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Abstract. The relationship between a standard local quantum field and a net of
local von Neumann algebras is discussed. Two natural possibilities for such an
association are identified, and conditions for these to obtain are found. It is
shown that the local net can naturally be so chosen that it satisfies the Special
Condition of Duality. The notion of an intrinsically local field operator is
introduced, and it is shown that such an operator defines a local net with which
the field is locally associated. A regularity condition on the field is formulated,
and it is shown that if this condition holds, then there exists a unique local net
with which the field is locally associated if and only if the field algebra contains
at least one intrinsically local operator. Conditions under which a field and
other fields in its Borchers class are associated with the same local net are
found, in terms of the regularity condition mentioned.

1. Introduction

In the attempts to formulate a mathematically satisfactory theory of particles
consistent with special relativity and incorporating the notion of locality, two
main approaches stand out. One of these is the general theory of (finite-compo-
nent) local quantum fields [21, 28] and the other is the algebraic relativistic quan-
tum theory [16, 1, 17, 7]. In the latter theory the primary object of interest is a net
of algebras of local observables, and experience has shown that such a theory
provides a suitable framework for the analysis of the general structure of a
relativistically covariant, local quantum theory. Quantum field theory deals with
operator-valued distributions and algebras of closable, but in general unbounded
operators. The study of such objects entails considerable technical difficulties
involving domain of definition questions. In spite of this, the notion of a local
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quantum field is attractive in many respects. It has been easier to imagine the
formulation of a genuine dynamical principle in terms of fields than in terms of
bounded operator algebras, and the notion of a field is also basic in the
perturbation-theoretic approach for the explicit computation of physically
interesting quantities.

It is of obvious interest to explore the connection between finite-component
quantum fields and nets of local algebras. It is the purpose of this paper to discuss
the nature of the connection and to present results which amount to a substantial
reduction of the apparent complexity of the problem. In particular we give an
answer to the following question of principle: when does a quantum field have a
net of local algebras to which it is associated, and what is the mathematical nature
of this association? Moreover, we show how local nets can be constructed from the
fields if these satisfy certain additional conditions. We do not discuss the converse
problem — the construction of local fields from local nets — but we note here that
considerable progress has been made recently on this question [13, 18, 27, 297].

In the formulation of Haag and others [16, 1, 17, 7], a net of local algebras is a
specific assignment 0 —A(O) of a C*-algebra A(O) to each ¢ in a suitable set Z of
subsets of Minkowski space. This association is required to satisfy certain well-
known minimum conditions of isotony, locality, and Poincaré-covariance. The
framework is very general, but we shall here be concerned solely with the vacuum
representation of such a net. The algebras are then algebras of operators on a
Hilbert space #, and for our purposes it is convenient to assume that all the
algebras of the net are von Neumann algebras. The Hilbert space carries a strongly
continuous, unitary representation A— U(A) of (the universal covering group of)
the Poincaré group, and the Poincaré-covariance of the net is then expressed in an
obvious fashion in terms of this representation.

In this paper we shall be concerned with a particular kind of local net,
introduced in [2] and called an A B-system. The set # then consists of all (closed)
double cones, all (open) causal complements of these, and certain wedge-shaped
regions which are bounded by two non-parallel characteristic planes. In Sect. 2 we
give the technical definition of an A B-system, and we discuss the features of such a
net which make it particularly suited as the object with which the fields can be
related. In the interest of simplicity, the discussion in this paper is confined to a
standard quantum field theory [21, 28] of a single, irreducible hermitian scalar
field, with the exception of Sect. 6 in which we discuss the case of two local and
relatively local fields. The generalizations of our considerations to the case of an
arbitrary number of finite-component quantum fields is straightforward. In the
presence of Fermi-fields the conditions of locality and duality have to be
appropriately modified, but this does not affect the essence of our reasoning. The
generalization to fields of the kind considered by Jaffe [19], which are strictly
localizable but not necessarily operator-valued tempered distributions, also seems
to present no essential difficulties.

A natural and desirable relationship between a field and a net of local von
Neumann algebras is the following. For any 0 € Z all, or at least a “sufficiently
large” subset of, the operators in the algebra of averaged field operators which are
associated with @ have closed extensions affiliated with 2[(®) (in the sense of von
Neumann [25] - see Sect. 2). In Definition 2.4 we give a precise formulation of this
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idea, and we identify two specific possibilities for the association, which we call
Scenario G and Scenario A. The first of these is the “better” scenario in the sense
that every operator in the algebra Z,(R) of field operators associated with any
Re % has a closed extension affiliated with the corresponding von Neumann
algebra of a local net. In Scenario 4 such an association obtains only for a subset of
the set of field operators. In both cases the association implies that the net is a local,
TCP-covariant AB-system, which satisfies the special condition of duality. This
latter condition, which emerged in [2], seems to be characteristic for theories of
finite-component fields. It is a specific form of the well-known duality condition for
local theories: see Definition 2.1 for a precise statement. The reader can regard
Definition 2.4 as a description of goals of this paper. In Theorems 2.7 and 2.8 we
show that some seemingly much less restrictive conditions on the field actually
imply the scenarios in Definition 2.4. Our interpretation of Theorem 2.8 is that if
the field is locally associated with a local net in any reasonable sense, then at least
Scenario A must obtain.

In Sect. 3 we continue the discussion of the nature of the association. As a
preliminary we first state and prove, in Lemma 3.1, a principle akin to the Reeh-
Schlieder Principle. On the basis of the lemma we find, in the form of Theorem 3.2,
conditions under which the vacuum vector Q is cyclic and separating for a local
algebra associated with a double cone. In Theorem 3.3 we present results
concerning the existence of (local) selfadjoint extensions of symmetric field
operators.

The entire system of local von Neumann algebras might very well be
“generated” by a single averaged field operator, and in Sect. 4 we discuss how this
can come about. In Definition 4.1 we introduce the notion of an intrinsically local
operator X in the algebra of field operators. Somewhat loosely stated, the closure
of X, relative to a subdomain (determined by X itself) of the usual domain of the
field operators, generates a von Neumann algebra which is locally associated with
the same double cone K to which X, “belongs.” In Theorem 4.6 we show that an
intrinsically local operator X defines a local A B-system such that at least Scenario
A obtains. If the intrinsically local operator is of the form X, = ¢[ f;],1.e.,is linear in
the field, stronger conclusions can be drawn, as shown in Theorem 4.8. Here f,is a
real test function with support in K, and such that its Fourier transform vanishes
nowhere. These premises imply a uniqueness of the local AB-system, as stated in
Theorem 4.8.

In Sects. 5 and 6 we discuss quantum fields which satisfy a certain regularity
condition, which is essentially that there exists an «, with 1>« >0, such that for
every test function f, @[ f]exp(—H® is a bounded operator: here H is the
Hamiltonian. See Definition 5.1 for a precise statement. Conditions of this general
type have been considered before, and most examples of massive fields which have
been constructed are known to satisfy such a condition [9, 15, 18].

In Theorems 5.5 and 5.6 we present the consequences of such a regularity
condition. We thus show that if f is any test function of compact support, with a
Fourier transform which vanishes nowhere, then ¢[ f;] is intrinsically local if and
only if it has some closed extension affiliated with a double-cone algebra of some
local net. Moreover, if @[ f,] is intrinsically local, then the closure of ¢[ f;]
generates a unique local AB-system for which Scenario G also obtains, i.c., every
operator in the algebra of field operators has a closed extension affiliated with the
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appropriate von Neumann algebra in the AB-system. Hence, if ¢[ f;] is intrinsi-
cally local, so is @[ f] for any other (real) test function f which satisfies the same
premises as f,. The assumption of the regularity condition, which we call a
generalized H-bound, thus has remarkable implications for the connection between
fields and local nets. The problem of determining whether all field operators, linear
or multi-linear, have closed extensions affiliated with the algebras of some local net
is seemingly a formidable problem. The observation that it reduces to the study of
just one single operator amounts to a substantial simplification. The results in
Sect. 4 are of interest from this same point of view, but the results with a
generalized H-bound are much stronger.

In addition, Theorem 5.5 makes explicit the following significant result. If the
quantum field satisfies the regularity condition, then either there exists a (unique)
local AB-system such that Scenario G applies to the field and the system, or there is
nothing even remotely resembling a net of local algebras with which the quantum
field can be in any sense locally associated.

In Sect. 6 we extend these considerations to the Borchers class of the “original”
field p(x). In Theorem 6.1 we show that if there is an intrinsically local operator X
in the algebra of the averaged field operators @[ f], and if y(x) is a field in the
Borchers class which satisfies a generalized H-bound, then Scenario G obtains for
the field y(x) and the AB-system generated by X, i.e., every (local) element in the
field-operator algebra generated by y(x) has a closed extension affiliated with the
AB-system. Furthermore, if f is a real test function of compact support, with a
non-vanishing Fourier transform, then [ f] is intrinsically local, and its closure
generates the same unique AB-system as X,. These results have some obvious
potential applications, which we discuss in Sect. 6. In particular they are relevant
for the theory of Wick polynomials of a massive free field. The question of what
local algebras such a Wick polynomial generates has been discussed much earlier
[23], and these earlier results now emerge rather naturally within our theory.

The conclusions reached in this paper, taken in conjunction with recent results
concerning the reconstruction of fields locally associated with a net of local
algebras from limits of sequences of operators from the algebras [13, 18, 27, 297,
suggest that local AB-systems satisfying the special condition of duality are likely
to play an important role in quantum field theories which fit into the framework of
algebraic relativistic local theories.

2. Some Generalities About Local Nets Associated with a Local Quantum Field

We consider a theory of a single irreducible local hermitian scalar field ¢(x), and
we adhere to all the standard assumptions and conventions as described in Chap.
IIT of the monograph by Streater and Wightman [28]. For any subset R of
Minkowski space .# we define Z,(R) as the smallest unital *-algebra which
contains the averaged field operator @[ f] for every test function f with
supp(f)CR. The elements X € #(#) are regarded as defined on a domain
customarily denoted by D,, which arises when the algebra generated by all
averaged linear and multilinear field operators acts on the vacuum vector €. The
star-operation referred to above is hermitian conjugation @[ f]—-o@[f]
=@[f1* | D,,and since ¢(x) is hermitian we have o[ f]" = @[ f*]. In what follows
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the overbar will always be used to denote the closure X of any X € Z,(4), as
defined on D,. We define D, =2, (.#)Q, and we assume that the subdomain D of
D, is dense in the Hilbert space #. It is well-known that the closures of any
X e Py (M) on D, and D, are the same: X =(X [ Dg)**.

The Hilbert space s carries a strongly continuous unitary representation
A—U(4) of the Poincaré group P. For the elements of the subgroup of translations
we also employ the notation T(x)= U(I, x). This subgroup is subject to the usual
spectrum condition. The canonical TCP-operator is denoted &, and we have
Oop(x)0y=p(—x), O,Q=Q and OF=1.

The discussion in this paper depends critically on some results in [2], which we
shall now review very briefly. We define the wedge-regions Wy and W in
Minkowski space by

We={xx>>Ix*}, W= {xIx>< —x*]}.

The vector Q is cyclic and separating for Z,(Wy) and Z,(W,). It was shown in [2]

that
JV(inXQ=X'Q, JV(—in)YQ=Y'Q, 2.1

for all XeP, (W), all YeP,(W,). Here J is the antiunitary involution
J=U(n,,0)0,, where n5 denotes the rotation by angle 7 about the 3-axis. The
operators V(in) and V(—ir) are positive selfadjoint operators obtained by analytic
continuation of the unitary operators V(t) = U(v;(t), 0) which represent the one-
parameter abelian group of velocity transformations in the 3-direction. The
parametrization is so chosen that the action of v4(¢) on the rest state of a (classical)
particle leads to a state of velocity tanh(¢) in the 3-direction. It was also shown in
[2] that Z,(Wg)Q is a core for V(ir), and that Z,(W,)Q is a core for V(—in).

For any subset R of Minkowski space we denote by R, the image of R under the
Poincaré-transformation A, and by R° the causal complement of R, i.e., the set of all
points of ./ strictly spacelike relative to R. We define #" = {W; ,|A € P} as the set of
all wedge-regions Poincaré-equivalent to Wy (and to W}), and we denote by ¢ the
set of all closed double cones K with a non-empty interior. For any K € #” we have
K=n{W|Wew, W>K}, and for the (open) causal complement we have
K=u{W|\We#', WCK*}.

The notion of an AB-system of von Neumann algebras was introduced and
discussed in [2] and [3]. It is a particular kind of local net, with special properties
of interest for this paper: the admittedly awkward term is used because some name
is necessary to distinguish this kind oflocal net from other kinds oflocal nets. Some
general properties of an 4 B-system were discussed in [ 307, and we shall here quote
some definitions and results from this paper.

