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Abstract. We prove the existence of stationary states for nonlinear Dirac
equations of the form:

iγμdμφ -mφ + F(φψ)ψ = 0.
We seek solutions which are separable in spherical coordinates and we use a
shooting method for solving the associated problem of ordinary differential
equations.

1. Introduction

In this paper we prove the existence of stationary states for nonlinear Dirac
equations of the form

i Σ tW ~mψ + F$φ)φ = 0 (1.1)
μ = 0

under certain hypothesis on F.
The notation is the following: φ is defined on ίR4 with values in C4, dμ = d/dxμ, m

is a positive constant, yμ are 4 x 4 matrices given by

_?> H )
> G --

and ij/φ = (y°φ,φ\ where (,) is the usual scalar product in C 4.
Nonlinear spinor fields giving rise to equations of the form (1.1) have been

considered first by D. Ivanenko [7], H. Weyl [22], and by W. Heisenberg [6] in his
unified theory of elementary particles. Later R. Finkelstein, C. F. Fronsdal and P.
Kaus [4] considered the case of a spinor field with several types of fourth order self
couplings. But it was M. Soler [16] who was the first to investigate the stationary
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states of the nonlinear Dirac field with the scalar fourth order self coupling
(corresponding to F(x) = x in (1.1)) proposing them as a model of elementary
extended fermions. Subsequently, the electromagnetic interaction was introduced
[17,13,14] in order to construct a model of extended charged fermion, which in spite
of its simplicity describes with a reasonable accuracy the properties of the nucleons
[12]. To improve the model, the pseudoscalar fields were introduced in order to
represent the cloud of pions [15,5]. A summary of the above models, with the
numerical computations and further developments are described by Raήada
[10,11]. Also the case F{x) = x was considered by Rafelski [9], Takahashi [18] and
Van der Merwe [23].

We are interested in stationary states, or localized solutions of (1.1), that is
solutions of the form φ(tix) = exp(-iωt)φ(x) with x = (x 1,x 2,x 3), ί = x 0. Fur-
thermore we want φ to be square integrable. Clearly, the equation for φ: U3 -~» C 4 is:

3

* Σ ffikΨ -mφ + ωγ°φ + F(φφ)φ = 0. (1.2)

We shall prove the following result:

Theorem 1.1. Assume that F: [0, + oo]-> [0, +oo] is a C 1 function satisfying

F(0) = 0, F'(x) >0forx>0 and lim F(x) = + oo. Then for any ωe(0, m) there is

φeC\n*X*)such that:
(i) φφ(x)>0forxεU3,

(ii) φ and Vφ have an exponential fall-off as \x\ -• + oo,
(iii) φ satisfies Eq. (1.2).
Following M. Wakano [20] and M. Soler [16] we seek solutions which are

separable in spherical coordinates,

φ(x) =

where / and g are real valued radial functions.
The equations for/ and g are (compare [16,20])

Γ + lf=g(F(g2-f2)-(m-ω))

g>=f(F(g2-f2)-(m + ω)). (1.3)

We assume /(0) = 0 in order to eliminate solutions with singularities at the
origin. Therefore, for any given value of g(0) there is a local solution of (1.3).

The difficulty comes from the fact that we want the corresponding solution φ of
(1.2) to be square integrable. Therefore we want a solution of (1.3) which exists
globally and which goes to (0,0) as r -• + oo.

However the numerical study of (1.3) shows, at least for certain F (compare
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[10,11]) that "most" of the solutions of (1.3) either blow-up or converge to (0,
±(F~ 1(m — ω))1/2) as r-> + oo, those going to (0,0) being exceptional. Therefore we
have to solve a shooting problem for (1.3). Our main result is the following:

Theorem 1.2. Assume that F satisfies the hypothesis of Theorem 1.1 and that ωe(0, m).

Then there is (f9g)eC1{R + 9U
2) such that

(i) 0 </(r) ^ g(r) ^ Cte e x p ( - ^-^λfar r > 0,

(ii) (/,#) is a solution o/(1.3).
It is immediate that Theorem 1.1 is a consequence of Theorem 1.2. Theorem 1.2

will be proved in a slightly more general form in Sect. 3 (see Theorem 3.1 and
Remark 3.2).

