K\ ^(Kc)} (in the sense of Theorem 4.6), and
hence Scenario A obtains for this AB-system and the polynomial algebra ^
generated by Xs. Then:

a) For any test function f,

(6.1)
where the domain DH(a) is defined as in Lemma 5.2.

b) Scenario G in Definition 2.4 obtains for the AB-system and the field ψ(x), and
hence any intrinsically local (hermitian) operator in &Oψ(Jί) generates this AB-
system. In particular, if KeJf and if f is any real test function with support in K
and with a Fourier transform which vanishes nowhere, then the hermitian operator
ψLfl is intrinsically local, and ( φ [ / ] \ DOψ)** is affiliated with $β(K).

c) The AB-system is unique in the sense that it is equal to any other AB-system
which satisfies the same premises, but with respect to some other intrinsically local
operator Xre&

Proof. 1) We first note that it makes no difference whether the condition that ψ(x)
satisfies a generalized //-bound refers to the closure τp[/] (relative to DJ or to
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\ Dlψ)**. In the first case it follows, by the reasoning in the proof of Lemma
ψ

5.2, that ψJΪ = (ψUl\Diψr* = (yUΪ\DH(ot)r*, since Dlψ is a dense,
translation-invariant sub-manifold of Dv In the second case we note that since
ip[/] D (i/>[/] \ Dίψ)**, the field in fact satisfies the generalized //-bound condition
with reference to the domain D1. The relations (6.1) follow trivially from Lemma
5.2.

2) Let WeΨ*. Since φ(x) commutes with ψ(y) on Dί for x — y spacelike, we
conclude, by reasoning similar to the reasoning in the proof of Proposition 4.4,
that &Oψ(W) commutes weakly on DOs with jtf(Wc). Let K e Jf, K C W, and let / be
a real test function with supp(/) C K and with a Fourier transform which vanishes
nowhere. We write X = \p\_f~\ = X1". Since X e ^Oψ(W\ it commutes weakly on DOs

with jtf(Wc). Since DO s is dense and translation-invariant, it is, by Lemma 5.2, a
core for X. Hence X commutes weakly with s/(Wc) on DXψcD(X). The reasoning
in step 3 in the proof of Theorem 5.5 now applies, and we conclude that X is
intrinsically local, and that X generates the given ^B-system. The remaining
assertions in the theorem now follow readily from Theorem 5.5 applied to the
field xp(x). D

The above result suggests that a field φ(x) which is in the same Borchers class as
a field ψ(x) which satisfies a generalized //-bound is better behaved than a field in
general. In this context the following (open) questions present themselves.

a) Could it be the case that every local field is in a Borchers class with some field
which satisfies a generalized //-bound?

b) Could it happen that a Borchers class which contains a field which
satisfies a generalized //-bound also contains a field which does not?

We have no basis for any conjectures concerning the above. An affirmative
answer to question a) would, of course, be rather pleasing since the analysis could
then be shifted, so to say, to the field which satisfies the //-bound. A negative
answer to question b) would somewhat reduce the significance of Theorem 6.1,
although we still have the result that both fields (which now both satisfy
generalized //-bounds) do generate the same unique local ,422-system if they
generate any local net at all. If the answer to question b) is in the affirmative, one
may hope that no field of interest in physics can be so bad that it is not in a Borchers
class with some field which satisfies a generalized //-bound. Theorem 6.1 is then of
obvious interest.

The theorem has an obvious application to the case when φ(x) is a free scalar
field for a particle of mass m, and ψ(x) is any (irreducible) field in the Borchers class
of φ(x). In this case it is known [12] that the Borchers class is the set of all Wick
polynomials in φ(x) and its derivatives. It is also known [18] that the fields in this
class satisfy generalized //-bounds of order 0. It is well-known that φ(x) generates
a unique local ^-sys tem (via the Weyl group elements exp(/φ[/]), with / real).
The field averaged with a real test function is, in fact, essentially selfadjoint on its
domain DOφ. It was shown by Langerholc and Schroer [23] that a Wick
polynomial ψ(x) is irreducible if it contains a term of odd order. Suppose that such
a Wick polynomial ψ(x) is a scalar field. It now follows from Theorem 6.1 that the
closure (ψ[/] \ DOiy;)**, where the field ψ(x) is a field in its own right, regarded as
defined on its canonical domain Dlψ (or DOψ)9 is affiliated with 3§(K) if supp(/) C K.
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If the Fourier transform of / vanishes nowhere, and if / is real, then the operator
(ψίfl \ ̂ o v)** generates the unique ^-system associated with φ(x). If/ satisfies
the further condition that f(x) =f( — x), we have Θotp[/]6>^* = φ[/] , and it then
follows, as we remarked at the end of Sect. 3, that φ[/] has a selfadjoint extension
affiliated with 3$(KO)9 for any Ko which contains K in its interior. We do not know
whether such an extension is actually equal to (φ[/] \DOψ)**. Irrespective of the
answer to this question we conclude that a Wick polynomial (of odd order) of a free
field, regarded as a field in its own right, does generate, all by itself, a unique local
^45-system, and in a rather trivial fashion, as described above.
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