Definition 2.1. a) An AB-system is a set {o/(W), #(K), «/(K)} of von Neumann
algebras such that to every We #" corresponds an algebra /(W) and to every
K e A correspond two algebras 4(K) and .« (K°), the correspondence being such
that the following conditions hold:

UDAWYUA) =oAL (W,), all ieP, Wew, (2.2a)
A (W)D A (W,), whenever WDOW,; (2.2b)

.2C
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b) The AB-system is said to be local if and only if

AWYD A (W), BK)DAK), (2.3)
for all We#", K e . The set (algebra)  of operators is defined by
U={BK)KeA}. (2.4)
If the AB-system is local the set % will be called the set of all (strictly) local
operators.
¢) The AB-system is said to be generated by its #-algebras if and only if
AW)={B(K)|KeA, KCW}". (2.5)

If the AB-system is furthermore local it is said to be generated by its local
operators.
d) The AB-system is said to be TCP-covariant if and only if

OuA(W)Oo ' =4 (~W), O HBK)O,' =B(—K), (2.6)

for all We#", K e #". We here use the notation —R={—x|xeR}.
¢) The AB-system is said to satisfy the condition of duality if and only if

AWy =d (W), BEK) =K, @.7)

for all We#', Ke A'.

f) The AB-system is said to satisfy the special condition of duality if and only if
the following conditions hold [in which case the conditions (2.6) and (2.7) also
trivially hold]:

A W) =L (W) =T (We)J . 2.8)

The vector Q is cyclic and separating for .o/ (W;). The linear manifold .o/ (Wg)Q is a
core for V(ir), and

IV(imAQ=A*Q, all Aest(W). (2.9)

These definitions, which correspond to Definition 1 in [30], involve a certain
amount of obvious redundancy. The relation at right in (2.3) thus follows from the
relation at left [and the general relations (2.2)], and likewise the relation at right in
(2.7) follows from the relation at left. It is important to note that the 4 B-system is
completely determined, through (2.2c), by the wedge-algebras o/(W), and the
conditions (2.2a) and (2.2b) then imply conditions of covariance and a variety of
conditions of isotony for all the algebras of the AB-system. For instance,
UW)BK)UA)~'=2%(K,)for all K € A", A € P. Since the relationships in question
are quite obvious, it is hardly necessary to present a complete list. We note here
that the condition of duality is stronger than the condition of locality: the former
implies the latter. The special condition of duality is stronger still in that it also
implies TCP-covariance.

In the context of quantum field theory we expect that a relevant AB-system is
local, and that it has the property that it is generated by its local operators in the
sense that (2.5) holds. For a truly “local” theory the set % in (2.4) of all local
operators ought to be “sufficiently large,” which reasonably means that this set is
irreducible.
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Any system of local operators can be embedded in a natural way in a local AB-
system. We state the matter as follows.

Lemma 2.2. For each Ke X', let 9(K) be a selfadjoint set, i.e., A*e%(K) if
Ae¥%(K), of bounded operators, and let 4 ={%(K)|K € A'}. We assume that the
operators in 4 are local in the sense that U)K )U(A) "' CHK,) for any two
K,,K,eA and any A€ P such that K, , is spacelike relative to K,. Then:

a) There exists alocal AB-system { o/ (W), B(K), o/ (K°)}, said to be generated by
4, such that

AW)={UNIK)UQR) YKeH, leP, K,CW)". (2.10)

This AB-system is generated by its local operators, and it satisfies the condition
Y(K)CH(K) for all Ke A"

b) The following five conditions are equivalent: 1) The AB-system is irreducible;
2) The algebra % in (2.4) is irreducible; 3) The set V{U(A)GUA) YieP} is
irreducible; 4) Q is a cyclic vector for %, and 5) Q is a cyclic vector for of (Wyg).

c) If the AB-system defined by (2.10) satisfies the condition of duality it is the
only AB-system for which the inclusion relations 9(K)C %(K) hold for all K.

For the proof, which is almost totally trivial, we refer to [30] (see in particular
Theorem 2). Note here that K—%(K) is not assumed to be a local net, nor is it
assumed that this mapping satisfies the conditions of Poincaré-covariance or
isotony. It might thus well happen that %(K) is empty for all but one single K, € A,
and furthermore it could happen that ¥(K ) consists of just one single (selfadjoint)
operator.

In the terminology of [30] the set ¢ is a “primary set of local operators.” A
particular example of such a primary set is a local net ¢ —2(0) defined on the set of
all open double cones ¢0. We define %(0)=A(0), and we then have A(O)C B(0).
Furthermore it is easily seen that o/ (W)= {W(O)|OCW}".

In order to study the possible local association of a quantum field with a local
AB-system we must first discuss a notion of affiliation due to von Neumann [25].
Let Q be any closed linear operator, with the polar decomposition Q = V'P. In this
paper we shall denote by a(Q) the von Neumann algebra generated by the partial
isometry V and the spectral projections of the non-negative selfadjoint operator P.
The operator Q is said to be affiliated with a von Neumann algebra o/ if and only
if a(Q) C.«/. This condition is equivalent to the condition

QA>AQ, forall Aess’. @.11)

In the following we shall say that a bounded operator A commutes in the strong
sense with a closed operator Q if and only if 4 € a(Q)’, which is thus equivalent to
the conditions that Q4> AQ and QA* > A*Q.

Let £, be an algebra (over the complex field) of closable operators defined on a
common dense invariant domain D, and let &, be a hermitian algebra in the sense
that for each X € Z, the domain of X * includes D, and such that X' is contained in
2,, where X' = X* | D. We shall say that a bounded operator A commutes weakly
with &, on D if and only if

(XT9'1A¢"> =< A*¢|X¢")
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for all X € #,, and all ¢, " € D. We note that this condition, which is equivalent to
the condition
X™*4>4X, all Xe2,, (2.12)

implies that A* also commutes weakly with &, on D. The set of all bounded

operators A which commute weakly with £, on D is the weak commutant of . It is

a weakly closed, linear manifold, closed under the star-operation, but it is in

general not an algebra. We also note that the condition (2.12) implies that

X' 45 AX** which condition should be contrasted with the condition (2.11).
For later reference we state the following simple

Lemma 2.3. Let Z, be a hermitian algebra of closable operators on a common dense
invariant domain D. Then:

a) A von Neumann algebra </ has the property that each X € #, has a closed
extension X, affiliated with </ and such that X*> X' if and only if every Ae of’
commutes weakly with 2, (on D), in which case we say that o/’ commutes weakly
with #, (on D).

b) Suppose that /" commutes weakly with #,,. Let D,=span{s/'D}. Then D, is
included in the domain of X* for every X € #,, and for each such X the operator
e(X)=X"™D,>X is a well-defined closable operator, with the property that its
closure e(X)** is affiliated with o/ . The set {e(X)|X € P} is a hermitian algebra on
D,, and the mapping X —e(X) is a *-representation of the algebra ?, such that
X*de(X)*2e(X")D X' for all X € 2,

For the simple proof, and for further elaborations on this theme, we refer to [3]
(see in particular Lemma 10 in Sect. V), and also to the papers of Powers [26] and
of Jorgensen [20].

In the above the operator e(X)** is closed extension of X which is affiliated
with o/’. It should be noted that this does not mean that the closure X** of X
relative to the original domain D is also affiliated with 7. Nor is the possibility
excluded that X has other closed extensions besides e(X)** which are also
affiliated with /.

We now continue the discussion of our local field theory.

Definition 2.4. Let ¢(x) be an irreducible local hermitian scalar field, subject to the
general conditions stated in the beginning of this section. Let
{A (W), B(K), o4(K)} be a local, TCP-covariant AB-system which satisfies the
special condition of duality and which is generated by its local operators. The
following two possibilities for a local association of the field with the 4 B-system
are hereby identified:

Scenario G. For each K € A" every X € #,(K) commutes weakly on D; with every
Ae A(K°), and every X € Z(K°) commutes weakly on D, with every 4 € #(K).
For each We#  every X € Z,(W) commutes weakly on D, with every Ae.<Z(W°).
Equivalently stated, every X € Z,(K), Z(K°), respectively Z,(W), has a closed
extension X, affiliated with #(K), «/(K°), respectively «/(W), and such that
X¥>X'.

Furthermore € is cyclic and separating for #(K) for all Ke &', and /(W)
={HB(K,)|AeP, K,CW}" for any Ke .



Quantum Fields and Local von Neumann Algebras 57

Scenario A. 1) To each subset RC.# corresponds a unital *-algebra
2,{(R)C#,(R), where the correspondence R—Z,(R) satisfies the conditions of
isotony and Poincaré-covariance, ie., Z,(R)DUXN)Z,(R)U(L)~! whenever
Ry DR,. Furthermore 2, (R) is the smallest *-algebra which contains £, (K) for all
K CR, K € . In particular this applies for R =./#, and every element X € 2, (#)is
thus a local operator in the sense that X € 2, (K) for some K € "

2) The linear manifold D=2, (.#)Q is dense in H#.

3) For each Ke % every X € Z,(K) commutes weakly on D,, with every
A e o(K), and every X € 2, (K) commutes weakly on D, with every A € #(K).
Foreach We % every X € Z,(W) commutes weakly on D, with every A4 € o/ (W°).
Equivalently stated, for every X € 2,(K), Z,(K°), respectively 2, (W), there exists
a closed extension X, of X | D,, such that X*> X' D,, and such that X, is
affiliated with #(K), /(K°), respectively of (W).

We regard the state of affairs described as Scenario G, which is clearly a sub-
scenario of Scenario 4, as the good situation. The demonstration that this situation
always obtains in a quantum field theory would represent a very satisfactory
resolution of what might be called the “selfadjointness problem of field theory.”
Positive solutions of the selfadjointness problem under a variety of special
conditions on the field have been known for some time [5, 2, 3], but whether
Scenario G obtains in general remains an open question, and so does the question
of whether Scenario 4 might actually imply Scenario G. A field theory for which
Scenario A (but not Scenario G) obtains could still be regarded as a physically
acceptable local theory. Irrespective of what the actual situation may be, the
totality of the statements in A4 is a useful theoretical stepping stone for the
statement of intermediate results. The above definition is also a statement of goals
for this paper: we shall show that with certain assumptions on the field it can be
concluded that Scenario G, respectively A4, obtains.

For both scenarios the statements in part b) of Lemma 2.3 should be kept in
mind as a further elaboration of the description. The field-operator algebras (for a
particular region) thus have specific extensions by hermitian algebras such that the
closures of the extended operators are all affiliated with the corresponding von
Neumann algebras of the 4B-system.

In Theorems 2.7 and 2.8, which follow shortly, we show how the situations
described in the above definition can arise. It will then be clear that if Scenario 4
does not obtain, then the field operators are not locally associated with any local
von Neumann algebras at all. For the discussion of these theorems we need to
review some further properties of 4B-systems. We shall summarize miscellaneous
relevant facts in the form of two (overloaded) “working lemmas” for later reference.

Lemma 2.5. a) Suppose that an AB-system is generated by its %-algebras, i.e., the
relation (2.5) holds. Then the set U defined in (2.4) is irreducible if and only if
A (W)Q is dense.

b) With the premise in a) above the algebra o/ (Wy) equals the strong closure
of the set U{#B(K)|K e A, KCWg}.

c) Suppose that for a local AB-system the linear manifold of (Wy)Q is dense in H#
and contained in the domain of V(in), and that furthermore the relation (2.9) holds.
Then the AB-system satisfies the special condition of duality.
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d) Let o/ (Wy) be the wedge-algebra corresponding to Wy in an AB-system which
satisfies the special condition of duality.

Suppose that o/ | C o/ (Wy) is a von Neumann algebra such that </,Q is dense in
H, and V(t)of,V(t) "' =4, for all velocity transformations V(t) in the 3-direction.
Then st = A (Wy).

Suppose that £, D o/ (Wy) is a von Neumann algebra such that </,Q is contained
in the domain of V(in), and such that the relation (2.9) holds for all A€ o/,. Then
oA, = A (Wy).

e) Suppose that an AB-system satisfies the condition of duality and is generated
by its local operators. Suppose that O —U(0) is a local net defined for all open double
cones O, with the property that W(O)> B(K) whenever ODK. Here B(K) is the
algebra of the AB-system corresponding to K € #". Then W(O)CA(0O) for all open
double cones 0.