Our argument is in a way similar to the one used by H. Berestycki, P. L. Lions
and L. A. Peletier [2] for a second order equation, with the additional difficulty that
we have to deal with a system and that solutions of (1.3) are not a priori bounded.

The paper is organized as follows:
— I n Sect. 2 we establish preliminary results concerning systems like (1.3). Some of

those results rely on sharp estimates related to the particular structure of (1.3) and
their proofs are somewhat technical.

— I n Sect. 3, we state and prove our main result.
—Section 4 is devoted to further remarks and comments.

2. Analysis of a System of O.D.E.'s

Throughout Sects. 2 and 3 we shall make the following assumptions and notations:
— m and ω are real numbers such that 0 < ω < m.
— α is a real number, α > 0.
—gsCι{U, R) is an increasing function satisfying

#(0) = 0, lim g(x)>m + ω and
x-* + oo

— F o r convenience we define / = (g~ι(m — ω))1 / 2.
—We also define the functions G and H by

= ]g{s)dsds, xeR,

H(u9 v) = \[G{v2 - u2) - m(v2 - u2) + ω(v2 + w2)] for (w, ι;)eR2.

We shall study the system:

u' + -u = v(g(v2 — u2) — (m — ω))

vf = u(g(υ2-u2)-(m + ω)). (2.1)

First we consider the associated conservative system:

u' = v(g(v2 - u2) - (m - ω))

ι/ = u{g(v2 -u2)-{m + ω)). (2.2)
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Clearly (2.2) is the Hamiltonian system associated with H. We begin with:

Lemma 2.1. H has the following properties:
(i) V / φ , v) = 0if and only if (u, v) = (0,0) or (w, v) = (0, ± /).
(ii) H(u,v)-+ H-oo, | M | + | I ? | - > + OO.

(iii) The minimum of H is negative and is achieved for (u,v) = (0, + /)•

Proof
(i) is obvious.
(ii) Let x 0 > 0 and ε > 0 be such that #(xo) = m - ω + ε. Let x ^ x 0. Then:

xo x
G(x) - mx = J (g(s) — m)ds + j (g(s) — m)ds ^ (ε - ω)x + (ω - m - ε)x0.

0 xo

For xe[0,x o ] we have G(x) — mx ^ — mx, and for x ^ 0 we have G(x) — mx ^ 0.
Therefore there is C such that G(x) — mx ^ (ε — ω)x — C for XE(R. Then //(w, f) ^
ε(w2 + y2) - C; hence (ii).

(iii) Applying (i), (ii) we only have to check that Min H(u, v) < 0. Actually we shall
prove the stronger property:

L e t O < t ; ^ / ; then H{09v)<0. (2.3)

Indeed, H(0, v) = \ \ (g(s) - (m - ω))ds. However, for 0 ^ s < I2 we have g(s) —
o

(m — ω) < 0; hence (2.3).

Lemma2.2. Let (UO,VO)GM X U. If H(uo,vo)^0 and H(uo,vo)^H(0J\ then the
solution (u,v) of (2.2) with initial data (uθ9vo) is periodic.

Proof Consider Γ = {(w, v\ H(u, v) = H(u0, v0)}. It follows from Lemma 2.1 that Γ
is compact and that |WH\ ^ α > 0 on Γ for some α > 0. Therefore F is a curve and
(w, ι;) must cover the whole of the connected component of Γ containing (w0, v0) in a
finite time. Therefore, (w, t;) is periodic.

Lemma2.3. Lei (wo,ι;o)e[R2 αwd /βί (u,v) be the solution of (2.2) w/ί/i ΐm'ίΐα/ dαία
(wo,ι;o). Then we have

If there is k> 0 swc/z ί/iαί v(r) — k on some interval,

then(u(r\v(r)) = (0,I)onU. ( ' }

If0<uo^vo and H(uo,vo) > 0, then there is r0 > 0

swc/i that Inf w(r) > 0, Inf v(r) > 0 αnrf v(r0) < u(r0).
re[0,ro] re[0,ro]

Proof If ι/ vanishes of some interval, then considering the second equation of (2.2)
we see that u' also vanishes on the same interval. Hence (2.4) applying (i) of Lemma
2.1.

For proving (2.5) consider rί = Sup {r ^ 0, u > 0 and v > 0 on [0, r]}. We shall
first establish that rx < oo.

