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Abstract. The motion of a one-dimensional massive particle under the action of
collisions with points of the ideal gas is considered. It is shown that the normed
displacement of the massive particle is represented asymptotically as the
difference of random variables having limit Gauss distribution. Estimations of
the diffusion coefficient not depending on the mass are found.

1. Description of the Model and Formulation of the Results

The probabilistic model of the Brownian particle was constructed more than fifty
years ago. One of the first references is the classical paper of Wiener [11]. Since that
time the Wiener measure became a subject of many deep investigations. Now it is a
beautiful chapter of the theory of random processes which can be found practically
in all text-books on the subject (see [4,6]). It is surprising enough that a general
mechanical model of the Brownian particle was not constructed so far. Only
several particular cases were considered in [7,8]. Moreover, it was discovered
recently in direct experiments (see [5]) that for the Brownian particle the
correlation functions for the velocity decay only as a power of time which shows
that the representation of the displacement of the Brownian particle as a sum of
independent or weakly dependent random variables is a crude approximation. It is
worthwhile to mention also that after the discovery of Alder and Wainright (see
[2]) such decay of correlations is typical for many problems of non-equilibrium
statistical mechanics (see [1]).

The goal of this paper is to present several rigorous results concerning the
asymptotic behaviour of a massive particle (m.p.) of mass M moving in one
direction under the action of elastic collisions with particles of equal masses whose
masses are taken to be equal to 1. It is assumed that the particles do not interact
and their distribution is the equilibrium distribution of the ideal gas with density ρ
and inverse temperature β. The coordinate and velocity of the m.p. are denoted by
%, vo> xo = (<2o> vo) A collection of equal particles is denoted by X = {x}, x = (q, υ),
and Y=(x0, X). The phase space of all possible Y is denoted by Ω. For any subset
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A C R2 the intersection YnΛ is the set of all (q, v)eY such that (q, v) C A9 \ YnA\ is
the cardinality of this set. We introduce the measure μ on Ω for which

In -Kjr

dμ = dqo]/!-z—e~βMv°l2dvod0>(x\ where 9 is the limit Gibbs measure on the phase
y 2π

space Ω(X) of all possible X. We recall that the projection of 0> to the configuration
space of the ideal gas is the Poisson measure with parameter ρ and the velocities of
different particles have independent gaussian distribution with the density

I n

— exp { —\βυ2}. The measure 9 is normed while the whole measure μ is infinite
2π

because the coordinate of m.p. can take arbitrary values with equal weight. The
conditional measure μqo arising under the specification of q0 is

In -Kjr

utL—e~Mvol2dv0d@* and finite. Especially, we mention the notation μ0 for the
[/ 2π
conditional measure under the condition q0 = 0. The subspace of Ω where q0 — 0 is
denoted by Ωo.

The flow corresponding to the motion of the whole system is denoted by {T*}.
It preserves the infinite measure μ. In ergodic theory there are several construc-
tions which permit reducing all problems for the flow { V] to problems concerning
flows or transformations preserving a probability measure. For example, we can
consider points of the phase space just after a collision of m.p. and introduce the
corresponding induced transformation (see e.g. [3]), or we can introduce relative
coordinates q — q0 and consider the action of the flow in the relative coordinates.
The only result of these constructions which we need is a possibility to use ergodic
theorems valid for flows preserving a finite measure.

Unfortunately nothing is known about ergodic properties of the flow. {7*}. We
shall formulate now the results of this paper. Let us denote

VY= Y(t)=(χo(t), X(ή)=(ίo(ί), υo(t), X(ή).

In Sect. 2 we prove the following theorem.

Theorem 1. For every ε > 0 and μ almost every Y one can find to(Y, ε), such that for
allt>to(Y9ε)

\qo(t)

From this theorem we derive

Theorem 2. For μ-almost every Y each particle of the ideal gas has finitely many
collisions with m.p.

In Sect. 3 we show a stronger result than Theorem 1.