Proof. The assertion in a) follows by a standard argument in quantum field theory,
based on the spectrum condition: see also [30]. The assertion in b) follows from
(2.5) and the obvious geometrical fact that any compact subset of the (open) set Wy
is contained in some K C Wy, K € 4. For the assertions in c¢) and d), see Theorem 2
in [2]. The assertion in e) is a triviality. [

The first lemma reveals the rather tight structure of an AB-system. The lemma
which follows has to do with the implications of the relations (2.1).

Lemma 2.6. a) Let the linear manifold D, C# be a core for V(—in). If X is a
closable (linear) operator such that Q is in the domains of X and X*, and if

(X*Qp) ={JV(—in)p|XQ)>, all ¢$eD,, (2.13)
then XQ and X*Q are in the domain of V(in) and
JV(in) XQ=X*Q, JV(in)X*Q=XQ. (2.14)

b) Let & be a linear manifold of operators in Po(Wy) such that D, = #Q is dense
in #, and such that V)L V() ' =% for all t. Then Dy is a core for V(—in).
If X is a closable operator such that Q is in the domains of X and X*, and if

(X*QIYQ>=(Y'QXQ), all Ye2, (2.15)

then the relations (2.14) hold. Furthermore the relation (2.15) holds for all
Ye Zy(Wy).
¢) Let £ satisfy the premises in b). Let o/ be a von Neumann algebra such that
A is dense and such that V(£)/gV(t)~* = sy for all t. Suppose furthermore that
(2.15) holds for all X € stx.
Then
Ap=JdJ, (2.16)

and Q is cyclic and separating for s/ and . Furthermore </ is a core for V(ir)
and g is a core for V(—in), and

JV(in)AQ=A*Q, JV(—in)BRQ=B*Q,
for all Ae oy, all Be oAy
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d) With the premises in c) above, suppose in addition that of/x = o/ (Wy) is the
wedge-algebra corresponding to Wy in a local AB-system. Then this system satisfies
the special condition of duality.

Remark. Analogous statements apply to the situations in which the objects
associated with the “right wedge” W; are interchanged with the corresponding
objects associated with the “left wedge” W,, in which case the roles of V(ir) and
V(—ir) are also interchanged. We omit the explicit statements, which should be
obvious.

Proof. The assertion in a) is a triviality. We consider b), and note that D, is
contained in the domain of V(—in), in view of (2.1). Since D, is assumed dense, and
since V(¢t)D, =D, for all ¢, it follows that D; is a core for V(—in). Taking into
account (2.1) the remaining assertions in b) follow readily.

The assertions in c) are paraphrases of assertions in Theorem 2 in [2]. (From a
mathematical point of view the conclusions can be regarded as standard results
within the Tomita-Takesaki theory.) The assertion in d) follows from the result in
c), and from part c¢) in Lemma 2.5. O

Part d) of this lemma describes how an extremely weak condition of “relative
locality” between the field and a local 4B-system implies the special condition of
duality for the latter. This theme recurs in the two theorems which follow. The first
of these is almost a special case of the second, and the two might have been
combined into a single theorem. The reason for our approach is that the first
theorem is particularly clean, and deserves an explicit statement, whereas the
second may at first appear complicated and contrived. We hope that it will be
palatable as a generalization of the first in the same sense that Scenario A4 is a
generalization of Scenario G.

Theorem 2.7. Let ¢(x) be a local, irreducible hermitian scalar field.

a) Suppose that there exists an AB-system { (W), B(K), o/ (K°)} such that the
set U={B(K)|KeA} is irreducible, and such that for each Ke XA every
A€ (K commutes weakly on D, with every averaged field o[ f] for which
supp(f)CK.

Then Scenario G in Definition 24 obtains for this AB-system, which means in
particular that it is local, TCP-covariant, and satisfies the special condition of
duality.

b) Suppose, instead, that there exists a local net O—~U(0O) of von Neumann
algebras defined for all open double cones O, and with the property that every
operator X = @[ ], withsupp(f) C 0, has a closed extension X ,C X '* affiliated with
W(O). Then the AB-system defined through

dW)={URNWO)UQR) " |AeP, Oy ,C W} (2.17)

for a particular non-empty O, is independent of the choice of 0. It satisfies the
premises in part a) above, and hence all the conclusions apply. The relation
B(0)>WA(0) holds for all 0.

Furthermore, if 0—->W(0O) is any local net such that WA (O)>W(O) for all open
double cones O, and such that W, satisfies the condition of duality in the sense that
W (O) ={W(Op)|Oy COY, then A (O)=B(0O) for all O.
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Remarks. a) The following differences in the premises for parts a) and b) should be
noted. In part b) the locality of the net is assumed, whereas it is a consequence in
part a). In part a) the irreducibility of the set U{#(K)|K € A} is assumed, and the
locality of the AB-system then follows from this and from the other assumptions.

b) Part b) reveals the canonical nature of the AB-system as a local net. The
original net need not satisfy the condition of duality, but it has an embedding into a
“larger” net which is unique if it satisfies the condition of duality, in which case it
satisfies the special condition of duality. This, of course, applies only to local nets
which are related to finite-component quantum fields in the manner stated.
Examples exist of local algebras satisfying duality but not the special condition of
duality (see, e.g. [11]) and of local algebras associated with certain infinite-
component (free) fields for which the special condition of duality does not hold.

Theorem 2.8. Let ¢(X) be a local, irreducible hermitian scalar field. For each
Ked', let the subset #(K)CZP,(K) be a hermitian set of local operators, i.e.,
XteF(K)if X e F(K). Forany RC.M, let Z,(R) be defined as the smallest unital
*-algebra which contains U()F (K)U(A)~! whenever K,CR, Ke XA '. Hence
Pos(R) CPy(R). It is assumed that Dy,=Py(M)RQ is dense in H.

a) Suppose that there exists an AB-system {of (W), B(K), o/ (K )} such that the
set U={BK)|KeA} is irreducible, and such that for each Ke A every
X € F(K) commutes weakly on D, with every A€ o/ (K°).

Then Scenario A in Definition 2.4 obtains for this AB-system and the algebra
Po(M), which means in particular that the AB-system is local, TCP-covariant, and
satisfies the special condition of duality.

b) Suppose, instead, that there exists a local net O—W(O) of von Neumann
algebras defined for all open double cones O, and with the property that for each
K € A there corresponds to every X € #(K) a closed extension X,C(X" | Dog)* of
X | Do, which is affiliated with W(0O) for any O such that O > K. Then the AB-system
defined through

A (W)={AO)OCW}” (2.18)

satisfies the premises in part a) above, and hence all the conclusions apply. The
relation 2(0)>W(O) holds for all 0.

Furthermore, if 0—U (0)>W(O)is any local net defined on all open double cones
which satisfies the condition of duality in the sense explained in Theorem 2.7, then
WL(O)=A(O) for all ©.

Remarks. a) The remarks following the statement of Theorem 2.7 also apply to the
present theorem.

b) The set # =U{#(K)|K e A} is thus a generating set for the system of
algebras {#,(R)|RC.#}. It is not assumed that the mapping K —»% (K) satisfies
the conditions of isotony and Poincaré-covariance. In particular it could happen
that & consists of just one single pair X, X" of local operators.

c) The theorem does not assert that every algebra #(K) is nontrivial: it could
thus happen that for “small” K € " the algebra £4(K) contains only multiples of
the identity. See, however, part c) of Theorem 3.2 for specific results concerning this
issue.

d) It will be advantageous to prove Theorem 2.8 first, after which we prove
Theorem 2.7.
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Proof of Theorem 2.8. 1) We first note that the algebra 2, (#) is obviously
Poincaré-invariant, and in particular it is translation-invariant. Every element of
Po(M)is local, and by a standard argument in quantum field theory involving the
Reeh-Schlieder Principle we conclude that Z,(W)Q is dense # for any We#”
since Dy, =P, ()2 was assumed dense.

2) We next note that it follows immediately from the definition of the algebras
Zqs(R) in the statement of the theorem that these satisfy precisely the same general
conditions as the algebras so denoted and described within Scenario A in
Definition 2.4. In particular the mapping R—%,(R) satisfies the conditions of
isotony and Poincaré-covariance, and Z,4(R) is the smallest unital *-subalgebra of
2o(R) which contains Z,(K) for all KCR, KeJX'.

3) We now assume the premises in part a) of the theorem. We consider a
particular K e . Since the AB-system satisfies the conditions of isotony and
Poincaré-covariance, and since D, is Poincaré-invariant, it follows from the stated
assumptions that every A4e./(K° commutes weakly on D,, with every
XeUWZF(K)U(A)™ " whenever K;eA', K; ,CK. We now depend on the
following simple principle. If 2, is a hermitian algebra of closable operators on a
common dense invariant domain D, and if a bounded operator 4 commutes
weakly on D, with a (hermitian) generating set for this algebra, then A commutes
weakly on D,, with every Xe#. We thus conclude that every Ae /(K"
commutes weakly on D, with every X € Z,(K). By similar reasoning we conclude
that every 4 € #(K) commutes weakly on Dy, with every X € 2,(K°), and that
every A e o/(W°) commutes weakly with every X € 2, (W), for any We#". We
omit the details, which involve very simple geometrical considerations. We have
thus established all the weak commutation relations between the AB-system and
the algebra #,(#), as stated in Definition 2.4.

4) Itis assumed in part a) that the set % is irreducible, and it follows, by part a)
of Lemma 2.5, that &/(W)Q is dense for any We# . For all t we have
V(t)t (Wp)V ()™ =/ (W) and V() Po (W) V(1) ™' = Po(W,). By 3) above, o/ (Wg)
and Z,(W,) commute weakly on D, and by 1) above, Z(W;)Q is dense. Hence
Ar=d(Wy) and &L =P, (W,) CP,(W,) satisfy the premises in part ¢) of Lemma
2.6, and it follows that

JV(in)AQ=A*Q, all AeAd(W). (2.19)
Similarly we have,
JV(—in)BQ=B*Q, all Be«/(W). (2.20)

5) Let Ke A", KC Wy, and let W, e #°, W, C WrnK*: the three sets W, K, and
W, are thus pairwise spacelike relative to each other. Let Ye 2, (W,), A € #(K),
and X e Z,(W,). Then X and Y commute on D,, and hence on D, and both
operators commute weakly on D,, with A. It follows that (Y'QAXQ)
=(A*QYX Q> ={A*Q|XYQ)={A*XQ|YQ). By part b) of Lemma 2.6, Z,(W,)
is a core for V(—in), and since furthermore Y'Q=JV(—irn)YQ for all Ye (W),
it follows from the above that AXQ is in the domain of V(in), and that

JV(in)AXQ=A*X"Q (2.21)
for all A€ #(K), all X € Zy(W,).
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Let A and X be as above, and let B € o/ (W,). In view of (2.20) and (2.21) we have
(BQIAXQ)={A*X'Q|B*Q). (2.22)

Since AB* e o/ (Wy) it follows from the result in step 3 that (X'QAB*Q)
=(BA*Q|XQ>, and from this, and from (2.22) we then conclude that

(QI[B*, A1XQ>=0. (2.23)

Let X, X, € Z,(W,). Setting X = X} X, in (2.23), and taking into account the
fact that [B*,A]e o/ (Wf), we obtain <(X,Q|[B* A]1X,Q2>=0 for all
X, X,e€Py (W), all Ac B(K) and all Be o/(W,). Since Z,(W,)Q is dense it
follows that [B*, A]1=0, i.e., we have #(K)C.o/(W,) for any KC Wy, Ke A"

6) We define the AB-system {fo(W), B,(K), o(K)} through

Ay(W)={BEK)KeX, KCW), (2.24)

and we then have %,(K)=4%(K). Since % is irreducible it follows by part a) of
Lemma 2.5 that o/ (Wg)Q is dense. By the result in step 5 above we have %,(K)
=BK)CAW,)Y CAy(W,) for any KCWg, KeA [since obviously
o (W) D o y(W,)]. In view of (2.24) this implies that o7 (Wy) C o7,(W,), and hence
the AB-system defined through (2.24) is local. The relation (2.19) holds for any
A € o (Wr)C oA (Wpg), and by part c) of Lemma 2.5 it follows that the AB-system
defined through (2.24) satisfies the special condition of duality. By part d) of
Lemma 2.5 we readily conclude that o/ (W) = o/ (W), i.e., the two AB-systems are
identical. We have thus proved that Scenario 4 obtains with the premises in part a)
of the theorem.

7) We assume the premises in part b). The AB-system defined through (2.18) is
then, by Lemma 2.2, local, and we have 2(0)C #(0)C o/ (0°Y for all open double
cones 0. If Ke#', KC0, and X € #(K), it follows from the above, and from the
premises in part b), that X commutes weakly on D, with .«/((°). From the relation
at right in (2.2¢) in the Definition 2.1 of an A B-system it is obvious that the algebras
o/ (K¢) are “continuous from the inside” in the sense that .o/ (K¢) is equal to the weak
(or strong) closure of the set U{(K5)|K, € A", K;C K€}, and we thus conclude
that every X € #(K) commutes weakly on D, with every 4 e .</(K°), for any
KeXd'.