Indeed, if rι = + oo, then since (M, t;) is periodic there is ^ > 0 such that u(r)v(r) ^ ^
for r > 0.
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Consider now h(r) = j(u2(r) — v2(r)).
From (2.2) we obtain ft'(r) = 2ωu(r)v{r) ̂  2ωδ > 0.
This is a contradiction since h is periodic. Therefore rt < oo. Assume now that

v(r j) > 0. Then w(r x) = 0 and M ' ^ ) ^ 0. From the first equation of (2.2) we get g(v2(r x))
-(m - ω) ^ 0, hence 0 < i ^ ) ^ /.

On applying (2.3) we obtain that H(u(rA),v{rλ))<0, which is a contradiction.
Hence v(rγ) = 0 and u(rx) > 0. Therefore, on choosing r 0 close enough to r t we obtain
(2.5).

We shall now study the system (2.1). We begin with:

Lemma2.4. Let xeU. Then there isτ>0 and there is (wx,vJeC1 ([0,τ],IR2), unique
solution of(2Λ) satisfying ux(0) = 0, vx(0) = x. In addition, (ux, vx) can be extended on a
maximal interval [0, Rx[ with either Rx = + oo or Rx < oo and lim \ux\ + \vx\ = + oo.

Furthermore, {ux, υx) depend continuously on x, uniformly on [0, R~]for any R<RX.

Proof We just write (2.1) in the form:

l v 2 ( s ) - u2(s)) - ( m - ω))ds

v(r) = x + ]u(s)(g(Ό2(s) - u2(s))-(m + ω))ds.

Since the right-hand side of (2.1) is a Lipschitz continuous function of (u9υ) we
may use a classical contraction mapping argument.

Next, we prove the following perturbation result:

Lemma2.5. Let (wo,ι;o)eίR2 and let (u,v) be the solution of (2.2) with initial data
(uθ9vo). Let (u®,v%) and pn be such that

pn -> + 0 0 and {u°n,υ°n) -> ( M O , U O ) .

Let (un9υn) be a solution of

' + U n = Vn(g(v2 - U2) - (m - 0)))n +

v'n = ^n(g(v2 - u2) -(m + ω))

such that un{0) = u°, vn(0) = v°, and let [0,τπ) be the maximal existence interval of
(un,vn). Then

(i) lim τn = + oo,
n-*ao

(ii) (un,vn) converges to (u9v) uniformly on bounded intervals.

Proof We have to prove that for any R < oo we have lim τn> R and (un,vn)
n-> oo

converges to (u,v) uniformly on [0,/?]. Then, consider R < oo. Since
(J {(w(r), φ ) ) } is a bounded set we obtain on applying a contraction argument
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that there exist δ > 0 and τ > 0 with the following property: For any p ^ 1, r o e[0, R]
and (wo,zo)eίR2 such that \w0 — u(ro)\ + \zQ — u(ro)\ ^ δ, there is a solution

w' H w = z(g(z2 — w 2 ) — (m — ω))

z ' = w(0(z2 - w2) - (m - ω)) (2.6)

with w(0) = w0, z(0) = z 0 and Sup | w(r)| + |z(r)| ^ 2M, where M = Sup |κ(r)| +
re[0,τ] re[O,Λ]

Let X be the Lipschitz constant of the second line of (2.6) on the ball of radius 2M
or U2. Then we get from (2.6), (2.2):

|w(r) - u(r + ro)\ + \z(r)-v(r + ro)\ £\w0- u(ro)\ + |(z0 - φ o ) l

]? \κ(\w(s)~u(s + ro)\ + \z(s)-v(r + ro)\)ds.
o

Applying GronwalΓs Lemma we obtain:

I w{r) - u(r + r0) I + I (z(r) - v(r + r0) I

^y for O^

Applying this with p = pn, r0 = 0, vv0 = uj, z 0 = v° we obtain that lim τn ^ τ and
(ww,ι;π) converges uniformly to (w,ι;) on (0,τ).

Iterating this argument n times with nτ^R^(n+ l)τ we obtain Lemma 2.5.

Lemma 2.6. Lei xeM. Then for any re[0,Rx) we have

jrH(ux(r), υjf)) = -rU
2

x(ή(g(v2

x(ή - u2

x(r)) - (m + ω)). (2.7)

Proof. Equation (2.7) is derived from elementary computations.