8) To show that all the premises in part a) are in fact implied by the premises in
part b) it remains to be shown that the set % = U{#(K)|K € &} is irreducible for
the AB-system defined through (2.18). Let Q %', and hence Q € #(K)’ for all
K e A" It follows that Q commutes weakly on D, with Z(K) for all K, and hence
0 commutes weakly with Z,(.#) on Dy,. Since Dy,= P, (H)R is dense, it follows
by a standard argument in quantum field theory (based on the spectrum condition)
that Q is a multiple of the identity. Hence % is irreducible. Thus all the premises in
part a) obtain, and the conclusions follow.

9) Let A, be a “larger” (local) net which satisfies the condition of duality, as
stated in the theorem. Applying all the earlier considerations to this net we obtain
an AB-system which satisfies the special condition of duality, and in particular we
obtain a wege-algebra U (W) D o7 (Wy) through the construction in (2.18). By part
d) of Lemma 2.5 we have U (W)= o/ (W), i.e., the two AB-systems are identical.
We have Z(0)>U,(0) for all open double cones, and since A, satisfies the
condition of duality, equality must obtain. [
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Proof of Theorem 2.7. 1) For each K e # we define the hermitian set & (K)
={o[f]If e Z(R*, supp(f)CK}, and we define the algebras Z,,(R) in terms of
the #(K) as in Theorem 2.8. Since D, D DD Do =P, (M#)Q, it follows that the
premises in part a) of Theorem 2.7 imply the premises in part a) of Theorem 2.8. All
the conclusions in part a) of Theorem 2.8 thus apply to the algebra 2, (.#) as
defined above.

Likewise the premises in part b) of Theorem 2.7 imply the premises in part b) of
Theorem 2.8, and the corresponding conclusions apply to the algebra Z,(.#) and
the AB-system defined through (2.18).

2) The algebra Z,(.#) is smaller than the algebra Z,(.#) since the former is
generated by all operators @[ f] for which f is of compact support, whereas the
latter is generated by all @[ /] with f unrestricted. If R is a bounded subset of 4 we
have, of course, Z,(R) =Z?,(R). We now appeal to a well-known consequence of
the field being an operator-valued tempered distribution. If X € Z,(R), for an
arbitrary (open) R C ./, then there exists a sequence {X,[n=1,2,...,} of operators
in Z,4(R) such that the sequence {X,dln=1,2,...,} converges strongly to X¢, for
any ¢ € D,. Furthermore, each ¢ € D, is the strong limit of a sequence of vectors in
D,,. From this we conclude that all the weak commutation relations between the
elements of Z,(./#) and the AB-system hold precisely as described within Scenario
G in Definition 2.4, but with the provision that under the premises in part b) the
AB-system is defined through (2.18), rather than through (2.17).

3) Let 0, be a non-empty open double cone, and let the AB-system
{Ao(W), Bo(K), o(K)} be defined such that .«/,(W) equals the right member in
(2.17). Let %U,={%B(K)|KeH}. We shall show that %, is irreducible. Let
Q €%, in which case Q € B,(K) for all K € . It follows from the premises that
0 commutes weakly on D, with every field operator @[ f] such that supp(f)
C0,, , for some A€ P. This implies that Q commutes weakly (on D,) with ¢[f]
for any test function f, and it is well-known that this implies that Q is a multiple
of the identity. Hence %, is irreducible, and by part a) of Lemma 2.5 it follows
that .o/,(WR)Q is dense. Since o o Wg) C o/ (W), it follows from part d) of Lemma
2.5 that o/,(Wg)=/(Wy), and hence the two 4B-systems defined through (2.17)
and (2.18) are identical.

4) Let KeXA'. From the above it follows at once that /(W)
={B(K,)|AeP, K,CcW}". It is well-known that Q is cyclic for #,(K), which
implies that Q is separating for .«/(K*). This, in turn, implies that Q is cyclic for
B(K)= /(K. The vector Qs trivially separating for 4(K). We have now shown
that Scenario G obtains under the premises of the theorem. [

Concerning Theorem 2.7 we note that it can well happen that the local net
mentioned in part b) is “much smaller” than the AB-system. For any @ the closed
extensions of the field operators @[ /] € %,(0) which are affiliated with (@), and
with %(0), generate locally an algebra ,,(¢) which can be regarded as belonging
to a minimal local net. It is known [22] that such a net A, need not satisfy the
condition of duality, in which case 2, (0) cannot equal #(0). The local net is
accordingly not unique, whereas the 4B-system is uniquely determined by the
particular closed extensions of the field operators.

Theorem 2.8 permits us to say the following. If Scenario 4 does not obtain, then
there does not exist any irreducible subset of local operators in Z(.#) such that its
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elements have closed extensions affiliated in the manner stated with the algebras of
some local net. At first the situation described in Scenario A may appear rather
“special,” but we now see that it corresponds to minimum requirements for the
field to be locally associated with a local net.

Concerning Scenario G we emphasize that it is not said that the closed
extensions of the field operators X which are affiliated with the local algebras of the
AB-system are actually the closures X of the operators X as defined on D,. It seems
to us to be unreasonable to believe that this could be the case for all the local
operators in Z,(.#), but it might be the case of some subset of these, say the
operators @[ f] which are linear in the fields. We shall explore this possibility in
Sect. 4.

3. A Principle AKkin to the Reeh-Schlieder Principle.
Further Discussion of the Properties of Local 4B-Systems

In this section we shall discuss two general properties of AB-systems associated
with quantum fields in the manner described in Definition 2.4. We first digress, and
state and prove a lemma which is of particular interest for this paper, but which
may also have other applications in quantum field theory.

Lemma 3.1. Let {A(W),#(K), /(K)} be an AB-system with the property that
o (WR)Q is in the domain of V(irn). In particular this applies to the case when the AB-
system satisfies the special condition of duality. Let {A,Jn=1,2,...,N} be an
N-tuplet of (bounded) operators contained in #(K) for some KeA . Let
{0,Jn=1,2,...,N} be an N-tuplet of non-empty open subsets of the Poincaré group
P. We write A, (A)=U(A)A,U(A)~ " for any AeP. Then:

span{A4,(4,)4,(2;) ... Ay(Ay)Q|A, € O,, for n=1,...,N}
= S_I)-é'_li{Al(ll)AZ(j‘z) e AN(/IN)QM" € P, fO?’ n= 1, ey N} N (3.1)
where the overbars indicate strong closures.

Remark. The above assertion resembles the celebrated Reeh-Schlieder Principle
[21, 28] (as applied to bounded operators). This principle asserts an identity such
as (3.1) with P replaced by the translation subgroup and with the O, being non-
empty open subsets of this subgroup. Now it should be noted that the Reeh-
Schlieder Principle applies to any N-tuplet of bounded operators, and it is a simple
consequence of the spectrum condition for the translation group. In contrast with
this, our conclusion is manifestly false for an arbitrary set of operators 4,. It can
also be false for an N-tuplet of local operators if the additional domain conditions
do not hold.

Proof. 1) The crucial step is the proof of the case N = 1, which we now consider. We
have to show that if for some vector ¢ the function f(1) = (#|U(1)A, Q) satisfies the
condition f(1)=0for A€ O, then f(1)=0 for all A€ P. For a fixed ¢, let P, be the
largest open subset of P throughout which f vanishes. We then have P;> 04, and,
by the Reeh-Schlieder Principle, P,=(I, x)P, for any x e .4, i.e., P, is invariant
under left multiplication by any element (I, x) of the translation subgroup of P.
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2) Let A, €P, and let 1, be an arbitrary element of P. There then exists a
translation A, =(I, x) such that the image K, of K under the Poincaré trans-
formation A=1,4,4, is contained in Wy. Let vs(t) denote a velocity transfor-
mation in the 3-direction, as before. We can then write

A3 030 A A = A305 to3(D) A, (3.2

where A, is a translation. We temporarily regard A, 4,, and 4, as fixed. The group
element in (3.2) is in P, if and only if A 'v5(t)A,4, € P,, which is certainly the case
for sufficiently small ¢, say for |t|<t, for some t,>0. We consider

h(©) =12z 'v3(DA2A00) = UV (OU (1) A, 2> (33)

as a function of t (with A and 4, fixed). We then have h(t) =0 whenever |¢| < t,. Since
K, C Wy, and hence U(A)A,U(A) ™! € o/ (Wy), we conclude, in view of the special
property of the AB-system, that U(4)4,2 is in the domain of V(ir). Hence the
function A(¢) in (3.3) has an analytic continuation to the strip 7>Im(¢)>0 in the
complex t-plane, and we can thus conclude that h(t) =0 for all real t. This means
that 4, 'v3(t)A,4, € P, for all real t. Since A, was arbitrary, and since 1, was an
arbitrary element of P,, we conclude that A; 'v,(£)4,P, =P, for all real ¢, and all
A, €P. From this it readily follows that P,=P, and we have thus proved the
theorem for the case N=1.

3) The validity of the identity (3.1) for any N>1 is now easily proved by
induction on N. We write 4, =4, 4; for k=2,3, ..., N, and assume that (3.1) holds
for any (N — 1)-tuplet. We then apply the result in step 2 to the variable 1,, keeping
the 1, fixed, and it readily follows that (3.1) holds for any N-tuplet. O

We can now draw some interesting conclusions.

Theorem 3.2. Let {/(W), #(K), o/ (K )} be an AB-system which satisfies the special
condition of duality.

a) Suppose that for some K;€ A the algebra #(K,) satisfies the condition that
the set 9,= V{UWBK)U(L) '|AeP} is irreducible. Then Q is cyclic (and
separating) for every algebra #(K) such that K; , is contained in the interior of K
for some AeP.

b) The vector Q is cyclic for B(K) for every Ke A if and only if o/ (W)
={B(K,)AeP, K,CW}" for every Ke A .

c) Assume Scenario A in Definition 2.4, and suppose that there exists, for a
particular K, € A, a hermitian subset N;C Py(K;) such that Q is a cyclic vector for
the hermitian algebra 2, defined as the smallest unital *-algebra which contains
U ANUA)™! for all L€ P. Then K; satisfies the premises in part a) above.

Proof. 1) Suppose that K; satisfies the condition in part a) above, and suppose that
K e A issuch that K , is contained in the interior of the (closed) set K. There then
exists a non-empty open subset O; of Psuch that K; ,CK forall A€ O,. This means
that the product of any number of operators of the form U(4,)4,U(4,) ", with
A,e B(K,)and A, € O, is an element of #(K). It follows at once from Lemma 3.1
that B(K)Q=#.

2) The assertion in part b) follows trivially from the result in part a), in view of
part a) of Lemma 2.5.
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3) We consider part c), with ¢, defined as in part a). Let Q € 4;, and hence
Qe%B(K, ;)= (K; ;) for all AeP. It follows that, for each AeP, the set
UA)AU(L)™! commutes weakly with Q on D, and hence 2, commutes weakly
with Q on D,. Since #,QC D, was assumed dense, we conclude, as in step 8 in the
proof of Theorem 2.8, that Q is a multiple of the identity. Hence ¥, is irreducible,
and K thus satisfies the premises in part a), as asserted. [

We note that it is a feature of Scenario G in Definition 2.4 that (K)Q is dense
for every Ke . Part c) of the above theorem can thus be regarded as an
amendment to the description of Scenario A.

We next consider the question of selfadjoint extensions of symmetric local
operators in the algebra 2,(.#) of field operators.

Theorem 3.3. For any K € A, let (K) be the von Neumann algebra corresponding
to K in a local AB-system, and suppose that Q is cyclic for #(K) for any K. Let Q be
a closed symmetric operator affiliated with #(K), for a particular Ke X', and
suppose that Q is not maximal-symmetric. Let K, € A" be such that K is contained in
the interior of Ko. Then Q has a selfadjoint extension Q, dffiliated with %(K,).

Proof. 1) Let F ., respectively F _, be the selfadjoint projections onto the deficiency
subspaces J#,, respectively #_, of the operator Q, such that Q*F =iF, and
Q*F_=—iF_.Wethenhave F, €a(Q)C%(K)and F _ € a(Q) C #(K), where a(Q)
denotes the von Neumann algebra generated by Q. Since Q was assumed not to be
maximal-symmetric we also have F, >0, F_>0.