Lemma 2.7. Let x > 0 be such that m - ω g g(x2) g m + ω. Tften Λx = + oo

Proo/ Let (u,t;) be such that g(v2 — u2)>m + ω. Then

H(M, V) = H(0, x) + (1/2)" j " (β<s) - m)ds + ω(v2 + u2- x2) > H(0, x) +
2

Therefore the sets {(w, ι?), H(u, v) ̂  JF/(O, X)} and {(iι, i;), gf(ι;2 - w2) - (m + ω) > 0}
are disconnected.

Then the lemma follows from (2.7) and an obvious continuity argument.

Lemma 2.8. Let x > 0 and pe(0, Rx) be such that ux(r) > 0, vx{r) > 0 for 0 < r < p.
Assume that there is 0e(O, p) such that ux(θ) - vx(θ) = δ>0. Then ux(r) - vx(r) ^ δ

forrelθ9pl

Proof Let x be as above and let h(r) = vx(r) - ux(r) for 0 ^ r g p. We have h{0) > 0



Localized Solutions for Classical Nonlinear Dirac Field 41

and h(θ) < 0. Therefore there is jSe(O, θ) such that h{β) = 0 and h'(β) g 0.
From (2.1) we obtain immediately β ̂  α/2ω, hence θ ̂  α/2ω. Let now re[0,p].

We have

( \

--2ω\u^(m-ω-g(v2-u2))h.
Since (m — ω — #(ι>2 — w 2))^m — ω > 0 when Λ^O, the above inequality yields

h\r) ^ 0 for re[0,p]. Hence the lemma.

Lemma 2.9. Lei x > 0 and pe(0, R J be such that ux(r) > 0 and vx(r) > 0 for re(0, p).
/tsswme ί/iere is 0e(O,p) such that g{v2

x(θ) — u2

xφ)) — (m + ω) < 0, and let

τ — Sup {rG [0, p], ^(i;2 — w2) — (m -I- ω) ̂  0 on [0, r] }. Γ/iβn we have

τ ^ (α/ΣωXiiJτV^τ)) and g(v2

x(r) - w2(r)) - (m + ω) < 0 /or re(τ, p).

Proo/ Suppose first that gf(x2) - (m + ω) ̂  0. Applying Lemma 2.7 we obtain that
#(Mr), υjr)) < H(0, x) for r > 0.

As pointed out in the proof of Lemma 2.7, this implies that

g(v2

x(r)-u2

x(r))-(m + ω)<0 for r>0.

Therefore we have τ = 0 and the conclusion of Lemma 2.9 holds.
Suppose now that g{x2) > (m + ω). Then we have τ > 0 . Consider k{r) =

vl(r) - u2

x(r) for re[0,p]. From (2.1) we get:

k\r) = 2("ux(r) - 2ωvx(r))uM (2.8)

It follows from the definition of τ that fc'(τ) ̂  0, hence τ > (α/2ω) (tt^τV^τ)). It
remains to prove that g(k(r)) — (m + ω) < 0 for re(τ, p). We argue by contradiction. If
this is wrong we can find r 0 and rx such that τ<ro<ru g(k(r)) - (m + ω) < 0 for

rJ and g(k(r0)) = gWn)) = m + ω.
However, we have k'(r0) ^ 0 and k'(rx) ^ 0. From (2.8) we obtain

Since ^(/c(r0)) = ̂ (/cirj) = m + ω, this implies that vjr^) ^ ι^x(r0).
On the other hand, considering (2.1) we see that ι ^ < 0 for reiro^J. Hence

vx(ri) < vx(ro) which is a contradiction. This ends the proof of Lemma 2.

Lemma 2.10. Let x > 0 be such that Rx = + oo

0 < ujr) S vjr) ̂  Cte /or r > 0.

Then there is C such that vx(r) ^ C expί r

Proo/ Let us denote (wx, ι?x) by (w, v). Let τ = Sup {r ̂  0, gf(t;2 — u2) — (m + ω) ̂  0 on
[0, r]}. Considering (2.1) we see that υ' ̂  0 on [0, τ]. Therefore φ ) ̂  x for re[0, τ].
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We have then:

(X

u' + - w ^ 2ωv ^ 2ωx on [0, τ].

Hence u(τ) ̂  (2ωx/(α + l))τ. Since u is bounded, τ is finite.
Applying Lemma 2.9 we have g(v2 — u2) — (m + ω) < 0 on (τ, 4- oo). Thus i; is

decreasing on (τ, 4- oo). Then there is δ ^ 0 such that v(r) \ δ.
r-* + oo

Assume for a moment that δ = 0. Then (M, V) -• (0,0) and #(t;2 — w2) -> 0.
r->oo r->oo

Considering (2.1) we have for r large enough

α m — ω
u s —w —i?

r 2

m + ω

2 ~ W "

Hence: (w + t;)' + ((m - ω)/2)(w + v) ̂  0 for r large.
Integrating the above equation we see that (w, v) has the prescribed exponential

decay. Therefore it only remains to prove that δ = 0. We argue by contradiction and
we assume δ > 0.

Let rn -• + oo be such that u(rn) -• /c.
Let (w, z) be the solution of (2.2) with initial data (k9 δ). It follows from Lemma 2.5

that (u(rn -f •), v(rn -f •)) converges to (w,z) uniformly on bounded intervals.
Since v(rn + r) -• (5 for any r > 0, we have z(r) = δ, hence from (2.4) we have k = 0

and <5 = /.
This argument shows that indeed (u, v) -> (0, /). We now put i? = / + w. The

r-> + oo

equations for (w, w) are:

u' + -u = (l + vή{g{l2 + w2 + 2w/ - w2) - (m - ω))

W = u(g(l2 + w2 -h 2w/ - M2) - (m 4- ω)).

Let us put α = g'(l2) > 0. Since g(l2) = (m — ω), we have

g(l2 + w2 4 2w/ - w2) = (m - ω) 4- 2/αw 4- o(w 4- w).

Therefore we have:

u' + -u = 2l2aw + o(w 4- w)

w' = - 2ωw 4- φ 4- w). (2.9)

Hence: (w — u)' = ω(w — u) — (ω — (α/r))w — (ω 4- 2l2a)w 4- φ 4- w).
For r large we obtain (w — M)' — ω(w — u ) ^ 0 . Hence ^"ωr(w —M) is non-

increasing for r large. Since e~ωr(w — u) -> 0 we must have w — M ^ 0 for r large.
r-»oo

Therefore we can replace o(u 4 w) by o(w).
From the first equation of (2.9) we obtain

u' + -u ^ /2flvv for r large.
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Hence ιϊ ^ (l2a — oc/r)u for r large. This implies u(r) ̂  Ce{l2a/2)r for r large which is a
contradiction and Lemma 2.10 is proved.

3. The Main Result

We are now in a position to state and prove our main result. We assume that α, ω, m
and g satisfy the same conditions as in Sect. 2. Then we have:

Theorem 3.1. There is a solution (u,Ό)eCι([Q9 +oo), !R2) of the system

υ! + -u = v(g(v2 — u2) — (m — ω))

v' = u(g(v2 - u2) - (m + ω))

such that w(0) = 0, and

^ for r > 0 .

Remark 3.2. Theorem 1.2 is a consequence of Theorem 3.1 above. Indeed, let F
satisfy the hypothesis of Theorem 1.2, and consider g defined by:

g(x) = F(x) for x^O,

g(x)=-F(-x) for x ^ 0.

Then g satisfies the hypothesis of Theorem 3.1, and therefore Theorem 1.2 is proved.

Proof of Theorem 3.1. The proofs proceeds in several steps. We define a set I as
follows:

I = {x> l/3rxe(0,Rx\ux>0 and u x > 0 o n (0,rx) and ux(rx) = 0}.

In Step 1 we shall prove that / is a non-empty open set. Then in Step 2 we shall
establish estimates for solutions of (2.1) with initial data in /.

Finally, in Step 3 we shall prove that {uR,vx) with x = Sup I satisfies the
conclusions of Theorem 3.1.

Stepl. I is a non-empty open set.

We have fί(0, /) < 0 and iί(0, x) -• + oo from Lemma 2.1 Thus there is x 0 > /
X~* + 00

such that //(0,xo) = 0. We put x1=lnf(x0,g~1(m +ω)). Then we claim that
(Ix^czl. Indeed, let xe&xj.