2) Although it is known [8, 24] that the wedge-algebras .o/(W) are Type I11,
factors, it is not known in general whether the double cone algebras %(K) are
factors, nor is it known what type they are (but see [14] for partial information).
However, it was shown by Borchers [6] that the local algebras have properties
which justify the statement that they are almost Type I1I factors. With the stated
premises it thus follows from Borchers’ work that there then exist isometries V.,
and V_ in #(K,) such that V. V¥=F_, V. V*=F_,and V¥V, =1=V*V_. We
define the partial isometry Vby V=V_V} and wethenhave F_ =VV* F_ =V*V,
H_=VH,, and Ve B(K,).

3) Let D(Q), respectively D(Q¥), denote the domain of Q, respectively Q*. We
define a dense linear manifold D, by

D,={¢p+I+V)p.lpeD(Q), p,eH,}.
We then have D(Q*)> D,> D(Q), and the operator Q,=Q* | D, is selfadjoint.
4) For any ¢ € D(Q) and any y € # we have
Q.4+ (+V)F 1) =Qp+il = VIF . p.
Let A€ #(K,) CHA(K)'. We then have AQp=QAp, AV=VA,and AF , =F A,
and hence AD,CD,, and, by a simple computation,
AQp+(I+VIF ) =0 AW+ +V)F ).

This means that 4 commutes in the strong sense with Q,, and since this holds
for all Ae B(K,), it follows that Q, is affiliated with #(K,). U
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If #(K) were actually a Type I1I factor we could conclude, by an obvious
modification of the above reasoning, that Q has a selfadjoint extension affiliated
with Z(K) itself. (See also in this connection [20].) If #(K) is not a Type I1I factor,
our theorem does not decide this question, but it says that a selfadjoint extension
can be found which is affiliated with the algebra of a slightly larger region.

The circumstances noted in step 2 of the proof imply that all deficiency spaces
of closed symmetric operators affiliated with #(K) are either empty or infinite-
dimensional. Such an operator Q thus has an infinite number of local selfadjoint
extensions, unless it is maximal-symmetric. If Q is not maximal-symmetric, it also
has non-local selfadjoint extensions, which can be constructed by replacing the
partial isometry V in the above proof by V=V_UV¥, where U is a suitably chosen
unitary operator not contained in any local algebra.

Let us here note that because of the TCP-covariance of any local quantum field
theory there always exists a great multitude of operators in #,(.#) for which
selfadjoint extensions are guaranteed to exist. Let Ke " be symmetric with
respect to the origin, and let X be a symmetric operator in Z,(K). Then
X,=X+60,X0,is also in Z,(K), and since it is symmetric, and since it commutes
with the antiunitary involution @, it has at least one selfadjoint extension.

The above theorem is of obvious interest in the situations when either Scenario
G or A obtains. In the case of Scenario A it is important to note the statements
about the domains of the operators which have closed extensions affiliated with
the local algebras. If X € Z,(K), then X | D, has a closed extension affiliated with
A(K), but if Scenario G does not obtain, it might happen that X, as defined on D,,
has no closed local extension at all.

4. On the Association of a Single (Unbounded) Field Operator
with Local von Neumann Algebras

As we have seen in the preceding sections a local AB-system associated with a
quantum field has a rather tight structure. Such a system is generated by a variety
of sub-algebras, and in this section we want to consider the possibility that the AB-
system is generated by a sub-algebra defined in terms of a single local operator in
Po(M). We begin with a definition.

Definition 4.1. Let K e A, and let X,= X[ e 2,(K,). For any subset RC.# we
denote by Z,(R) the smallest unital *-algebra which contains U(A)X,U(1)"!
whenever K, ;CR.

We shall say that the hermitian operator X is intrinsically local (and locally
associated with K|) if and only if the following two conditions hold:

a) The linear manifold Dy,= 2, (.#)S2 is dense in .

b) The von Neumann algebra a,=a((X, | Dy,)**) generated by the closure of
the restriction of X, to D, is locally associated with K in the sense that
U(A)a,U(4)~ ' commutes with a, whenever K , is spacelike relative to K.

For the discussion in this paper we find it convenient to restrict the notion of
intrinsic locality to hermitian operators, as stated above, but it is clear that
generalizations to non-hermitian operators, and to sets of operators, could be
considered.
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It follows at once from Lemma 2.2 that an intrinsically local operator generates
alocal AB-system: we define %(K,) = a,and 4(K) =0 if K + K. We shall now study
the properties of such a system. The main results are presented as Theorems 4.6
and 4.8. Since the proofs involve many considerations of detail we shall proceed to
the goal in a step-wise fashion.

Proposition 4.2. Let K e 4" and suppose that X ;= X[ € 2,(K,) is intrinsically local
in the sense of Definition 4.1. Let the notation be as in this definition, and let an AB-
system {A (W), B(K), #(K°)} be defined through

A W)={U)a,U(A) " |AeP, K, ,CW}". 4.1)

Then Scenario A in Definition 2.4 obtains for this AB-system and the algebra
Pos(M). If K e A is such that K , is contained in the interior of K for some A€ P,
then Q is cyclic for #(K).

Proof. The relation (4.1) corresponds to (2.10) in Lemma 2.2, and the AB-system
defined above is thus local. We define # (K ) = { X}, # (K) =0 if K # K, and define
W(O)= A(0O) for all open double cones (. The premises in part b) of Theorem 2.8
are then satisfied, and hence all the conclusions follow, i.e., Scenario 4 obtains. If
we select A= {X,} CZ,(K,) the premises in part c) of Theorem 3.2 are satisfied,
and hence Q is cyclic for any %4(K) such that K| , is contained in the interior of K
for some AeP. [J

Proposition 4.3. Let the premises and notation be as in Proposition 4.2. Suppose that
A is a bounded operator such that

(XTP1AF"> = CA*$1X 4" 4.2)

for all ¢, ¢” € Dy, and every X of the form X =U(A)X,U(A) ™!, where A€ P is such
that K ;CW,. Then A€ o (Wy).

Proof. We define %, ={U(N)X,U(A)"'|AeP, K, ,CW,}. The set #, generates
Po(W,) in the sense that 2, (W}) is the smallest unital *-algebra which contains
Z 1. By (4.2) the set &, commutes weakly with 4 on D, and since #;D,,C D, wWe
conclude that 2, (W,;) commutes weakly with 4 on D, i.e., the relation (4.2) holds
for all X € Z,(W,). Since V(t)Po (W )V (1)~ ! =2Py(W,), and since Z,(W,)Q is
dense, it follows from part b) of Lemma 2.6 that AQ and A*Q are in the domain of
V(in), and that

JV(in)AQ=A*Q. 4.3)

2) Every X € #, is intrinsically local. Let A€ P be such that K; ,C W, and
hence X=UWX,UA) ‘e, The closed operator X=(X |Dy)**
=U(A)(X, | Dog)**U(A)~! is affiliated with U(A)a,U(1)~ ' C%(K, ;), and hence
with o/ (W,). It follows that X commutes strongly with o/ (Wg)=/(W,). The
relation (4.2) implies (since X is actually hermitian) that (X ¢$.|4¢"> = {A*¢| X $2>
for any ¢, and ¢/ in the domain D(X) of X. In particular, this relation holds for
¢.=A,¢" and ¢.=A,¢", for any A,, A, € /(W) and any ¢’,¢" € D,,. With this
choice we thus have

(A XP|AAL8"> =< XA, §|AA,9") = (A* A, 01X 4,47 = (A*A,14,X 47>,
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since X commutes strongly with 4, and 4,. From the equality of the first and
fourth members we conclude that the operator A¥ A4, satisfies the same premises
as the operator A, for any A, 4, € o/ (Wy). In view of (4.3) we then have

JV(im) AT AA,Q = A5A*4,Q (4.4)

for all 4,, A, e L (Wy).

3) Let Be o/ (W,). We then have JV(—in)B*Q = BQ, and from this relation and
from (4.4) it readily follows that (B*Q|ATAA,Q)={A$A*A,Q|BQ). Since B
commutes with 4, and 4, we conclude that {4,Q|[B, A]4,2) =0. Since o/ (W)
is dense it follows that [B, A]=0, and hence A€ L (W) = (Wg). U

This proposition in effect establishes a uniqueness property of the local AB-
system generated by a single intrinsically local operator. One may ask whether it
holds more generally, within Scenario A. This could be the case, but the above
proof does not apply without the assumption of intrinsic locality: the reasoning in
step 2 depended critically on the fact that Dy is a core for the closed extension of
X, | Do, which is affiliated with #(K,). If X is intrinsically local, the extension is
simply (X [ Dog)**.

Proposition 4.4. Let the premises and notation be as in Proposition 4.2. Then
(X'¢'|B§") ={(B*¢'|X¢"> (4.5)
for all ¢',¢" € Dy, all Be (W), and all X € Po(Wy).

Proof. 1) Let Ke A", KCW;, and let W, e #", W, C W.nK°: the three sets K, W,
and Wy are thus pairwise spacelike separated from each other. Let Ye £, (W;) and
B, € #(K). By the same reasoning as in step 5 of the proof of Theorem 2.8 we
conclude that JV(—in)B, YQ=B{Y'Q. Let X € Z,(Wy), in which case we have
JV(im)XQ=X'Q. It follows that

(B,YQIXQ>=<(X'QB*Y'Q). (4.6)

2) We define 77, ={U(L)X,U(A) " '|AeP, K, ,CW,}. Bvery Y, € #,, is her-
mitian and intrinsically local, and the operator Y, =(Y; | Do )** is affiliated with
o (W,). For such a Y; we have Y,B,Y,Q=B,Y,Y,Q, if B, € #(K) and Y, € Z,(W,).
Since Y;CY, (where Y, denotes the closure of Y; relative to D,), we have
Y¥OY*DY,, and hence YFXY,Q=YFXY,Q=Y,XY,Q=XY,Y,Q for any
XeP (W) and any Y;e P (W,)CP,(W,). We thus have {(B,Y,Y,QXY,Q)
=(¥,B, QX Y,Q>=(B,Y,Q|XY,Y,Q). Since this holds for any Y, € #,,, and
since #,, generates Z,(W,), it follows that (B, Y, Y,Q|X Q> = (B, Y,Q| X ¥,Q) and
(XTQIBEYY,Q) =<(XTY,QBFY,Q) for any Y,, ¥, € Z,(W,). From these relations,
and from (4.6) with Y=Y,'Y,, we obtain

(B, Y QIXY,Q) = (X' QIB1,2) 4.7)

for any Y,, Y, € (W), any B, € #(K), and any X € Z,(Wy).
3) We write T(x)= U(I, x) for the translations in P. It follows from (4.7) that
the relation

(BYQIXT()%2) = (X' YQIBFT(x) },2) 48)
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holds for all T(x) with x in some non-empty open subset of .# (since there is an
open subset of translations which map W, into itself). Both members in (4.8) can be
continued analytically to the forward imaginary tube, and it follows that (4.8)
holds for all x. This means that (4.7) holds for all B, € Z4(K), all X € Z,(Wy), all
Y, € o (M), and all Y, e Z,(W,). By similar reasoning we then conclude that (4.7)
also holds for all Y, e Z,(#). Hence (4.5) holds as stated when B= B, € #(K), for
any KCW,, K € . By part b) of Lemma 2.5 it then follows that (4.5) holds for all
Beg(W,). O

This proposition thus establishes a certain property of relative locality. That it
is rather weak can be seen if we compare it with the following more desirable, but
purely hypothetical situation: The relation (4.5) holds for all X € Z,(K), all
Be o(K°), and all ¢',¢”" € D,, for any Ke#'. The reason why our proof of
Proposition 4.4, which is concerned with wedge-regions, cannot be trivially
extended to the case of double cones is that we depend in an essential manner on
the relation (2.1) which refers specifically to wedge-regions. We do not have
available an analogous relation for double-cone regions at this time, and it is even
possible that no such analog of the same generality exists.

It is tempting to believe that any two intrinsically local operators generate the
same AB-system. We note here that the attempt to draw such a conclusion directly
from Propositions 4.3 and 4.4 founders on the domain restrictions for ¢’ and ¢” in
(4.5). There are, however, special cases in which progress is possible, as we shall see
later.

Proposition 4.5. Let the premises and notation be as in Proposition 4.2. Let
K, o= —K,. Then the operator X ;o=0,X,04 ' € Py(K, o) is an intrinsically local
hermitian operator (in the sense of Definition 4.1), and it generates the same AB-
system as X.

Proof. Itis trivial that X o is hermitian and intrinsically local. By Proposition 4.2
the AB-system generated by X, is TCP-covariant (since it satisfies the special
condition of duality), and we thus have O,%#(K,)0,'=%(K, ). Since
a;=a((X, | Do )**)CA(K,) it follows that a((X,e [ OgDye)**)=0ya,0,"
CH(K,, o). This implies that o/ (W)={U(1)O,a,0, ' UA) '|AeP, K, 9 ,CW},
and hence X, and X, generate the same 4B-system [through (4.1)]. O

We shall now summarize the facts concerning an intrinsically local operator as
follows.

Theorem 4.6. Suppose that for some K e A there exists a hermitian, intrinsically
local operator X ;€ Py(K,), in the sense of Definition4.1. Let Z,(R) and D be as in
Definition 4.1, and let a;=a((X | Dy,)**) be the von Neumann algebra generated by
the closure of X | Dy, Let {A (W), B(K), A (K)} be the AB-system generated by
X in the sense that

AW)={UNa,U(X)"'|AeP, K, ,CW}".
Then:
a) Scenario A in Definition 2.4 obtains for this AB-system and the algebra
Po(M), and in particular the AB-system is local and TCP-covariant, and it satisfies
the special condition of duality.
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b) The operator X ,9=0,X,04" is hermitian and intrinsically local, and it
generates the same AB-system as X .

©) If Ke X issuchthat K ,is contained in the interior of K for some A€ P, then
Q is cyclic and separating for #(K).

d) Let We W . A bounded operator B is an element of /(W) if and only if it
commutes weakly on D with every X € 2, (W°), which is the case if and only if B
commutes weakly on D,, with every operator U(A)X,U(A)"! such that leP,
K, ,CcW"

e) Let Ke A'. A bounded operator B is an element of %(K) if and only if it
commutes weakly on D, with every X € P,(K°), which is the case if and only if B
commutes weakly on D, with every operator U(L)X,U(A)~! such that ieP,
K, ,CK".

f) Let WeW'. Then Py(W) commutes weakly on D, with o/ (W°).

g) Let { (W), %,(K), L (K°)} be an AB-system, and let P,i (M) be a sub-
algebra of Py (M) such that Scenario A obtains for this sub-algebra and this AB-
system. If X e Py (K,), then the AB-system is identical with the one generated
by X..

Proof. 1) The assertion in a) follows from Proposition 4.2, and the assertion in b)
follows from Proposition 4.5. The assertion in ¢) follows from Proposition 4.2, and
the assertion in d) follows from Proposition 4.3 (and from the Poincaré-covariance
of the AB-system). The assertion in f) follows from Proposition 4.4 and Poincaré-
covariance.

2) We consider the assertionin ¢). Let K € 4", and suppose that Bis a bounded
operator which commutes weakly on D, with every operator U(A)X,U(4)~* such
that Ae P, K ,C K°:in particular this is the case if Bcommutes weakly on D, with
Po(K°). Let We # be such that K C W. Then B also commutes weakly on D, with
every operator U(4)X,U(4)~ ! such that 1€ P, K , C W*, and hence, by part d), we
have B e o/(W). Since this holds for every WO K, We #, it follows that B € Z(K).
The converse statement is an aspect of Scenario A in Definition 2.4.

3) We consider the assertion in g). Let Dy =Py ((A)R. If X € Py (K,) we
have Dy,CD,,, and it is a feature of Scenario A that for any We#", every
Be .o/,(W) commutes weakly on D, with Z,,,(W¢). Since obviously Z,,,(W°)
D P, (W*) we conclude, by part d) of the present theorem, that B € .o/(W). Hence
o (W)C o/ (W), and since both AB-systems satisfy the special condition of duality
it follows that they are identical. [

The scenario described in the above theorem can be regarded as an
“improvement” of Scenario 4, which derives from the circumstance that the
algebra 2, (.#) contains an intrinsically local operator. In particular the
association of such an operator with a local 4B-system is unique. Note, however,
the domain conditions in part f) of the theorem. The statement in f) is equivalent to
the statement that for every X € Z,(W) there exists a closed extension X, of X | D,
which is affiliated with .o/(W) and such that (X' | Do,)* > X, but from this it does
not follow (as far as we can see) that X as defined on D, also has a closed extension
affiliated with o/ (W).

The domain considerations simplify substantially if the operator X in the
theorem is linear in the field ¢(x), and we shall now study this case. We first
consider a technical preliminary.



72 W. Driessler, S. J. Summers, and E. H. Wichmann

Lemma 4.7. Let K e A" be a fixed double cone, and let f(x) be a real test function

with support in K, and such that its Fourier transform f(p)+0 for all p. Let

X,=o[f1=X!, and let Dy, be defined as in Definition 4.1 in terms of X,. Then:
a) Dy, is dense in .

b) Y=(Y[Do)** 4.9)
for all Ye Py(M), where Y is the closure of Y as defined on D;.

Proof. 1) If the functions f(x) and g(x) are elements of the test function space
F(R*), then their convolution f* g e #(IR*), and for a fixed g the linear mapping
f—f*g of Z(IR?) into itself is continuous in the test function space topology
relevant for tempered distributions. Furthermore, if f,e #(R* and if
{gilk=1,...,n} is any fixed n-tuplet of elements of & (IR#), then the element

(fi*g)®(fi*9,)® ... ®(f,*g,) of L(R*) is the image of the element
[ ®£.®...® f, of Z(IR*") under a linear mapping of & (IR*") into itself which is
continuous in the test function space topology.

2) Let YePy(M), and let ¢ be any vector. Let {g,} be an n-tuplet of test
functions in ¥ (R*) as above. We write h,=f,*g, for k=1,...,n, and X (x)
=T(x)X,T(x)" * for the translate of X ; by x. In view of what was said above, and in
view of the nature of the quantum field as an operator-valued tempered
distribution, it follows that

§d(xy)...d(x,)g1(x1). . gn(xn) <P Y X (X)X (x5)... X ()2
={4IYp[h1o[h,]...0[h,]2) (4.10)

where the integral at left makes good sense as a Riemann integral, since the
function {@|Y X (x,)X(x,)...X(x,)R2) is a jointly continuous function of the
variables (x4, X5, ..., X,)-

3) From our crucial assumption that f;(p) +0 for all p it readily follows that the
set { £, * glge #L(R*)} is dense in #(R*) in the test function space topology. From
this we conclude that the span of Q and all vectors of the form ¢[h,]...0[h,]Q,
where n is an arbitrary positive integer, and where h,=f, * g, for arbitrary
elements g, € #(IR*), is a dense sub-manifold of D, and hence dense in #.

We consider (4.10) in the special case Y=1. If the vector ¢ is orthogonal to D,
the left member in (4.10) vanishes, and in view of what was said above we conclude
that ¢ =0, i.e., Dy, is dense in #, as asserted.

4) We consider (4.10) for an arbitrary Ye Z(.#). Let Y=Y | D,,, and let ¢ be
in the domain of ¥*. Since X,(x,)...X(x,)Q2 € Dy, we conclude from (4.10) that

(Y*PlolhJelhal...olhd@) = {H Yolhi1olh,]...[h12),

where the h, are constructed as in step 2). Hence every vector of the form
o[h]e[h,]...@[h,]Q is in the domain of Y** which, of course, also includes Q.
Since the span of the elements h;, ®h,® ... @h, € F(IR*") is dense in £ (R*") in the
test function space topology, we conclude that D, is included in the domain of ¥**,
and that Y**>Y. Since YD Y the relation (4.9) follows, and Dy, is thus a core
for Y. O

We remark here that it is easy to construct a great abundance of test functions
f{(x) which satisfy the premises of the lemma.
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The facts stated in the lemma permit an improvement of Theorem 4.6 in the
special case that X is linear in the field.

Theorem 4.8. Let K € A, and let f(x) be areal test function with support in K, and
such that its Fourier transform satisfies the condition f(p)+0 for all p. Let
X, =o[ f,]=X], and let the notation in general be as in Definition 4.1 and Theorem
4.6. Suppose furthermore that U(A)a,U (%)~ commutes with ag for all A € P such that
K, , is spacelike relative to K. Then:

a) X,=(X, [ Do )**, and hence a,=a(X,).

b) The operator X, is intrinsically local, in the sense of Definition 4.1, and hence
all the conclusions in Theorem 4.6 apply to the algebra Py (M) and the AB-system
generated by X, in the sense described in Theorem 4.6. In particular Scenario A
obtains.

¢) Furthermore, for any K e A", 2,(K) commutes weakly on D, with o/(K°),
and Po(K®) commutes weakly on D, with B(K). For any We W, (W) commutes
weakly on D, with o/(W¢). Equivalently stated: If X € 2,(K), then X has a closed
extension X, affiliated with #(K), and such that X'*>X,>X, and similarly
X € Po(K°) has a closed extension affiliated with o/ (K°). If X € (W), then X has a
closed extension X, affiliated with o/ (W), and such that X"*>X > X.

d) Suppose that X,=X]e?\(K,), for some K,€ XA, is another intrinsically
local operator, not necessarily linear in the field. Then X, generates the same AB-
system as X;.

Proof. 1) The relation (4.9) in Lemma 4.7 applies in particular to X, and hence the
assertions in a) follow. Dy, is dense, by the same lemma, and hence X is
intrinsically local, and the assertions in b) follow.

2) The assertions in ¢) follow readily from Lemma 4.7 and the corresponding
weak commutation relations asserted in Theorem 4.6. The salient point is that the
domain Dy, can be replaced by the domain D, in the statements of the weak
commutation relations between the elements of #,(.#) and the elements of the
algebras of the AB-system, in view of (4.9). We can then conclude that %(K)
commutes weakly with ¢[ f] on D, for any f with supp(f)C W when WCK¢. It
follows that #(K) commutes weakly on D, with @[ /] for any f with supp(f)CK",
and from this it follows that 4(K) commutes weakly on D; with Z,(K°).

3) We consider the assertion in d). Let {7, (W), 4,(K), o/,(K°)} be the AB-
system generated by the intrinsically local operator X,, as in Theorem 4.6. Let
Po(W)C Py(W) be defined in terms of X, in analogy with the definition of 2, (W)
in terms of X,. By part ¢) of the present theorem, £, (W) commutes weakly on
Do, CD, with o/ (W°). It follows, by part d) of Theorem 4.6, that .o/ (W*) C.o,(W°),
and since both 4 B-systems satisfy the special condition of duality we conclude that
they are equal. O

The significant improvements in the present theorem over Theorem 4.6 (and in
particular the uniqueness property expressed in part d) all derive from the domain
relation in (4.9). Hence conclusions similar to those in Theorem 4.8 also apply to
intrinsically local operators which are not linear in the field, provided that they are
such that the relation (4.9) holds.
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As we said before, the notion of an intrinsically local operator could naturally
be generalized to the notion of an intrinsically local set of operators, with
implications analogous to Theorems 4.6 and 4.8. We felt it was of particular
interest to consider the possibility of just one such operator defining the local AB-
system.

5. On Fields Which Satisfy a Certain Regularity Condition

We shall now consider a condition on the field ¢(x) which goes beyond the usual
minimum assumptions. It can be described as a condition which “regularizes” the
high-energy behavior of the field. We state it as follows.

Definition 5.1. For any a>0 we employ the notation w,(s) for the function
w,(5)=(1+ 5% (5.1)

of the real variable s, and we write w, for the selfadjoint operator w, = w,(H), where
H is the Hamiltonian operator.

The field ¢(x) will be said to satisfy a generalized H-bound if and only if there
exists a constant o, with 1>a>0, such that the following conditions hold:

a) For any test function f the domain D(¢[ f]) of the closure of ¢[ f] (relative
to D,) contains exp(— w,)#.

b) For any test function f the operator @[ f]exp(—w,) is a bounded operator.

Let o, be the infimum of all « for which the above conditions hold. We shall
then say that the generalized H-bound is of order a,.

Regularity conditions of this general character have been considered before, in
studies of the connection between field operators and bounded local operators [15,
9, 13], although with stronger conditions on the field. Instead of the above
condition it was assumed that D(¢[ f]) contains the intersection of the domains of
all powers of H, and furthermore it was assumed that o[ /](I+ H) " is a bounded
operator, for some r>0. Such an H-bound is thus, with our terminology, a
generalized H-bound of order 0. Since the considerations which follow are not
more difficult in the case of a generalized H-bound than in the case of a power
H-bound, we felt it worthwhile to discuss the situation under the weaker
assumptions. For other applications of generalized H-bounds, see [10, 29].

The reason for the restriction 1> o will become clear in the following. The
essential point is that we shall depend on the existence of test functions
f(t) e Z(RY) of (arbitrarily prescribed) compact support whose Fourier trans-
forms f(s) satisfy conditions of the form |f(s)| <bexp(—w,(s)). It is well-known
(and easily shown) that such functions exist if and only if a<1.