From Lemma 2.7, we have Rx = + oo and H(ux(r), vx(r)) < H(0, x), for r > 0. Since
clearly //(0, x) < 0, we have

H(ux{r\ vx(ή) < 0 for r > 0.

On the other hand, a straightforward computation shows that H(y, 0) ̂  0 for
yeU. As a consequence υx(r) can not vanish in a finite time. Therefore, vx(r) > 0 for
r > 0. As well, we can check easily that H(u, v) ̂  0 when 0 ̂  \υ\ ̂  \u\. Therefore we
have \ux(r)\ ̂  vx(r) for r > 0.
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On the other hand we have (α + l)u'x(Q) = x(g(x2) — (m — ω)) > 0. Hence ux(r) > 0
for r > 0 and small.

Thus it only remains to prove that ux(r) vanishes for some r > 0. We argue by
contradiction and we assume that Mx(r)>0 for r > 0 . Since H(ux,vx) is bounded,
(ux, vx) is bounded by Lemma 2.1 and we can apply Lemma 2.10, which asserts that
(ux,vx) -• (0,0). This implies lim H(ux9vx) = 0, which is a contradiction since

r->ao r-*oo

H(ux9 vx) ^ H(0, x) < 0. Therefore ux has to vanish and xel.
The open character of / is an immediate consequence of the continuous

dependence of (uχ9vx) on x.
Step 2. Estimates for solutions of (2.1) with initial data in /. We begin with:

Lemma3.3. Let xel. Then:
(i) 0<ux(r)^vx(r)forre(09rx)

(ii) There is τ xe[0,r x) such that vx(r) £Ξ vx(τx) for re[0,rx).

Proof.
(i) We argue by contradiction and we assume that there is roe(0,rx) such that

ux(ro) — vx(ro) = δ>0. Applying Lemma 2.8 we obtain that ux(rx) — vx(rx) ^ δ. This is
impossible since this would imply vx(rx) < 0. Thus (i) is proved,
(ii) Since ux(rx) = 0, we have vx(rx) > 0 because (0,0) is an equilibrium point of (2.1)
and can not be reached in a finite time. On the other hand, we have ux(rx) ^ 0, which
implies g(vl(rx)) — (m — ω) ^ 0. Hence g(vl(rx)) — (m + ω) < 0.

On applying Lemma 2.9, we obtain the existence of τ xe[0, rx) such that
g(v2

x -ul)-(m + ω)^0 on [0,τx) and g(vx - ul)-(m + ω) < 0 on (τx,rx).
Therefore vx is non-decreasing on (0, τx) and decreasing on (τx9 rx\ thus (ii) holds.
Then we have the following estimate:

Lemma 3.4. Let M = Sup vx(τx). Then M < + oo.
xel

Proof We use a contradiction argument and we assume that there is xnel such that

For convenience we denote uXn, vXn, τXn,rXn, RXn by un9 vn9 τn9 rπ, Rn.

For n large enough we must have g(x2) > (m + ω), otherwise vn would be
bounded by Lemmas 2.1 and 2.7. Therefore τn > 0 and g(v2(τn) - u2{τn)) = (m + ω).
Thus we have:

^ = l . (3.1)

On applying Lemma 2.1 (ii) we obtain the existence of k > 0 such that H(k, v)>0
for any veU.

Since by (3.1) we have un(τn) -> oo, and un(rn) = 0, for n large enough there is
n-*oo

pnε(τn,rn) such that

un(r)>k for re(τn9pn), un(pn) = k.
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From the definition of τn and from Lemma 3.3, (i) we have

0 ^ g(v2(r) - u2

n{r)) ^ m + ω for re(τn,rn).
Thus

\g(v2(r)-u2(r))-(m-ω)\^3m for re(τn,rn). (3.2)

Furthermore, let re(τn, pn). We have:

Thus:

υH(r)£uH(r)[ l + !

Considering (2.1) we obtain that

u'n + -un ^Cuu on (τn,pn).

In particular we have

"i + - un + Cun ̂  0 on (τπ, pπ).

Consider
φn(r) = Log wΛ(r) + Cr + oc Log r.

Then φ'n ̂  0 on ( τ ^ p j . Therefore ^^(pj ^ ^ ( τ j . That is:

Cpπ + Log pj ̂  - Log fc + Log MΛ(τΛ) H- Cτn + Log τj.