The assumption of a generalized H-bound has rather drastic consequences for
the field, which we shall now explore. For this paper the ultimate goals are
Theorems 5.5 and 5.6. We shall proceed through a sequence of lemmas, some of
which are also of interest in other contexts.

Lemma 5.2. Suppose that ¢(x) satisfies a generalized H-bound of order o, with
1>a=0. Let Dy(a) be the linear manifold defined by

Dy(o) =span {exp(—wp)H#|f> o} .
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Let f(x)e #(R*). We denote X = @[ f]. Then:

a) The manifold Dy(«) is Poincaré-invariant. It is dense in S, and it is contained
in the domain D(X) of the closure of X (on D,).

If B> o, and if D is any dense linear manifold in #, then exp(—wp)D is a core for
X. In particular Dy(x) is a core for X.

b) Every dense, translation-invariant, linear sub-domain D, of D, is a core
for X.

Proof. 1) That Dy(x) is Poincaré-invariant follows readily from the fact that if
> >0, and if e and ¢’ are any two (fixed) forward timelike unit vectors in .Z,
then there exists a constant ¢ such that wg(e - p) <c+ w; (e’ - p) for all p in the closed
forward lightcone. It is obvious that Dg(«) is dense, and that Dy(e) is contained in
D(X). The remaining assertions in part a) follow readily from part b), which we
shall now consider.

2) Let D, be a dense, translation-invariant, linear sub-manifold of D;. Let u(t)
be a test function of compact support, and such that u(0)= 1. We define the linear
manifold D; , in terms of u and D, by D, .=span {u(H/n)DJn=1,2,...,}. Then D, ,
is a dense, linear sub-manifold of D,. For any ¢eD, the sequence
{¢.=u(H/n)¢ln=1,2, ...} is contained in D, ., and converges strongly to ¢. Since
the field is an operator-valued tempered distribution, the sequence
{X¢,jn=1,2,...,} converges strongly to X¢, and since D, was assumed
translation-invariant, it follows that D, . is contained in the domain of (X [ Dy)**
and that (X [ D)**=(X [ D, )**.

3) Let f>a. By Definition 5.1 the operator By =X exp(— ) is bounded, and
we have X D Byexp(wy). The operator exp(w,) is defined and selfadjoint on the
domain exp(—wy)#. Every core for exp(wp) is also a core for (B;exp(wg))** [with
exp(— wp)# regarded as the domain of Byexp(wg)]. In view of the construction of
D, . in step 2 above, it is easily seen that D; . is a core for exp(wy). By the result in
step 2 we can then conclude that X > (Bpexp(wp))** = (X I Dy )**=(X [ D)**. If
we select D= D, the first and fourth members are equal, from which it follows that
X =(Bjexp(wy)**. Hence X =(X | D)** for any D which satisfies the stated
premises. It is now trivial that exp(—w;)# is a core for X for any > o, and from
this it follows that Dy(x) is also a core for X. [

We remark here that D, and D, are not contained in the domain Dg(«), nor
is the latter domain in general mapped into itself by X, unless the test function
f(x) has special properties. We next state and prove a technical lemma which
has to do with this issue, concerning a class of bounded operators which map
Dy(o) into itself.

Lemma 5.3. Let Dy(«) be defined as in Lemma 5.2. Let B, be a bounded operator.
Let g(t) e #(R?) be such that its Fourier transform

! | dtg(t)e s
T —o

=

g(s)=

satisfies the condition

1g(s) <exp(—wy(s)) (5:2)
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for some B> a. Let u(t) € #(R?) be such that supp () C[ — 1, 1], and let the bounded
operator B be defined by

B= | dig(t)u(t)eBoe """ (5.3)

Then (U(A)BU(A) ™ ")Dy(o) C Dg(e) and (U(A)B*U(L) ™ 1)Dg(e) CDy() for all
elements A of the Poincaré group P.

Proof. 1) Let u be the spectral measure in the spectral resolution of the
Hamiltonian operator H. For any real ¢ we write F(q) = u((— 0, ¢]) [and we then
have F(q)=0 for <0, in view of the spectrum condition]. Let ¢, ¢" € #. We
define the function h(t; q) by

h(t; g)=<#'|I — F2q))e""Boe ™ “"F(q)$"> . (5:4)

As a function of t (with g fixed) A(t; g) is continuous and bounded, and we
trivially have

o)

| dtlu@h(e; P kg - 1417 197117 (5.9
for some constant k,, independent of g, ¢’, and ¢”.
Furthermore we have

{H'1I—F(29))BF(9)$") = _Qfoo drg(u(h(t; q) . (5.6)

2) Let g=0 be fixed. The function A(t; q) of t can be regarded as a tempered
distribution. Its Fourier transform #(s; q) is then well-defined as a tempered
distribution, and by inspection of (5.4) we see that its support is contained in
[¢, + ). The convolution of A(s; q) with #(s) is the Fourier transform of the
function h,(t; q) =u()h(t; q) € L;(IR)nL,(R?). In view of the assumed support
properties of 7(s) we conclude that the support of /,(s; q) is contained in
[g—1, + o).

We can regard the integral at right in (5.6) as the scalar product of the elements
g*(t) and h,(t; q) in the Hilbert space L,(R?). In view of the support properties of
hy(s; q), and in view of the inequalities (5.2) and (5.5), it follows by an application of
Schwarz’ inequality that

K¢l = FQRq))BF(q)¢" | =koll¢'ll - 6"111(q) » (5.7

where the positive function I(g) is given by
IgP’= | . ds exp(—2w(s)) <ki exp (— wy(q)) (5.8)
.-

for some constant k; >0 (independent of g). It follows from (5.7) and (5.8) that

I = FQ2q)BF(q)|| <kok, exp(—wp(q)/2). (59

3) Let y>a and let g = 0. Since the function w,(s) is monotonically increasing
for positive s, we have ||(I — F(g)) exp(—o,)|| £exp(—,(q)). From this, and from
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(5.9), it follows that

I(I—F2g)Bexp(—w,)| = [I(I - F(29))BF(q) exp(—w,)]|
+ (- F(2q)B(I - F(q)) exp(—w,)|
S koky exp(—wy(q)/2) + | B] exp(—w,(g)) . (5.10)

4) We now select o’ > o such that f>a’, y>a’. There then exists a constant k
such that for all s>0,

koky exp(—wy(s/2)/2) + [| Bl exp(—,(5/2)) <k exp(—2w,(5)) ,

and hence, in view of (5.10),

I —F(s)Bexp(—o,)|| <kexp(—2w,(s)).

This implies that Bexp(— w,)¢ is in the domain of exp (w,) for all ¢, and hence
in Dg(o). Since y is arbitrary, except for the condition y>a, it follows that
BDy() C Dy(o). Similarly we conclude that B*D (o) C Dy(), since B* is given by an
integral as in (5.3), with g(¢)u(f) replaced by its complex conjugate.

We have thus proved the assertion in the lemma for the operators
U(A)BU(A)~ ! and U(L)B*U(%) ! in the special case A =1I. The general case then
follows from the Poincaré-invariance of Dy(x). O

We note here that Lemmas 5.2 and 5.3 actually hold for all «=0. In the next
lemma the restriction 1>« >0 is, however, essential, which is why this restriction
appears in Definition 5.1.

Lemma 5.4. Let the field ¢(x) satisfy a generalized H-bound of order o, with
1>0=0. Let f(x) be a real test function. We write X=¢[ f]1=X". Let D be a core
for X. Let A be a bounded operator. We write A(t)=exp(itH)A exp(—itH) for all
real t. Suppose that for all t € (— 6, 0), for some 6 >0, the operators A(t) and X satisfy
the weak commutation relation

CA@)*¢1X¢") ={X¢|A(D¢"), all ¢,4"€D. (5.11)

Then A(t) commutes strongly with X for t € (— 8, 8), and in particular this holds
for A(0)=A. Equivalently stated: A(t) € a(X)’, where a(X) is the von Neumann
algebra generated by X.

Proof. 1) Let u(t) e #(R?) satisfy the conditions u(0)=1 and supp(#)c[—1,1],
where d(s) is the Fourier transform of u(t). Let g(t) e #(R*") be a function which
satisfies the conditions: a) supp(g) C(—4, 6); b) |§(s)| < kexp(—wp(s)) for some p’
such that 1> p’>a, and some constant k; c) | dtg(t)=1. As we remarked before,
such functions exist. For any 1> 1 we define g,(t) = Ag(At). Hence [ dtg,(t)=1, and
supp(g,)C(—J, ). Let B be such that f'> > a. Since §,(s) =g(s/4), it follows that
for all A= 1 there exists a constant k, such that |§,(s)| <k, exp(—wy(s)) for all s.
We define the operator 4, by

]
A= j ) dtg,(Hu(t) A(t) (5.12)
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for all A=1. It then follows, by Lemma 5.3, that A,Dp(e) CDg(a) and AZDy(e)
CDy(a).
2) In view of the construction in (5.12) it follows from (5.11) that

CAFH|X 97> ={X¢|4,4">, all ¢,¢"€D. (5.13)

Since D was assumed to be a core for X, this relation also holds for all ¢” and ¢”
in the domain D(X) of X, and since Dy(a) C D(X), the relation (5.13) in particular
holds for all ¢, ¢” € Dy(«r). By Lemma 5.2, Dy(«) is a core for X, and since 4,;Dg(x)
CDy(o) and A¥Dy(x)CDy(e) by step 1) above, it follows that XA,>A4,X and
XA¥>A:X,ie., A, ea(X). From the construction of 4, in (5.12) it follows trivially
that A4, tends strongly to A(0)= 4 as A tends to + oo, and hence A(0) e a(X). We
have thus proved the conclusion in the lemma for the case t=0. The general case
follows by the same reasoning applied to the operator A(z,) instead of A4, for any
particular t,e(—9,0). [

We are now prepared for the main results of this section, which we present in
the form of two theorems; we prove these together.

Theorem 5.5. Let ¢(x) be alocal, irreducible, hermitian scalar field, which satisfies a
generalized H-bound of order a, with 1 > =0. Let K, be a double cone, and let f(x)
be a real test function, with supp(f,)CK,, and with a Fourier transform which
vanishes nowhere. We write X = @[ f,]=X!. Let D be a core for X ,, and let a(X ) be
the von Neumann algebra generated by X ..

Let € be a selfadjoint set of bounded operators, such that the set
G =U{U(W)EU(L) " !|AeP} is irreducible. Suppose, furthermore, that the elements of
€ satisfy the following weak condition of relative locality with respect to X,: For
each A€ there exists a double cone K(A) such that U(A)AU(L)™' commutes
weakly with X, on D, for all .eP such that K(A), is spacelike relative to K.
Then:

a) The AB-system {of(W),B(K), 4/ (K)} generated by a(X,), through the
definition

AW)={UNa(X)U() " AeP, K, ,CW}", (5.14)

is local and satisfies the special condition of duality, and Scenario G obtains for this
AB-system and the field.

b) Let K e A, and let f be atest function withsupp(f)CK. Let X = @[ f]. Then
X is affiliated with B(K). If f is also real, and has a Fourier transform which
vanishes nowhere, then X is intrinsically local, in the sense of Definition 4.1.

c) Every intrinsically local hermitian operator in Py(M) generates the AB-
system defined in a) above, in the sense of Theorem 4.6.

d) For each Ac¥, Aec B(K(A)).

Theorem 5.6. Let ¢(x) be local, irreducible, hermitian scalar field, which satisfies a
generalized H-bound of order o, with 1>a20.

a) Suppose that Scenario A in Definition 2.4 obtains for an AB-system
{AL W), B(K), (K}, and a sub-algebra Py (M) of Po(M), and suppose further-
more that 2y,(K,), for some K e A, contains an operator X = @[ f.], where f,is a
real test function with supp(f;) CK, and with a Fourier transform which vanishes
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nowhere. Then X, is intrinsically local, and Scenario G obtains, and all the
conclusions in a)—c) in Theorem 5.5 apply for this AB-system.

b) Suppose, instead, that for some K, € A" there exists a hermitian intrinsically
local operator X, e Z,(K,), not necessarily linear in the field. Then Scenario G
obtains for the AB-system generated by X, in the sense of Theorem 4.6, and all the
conclusions in b) and ¢) of Theorem 5.5 apply to this AB-system.

Proof. 1) We first prove Theorem 5.5. Let ¥, be defined as the set
{U()AU) " AeP, Ae¥, K(A),CKE}. Since K(A), is closed and K¢ is open, it
follows that for any B € ¢,, there exists a >0 such that exp(itH)Bexp(—itH)e %,,
for all t € (— 4, 9), and hence these latter operators commute weakly with X on D,
by the premises of the theorem. Since D is a core for X, we conclude, by Lemma 5.4,
that %,,Ca(X,), and hence %, Ca(X,).