From (3.1) and Lemma 2.9 we have un(τn) -• H- oo and lim τn ̂  α/2ω. It follows
n—• o o M - * o o

easily that:

π-^ + oo

Let us set (wn,zn) = (un(pn + •), fπ(ρπ + •)). We have wπ(0) = k and by (3.2) zπ(0) is
bounded. Therefore we can assume, possibly by extracting a subsequence that

Let (w, z) be the solution of (2.8) with initial data (k, z). By definition of k, we have
/ί(/c,z)>0.

On applying (2.5), we have the existence of y > 0 such that Inf w(r) > 0, Inf
re[0,γ] re[O,γ]

z(r) > 0, and z(y) - w{y) > 0.
On the other hand, on applying Lemma 2.5, and since pn -• oo, we obtain that

n~* oo

(wn, zn) converges to (w, z) uniformly on [0, γ]. Therefore for n large enough we have:

Inf un(r)10, Inf υn(r)^O
re[0,pn + y] » e [O,p n + y]

and un(pn + y) > vn(pn + y).
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Therefore Lemma 3.3(i) provides a contradiction and Lemma 3.4 holds.
3rd Step. Conclusion. From Lemmas 3.3 and 3.4 we have / c ]/, M[. Therefore we can
put x = Sup/ < oo. Clearly x^I. Let (w, v) = (t^, v^) and R = R^.

On the other hand, since x > / we have ΰ'(0) > 0, and thus ΰ > 0 and z; > 0 for r > 0
and small.

Since x^/, w can not vanish before v does.
On the other hand, since xef, it follows from the continuous dependence of

(wx, VX) with respect to x that v cannot vanish before ΰ. Since (0,0) is a rest point of
(2.1), ΰ and v cannot vanish simultaneously.

Therefore ΰ > 0 and v > 0 for re(0, K).

Let xπe7, xπ -> x. Let us denote wXn, ι?Xn, KXn, rXn by un9 vn9 Rn, rn. Let pe(0,R).
n~* oo

Since xn->x we obtain that for n large enough we have Rn> p and that (un9vn)
converges to (ΰ,ϋ) uniformly on [0,p]. Therefore we have rn>p for n large and
applying Lemma 3.4 we have

ΰ(p) + v(p) S 2M.

Therefore ΰ and v are bounded and R = + oo.
A similar argument shows that 0 < ΰ(r) ̂  ϋ(r) for r > 0. Then we can apply

Lemma 2.10 and there is C such that

0 < ΰ{r) ̂  ϋ(r) ̂  Cexpί -

The proof of Theorem 3.1 is thereby complete.

4. Further Remarks and Comments

Remark 4.1. The Dirac equation (1.1) is in great contrast with the Klein-Gordon
equation, since it possesses stationary states without restrictions on the growth of
the nonlinear interaction F. (Compare [2] for the Klein-Gordon equation.)

Remark 4.2. We do not know if the condition 0 < ω < m is necessary in Theorem 1.1.
On the other hand, this condition is almost necessary in Theorem 3.1. Indeed, it has
been shown by L. Vazquez [19] that in the case g(x) = x, there is no solution of (2.1)
such that the corresponding solution φ of (1.2) is square integrable, in the case
| ω | > m . His argument works as well in the more general framework of
Theorem 3.1.

In addition, elementary computations show that if — m ^ ω ^ 0, there is no
solution of (2.1) going to 0 as r-> oo. This had already been observed on numerical
experiments (compare [16]).

Considering again Eq. (1.2) it seems that no elementary transformation of the
solution given by Theorem 3.1 can give a solution of (1.2) for ω > 0. For example, the
charge conjugate of the solution given by Theorem 3.1 satisfies Eq. (1.2) with ω
replaced by — ω but with F(x) replaced by F( — x).

Remark 4.3. Little seems to be known concerning the initial value problem (Cauchy
problem) for Eq. (1.1). In particular we do not know if the stationary states are stable
or not. For instance, some authors claim that the (ij/φ)2 stationary states are unstable
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[3,21,8] while others find regions of stable behaviour by using numerical
computations [1]. Related to that question it would be of a great interest to solve
directly Eq. (1.2) by a variational method, since better knowledge of the variational
structure of the problem might give relevant information concerning the stability of
stationary states. After the completion of this paper, the stability problem has been
studied by Strauss and Vazquez [24].
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