2) Let the AB-system {.7,(W),%,(K), o/,(K)} be defined through

A\ (W)={URNAU(A) " '|A€¥, Le P, K(A),CW} . (5.15)

By the premises of the theorem, the set U{#,(K)|K €'} is irreducible. With
reference to Theorem 2.8 we define # (K )= {X},and # (K) =0 for K #+ K, and we
define Z,(R) as in that theorem. By part a) of Lemma 4.7 the linear manifold
Do, =2, ()R is then dense in /. From this, and from the result in step 1 above, it
follows that Z,(.#) and the AB-system defined through (5.14) satisfy the premises
in part a) of Theorem 2.8, and we conclude that Scenario 4 obtains. By part b) of
Lemma 4.7, and by the result in step 1 above, we have a(X;) =a((X,]Dy,)**)C ¥,
CoA (K =%,(K,). This implies that X, is intrinsically local, and hence the
conclusions in Theorem 4.8 apply to the AB-system defined through (5.14). Since
a(X,)CA,(K,) it follows that .o/ (W)C =/,(W), and from this we conclude that the
AB-systems defined through (5.14) and through (5.15) are identical. This implies
the assertion in d), and the assertion in c) follows from part d) of Theorem 4.8.

3) Let Kex’', and let We#', WOK. Let f be any test function with
supp(f)CK. We write X =¢[ f]. Since K is closed and W is open it follows that
there exists a 6 >0 such that for all t € (— 9, 0), exp (itH)X exp(—itH) € Z,(W). By
part ¢) of Theorem 4.8, exp (itH) X exp(—itH) commutes weakly on D, with o/ (W°)
for all te(—4,0d), or, what amounts to the same, if Ae.o/(W°), then
exp(itH)A exp(—itH) commutes weakly with X on D, for all t € (— 9, d). For any
A€ o/ (WF), and any A= 1, we define A, by the integral in (5.12), as in the proof of
Lemma 5.4, and we then have X™*4,> 4,X, and hence X™*4,> 4,X. By Lemma
5.2 we have Dy(er) C D(X), where D(X) is the domain of X, and by Lemma 5.3 we
have A,;D () C Dy(x). Hence X A, = 4, X on Dy(x), and since Dy(x) is a core for X,
by Lemma 5.2, it follows that XA,> 4, X. In a similar fashion we conclude that
XA3DAfX, and hence 4, € a(X)'. As / tends to + oo the operator 4, converges
strongly to A, and hence Aea(X), which means that .«/(W¢°)Ca(X). Hence
a(X)CA (W =/(W), and since this holds for all WOK, it follows that
a(X)CH(K).

From the above result it readily follows that X is intrinsically local if f is real
and such that its Fourier transform vanishes nowhere. Furthermore we conclude
that Scenario G obtains for the 4AB-system and the field.
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4) This concludes the proof of Theorem 5.5, and we now consider Theorem 5.6.
We first assume the premises in part a). From the description of Scenario 4 in
Definition 2.4 it follows that the operator X, commutes weakly on D, with &7 (K5).
By part b) of Lemma 5.2 we have X,=(X; | D,,)** and it follows that X,
commutes weakly with &/(K¢) on D,. We can then continue the reasoning as in step
3 above, and the conclusion follows readily.

5) We consider part b) of Theorem 5.6. By Theorem 4.6 the intrinsically local
operator X, generates an AB-system {</(W), 4(K), #(K)}, and a polynomial
algebra Z,,(.#), for which Scenario 4 obtains. Let K € 4", and let f be a real test
function with supp(f)CK. Let We#", WO K. By part f) of Theorem 4.6 the
operator X = ¢[ /1= X' commutes weakly on D, with .o/(W¢). By Lemma 5.2 we
have X =(X | D,,)**, and hence X commutes weakly on D, with .«/(W°). The
reasoning in step 3 above then applies, and the assertions in part b) of Theorem 5.6
follow. (O

As we said in the Introduction, the assumption of an H-bound thus has
remarkable implications for the “selfadjointness problem.” By Theorem 5.6 the
existence and uniqueness of a local AB-system with which the field is locally
associated is assured if the field satisfies a generalized H-bound and if there exists at
least one intrinsically local operator. It then follows that there also exists a
multitude of intrinsically local operators which are linear in the field. What is
perhaps more remarkable is that, according to part a) of Theorem 5.6, the
requirement of intrinsic locality can be omitted from the premises if X is linear in
the field. This provides potential “tests” for whether the field is locally associated
with a net of local von Neumann algebras or not: we can select any single real
test function f of compact support with a Fourier transform which vanishes
nowhere, and then “check” whether @[ f] is intrinsically local or not. We regard
this as a very substantial reduction of the “selfadjointness problem.”

We want to say a few words here about generalizations. First of all our
regularity condition could be relaxed in various ways. We might thus assume that
the conditions a) and b) in Definition 5.1 hold only for some test function f(x). Our
reasoning then applies to the corresponding operators @[ ], and it is clear that we
arrive at conclusions similar to (although possibly somewhat weaker than) the
conclusions in Theorems 5.5 and 5.6.

Secondly we note that the “bounding operators” exp(— w,) could have been
chosen differently, i.e., the functions w,(s) in (5.1) can be replaced by functions in a
somewhat larger class without upsetting the conclusions in the crucial Lemmas 5.2
and 5.4. For the latter lemma it is required that there exist functions of compact
support with Fourier transforms which are asymptotically similar to the bounding
functions exp(—w(s)). A function w(s) which increases linearly with s is not
acceptable, but the arrangements leading to Theorem 5.6 could be carried through for
functions with an asymptotic behavior such as s/(In(s))®>. The more general
permissible bounding functions are to be found in the class of functions discussed
by Jaffe [19] in his generalization of the notion of local fields. Since the handling of
the more general functions is mildly complicated we felt that our results were best
presented within the framework of the simple conditions in Definition 5.1.
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6. About Local Nets Associated with Borchers Classes of Fields

The considerations in the preceding sections can readily be generalized to the case
of a theory of an arbitrary number of finite-component Bose-fields. A particular
case of this is a set of fields in the Borchers class [4] of a single irreducible field ¢(x).
The following question then arises. Suppose that ¢(x) is related to a local AB-
system in such a way that Scenario A4 (or G) obtains. Is every field yp(x) in the
Borchers class of ¢(x) then also so related to the same AB-system? At this level of
generality we have no answer to the question, but as we shall see, a rather
satisfactory answer can be given in the presence of a generalized H-bound. We
remark here that the question makes good sense only for local nets which are 4B-
systems. It is easy to construct examples [22] (involving generalized free fields) in
which one field is locally associated with a local net, but such that some other field
in its Borchers class is not locally associated with the same net.

We shall now consider the situation in which at least one field in a Borchers
class satisfies a generalized H-bound, as in Definition 5.1. For reasons of simplicity
we shall actually consider only the case of two fields, ¢(x) and y(x), both defined
on a common dense domain D, as described in [28]. The remarkable circum-
stances which we wish to discuss are already manifest in this simplest special case.
We next state and prove a theorem on this issue.

Theorem 6.1. Let ¢(x) and y(x) be two irreducible hermitian scalar fields, local and
relatively local. It is assumed that (x) satisfies a generalized H-bound of order o,
with 1>020. For any RC.4, %,,(R) denotes the polynomial algebra generated by
all o[ ] with supp(f)CR, and Dy,=P,,(M)Q and D,, denote the standard
domains constructed fromthe field ¢(x) alone. Similarly the objects #,,(R), D, and
D,, refer to the field y(x) alone. Finally it is assumed that there exists an
intrinsically local hermitian operator X e P, (Ky), for some K e A", which
generates the AB-system { oA (W), B(K), L (K°)} (in the sense of Theorem 4.6), and
hence Scenario A obtains for this AB-system and the polynomial algebra P, (M)
generated by X . Then:
a) For any test function f,

W 1=l 1T D)** = L/T T Da(@)** = (L1 Doy)** =wLS1§ Doy)**,
where the domain Dy() is defined as in Lemma 5.2. (1)

b) Scenario G in Definition 2.4 obtains for the AB-system and the field y(x), and
hence any intrinsically local (hermitian) operator in P, (M) generates this AB-
system. In particular, if Ke A" and if f is any real test function with support in K
and with a Fourier transform which vanishes nowhere, then the hermitian operator
L f] is intrinsically local, and (w[ f] | Do, )** is affiliated with #(K).

¢) The AB-system is unique in the sense that it is equal to any other AB-system
which satisfies the same premises, but with respect to some other intrinsically local
operator X, € P (M).

Proof. 1) We first note that it makes no difference whether the condition that y(x)
satisfies a generalized H-bound refers to the closure [ f] (relative to D,) or to
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(w11 Dy,)** In the first case it follows, by the reasoning in the proof of Lemma
52, that w[f1=@[f1IDy,)** =[] Dy(e))**, since D,, is a dense,
translation-invariant sub-manifold of D,. In the second case we note that since
mRapIinal D, ,)**, the field in fact satisfies the generalized H-bound condition
with reference to the domain D,. The relations (6.1) follow trivially from Lemma
5.2.

2) Let We# . Since ¢(x) commutes with p(y) on D, for x—y spacelike, we
conclude, by reasoning similar to the reasoning in the proof of Proposition 4.4,
that 2, (W) commutes weakly on D, with o/ (W¢). Let K € ", K C W, and let f be
a real test function with supp(f)C K and with a Fourier transform which vanishes
nowhere. We write X =y[ f]=X". Since X € Z,,(W), it commutes weakly on D,
with o/ (W¢). Since Dy, is dense and translation-invariant, it is, by Lemma 5.2, a
core for X. Hence X commutes weakly with «/(W¢) on D;,,C D(X). The reasoning
in step 3 in the proof of Theorem 5.5 now applies, and we conclude that X is
intrinsically local, and that X generates the given AB-system. The remaining
assertions in the theorem now follow readily from Theorem 5.5 applied to the
field p(x). O

The above result suggests that a field ¢(x) which is in the same Borchers class as
a field y(x) which satisfies a generalized H-bound is better behaved than a field in
general. In this context the following (open) questions present themselves.

a) Could it be the case that everylocal field is in a Borchers class with some field
which satisfies a generalized H-bound?

b) Could it happen that a Borchers class which contains a field which
satisfies a generalized H-bound also contains a field which does not?

We have no basis for any conjectures concerning the above. An affirmative
answer to question a) would, of course, be rather pleasing since the analysis could
then be shifted, so to say, to the field which satisfies the H-bound. A negative
answer to question b) would somewhat reduce the significance of Theorem 6.1,
although we still have the result that both fields (which now both satisfy
generalized H-bounds) do generate the same unique local AB-system if they
generate any local net at all. If the answer to question b) is in the affirmative, one
may hope that no field of interest in physics can be so bad that it is not in a Borchers
class with some field which satisfies a generalized H-bound. Theorem 6.1 is then of
obvious interest.

The theorem has an obvious application to the case when ¢(x) is a free scalar
field for a particle of mass m, and 1(x) is any (irreducible) field in the Borchers class
of ¢(x). In this case it is known [12] that the Borchers class is the set of all Wick
polynomials in ¢(x) and its derivatives. It is also known [18] that the fields in this
class satisfy generalized H-bounds of order 0. It is well-known that ¢(x) generates
a unique local AB-system (via the Weyl group elements exp (ip[ f]), with f real).
The field averaged with a real test function is, in fact, essentially selfadjoint on its
domain D,,. It was shown by Langerholc and Schroer [23] that a Wick
polynomial y(x) is irreducible if it contains a term of odd order. Suppose that such
a Wick polynomial yp(x) is a scalar field. It now follows from Theorem 6.1 that the
closure ([ f] I Do,)**, where the field y(x) is a field in its own right, regarded as
defined on its canonical domain D, (or D), is affiliated with (K) if supp(f)C K.
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If the Fourier transform of f vanishes nowhere, and if f is real, then the operator
(wLf11 Do,)** generates the unique 4B-system associated with ¢(x). If f satisfies
the further condition that f(x)=f(—x), we have © [ 10, * =y[ f], and it then
follows, as we remarked at the end of Sect. 3, that w[ /] has a selfadjoint extension
affiliated with 4(K,), for any K, which contains K in its interior. We do not know
whether such an extension is actually equal to ([ f] [ Dy,)**. Irrespective of the
answer to this question we conclude that a Wick polynomial (of odd order) of a free
field, regarded as a field in its own right, does generate, all by itself, a unique local
AB-system, and in a rather trivial fashion, as described above.
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