Theorem 3. Assume that qo = 0. Then with respect to μ0

where the random variables n±(ί)/|/7 have the same gaussian limit distribution for

ί-»oo, while ξ(t)/yt converges in probability to zero.
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This theorem shows that we may expect a non-trivial limit probability

distribution for the normalized random variable go(0/|/*> where the normal-
ization is the same as in the usual central limit theorem of probability theory.
Recently Szasz and Toth proved that ξ(t)/γt converges to zero in <£\Q, μ0) (see
[10]).

In Sect. 4 we present an analysis which shows that under the conditions of
Theorem 3 qo(t) = qo(t) + <f(ί), where ξ(t)/]/t converges in probability to zero while
l i i f ( ( ) ) 2 ί, and thus limit distribution will be non-trivial.

2. An Estimation of the Displacement of the M.P.

This section contains the proofs of Theorems 1 and 2.

Proof of Theorem L Put

R(t) = ί^+«, δqo(t) = qo(t)-qθ9 d = d(t, Y)

and denote

A(t, Y) = [d(t, Y), qo(t, Y)] , C«> = { Y: δqo(t, Y) > R(t)} .

Introduce the random variable τ(Y) defined only for Ye C(t), where

[ίi-i Γ fh t(k-\- \S)

T h e n C ( ί ) = (J Cf, Cf = \ 7 : — < τ ( Y ) S " V ^ M t is sufficient to estimate the
fe=o I Kl iU J

probability with respect to μo = μqo, qo = 0 of each Cf. Let

K_(ί, Y) = card{(q,v)eXcY:q(t)<d(t)9v(ή<0,q(s) = qo(s)

for some s: τ ̂ s ^ ί, i.e. a particle (g, ή e l had a collision with the massive particle
in the time interval [τ, ί]} = card{Jf_(ί, 7)},

M+(t, Y) = ca.rd{(q,v)eXCY:q<q0,q(s) — qo(s) for some 5:τ^5^ί}

-card{^ + (ί, 7)}

Here v(t) is the velocity of the particle (q, v) at the moment of t. We have the
obvious inequality:

N_(ί, 7):gM+(ί? 7)-X_(ί, 7). (2.1)

Further K_(t, 7)^K(_1}(ί, 7) for Ye Cξ\ where

K<l\t9 7) - card j (q, υ) e X C 7: q(t) < d(t)9 v(t) < 0,

Thus

Y). (2.2)
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The random variable K{})(t, Y) has Poisson distribution with parameter

The estimation for M+(ί, 7) will follow from the next lemma.

Lemma 1. There exist a constant cx >0 and a subset @tCΩ such that

and M(l\t, Y)^M+(t, Y) for Ye9t, where,

- ( 2 3 )

Proof. The inequality M+(ί, Y)<>M{1% Y) is obviously true if

Therefore assume that q0 ί k — j > d(t) + f. We recall that qo(τ) = d{i) for k —- < τ

S(k + 1)ΪΓ^Γ? which implies in this case that
M

max vo(s) ^ f.

Denote £&t= ίY: max vo(s)^f\. The same arguments as in [9] show that
j

μ0{7: max vo(s, Y)^f\ ^ ί2n

for a constant cί >0. Q.E.D.

Let us estimate μo{C^n3f^. The random variable M(+} has Poisson distri-
bution with parameter γ+9 where

J da J
- 0 0 L

l/2π -«

2t-(k+l)t/lf]J

, g I ^ρ(tt(fc+)/j] | fρ
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We put for a constant c2>0

2πβ

From general properties of Poisson distribution it follows that for C3 > 0,
C'3>0,

Thus

for a constant c 4 >0. For YeCfn2tnΆ+r\Ά_,

But JV_(ί, Y) has Poisson distribution with parameter jR(t). If c2 is chosen

sufficiently small then for a constant c 5 >0,

Thus taking into account the estimations for μo(A+), we get μQ(C%]) ̂  exp { - c6t
2ε}

and
M-i

ύ Σ l ' ^ 2

c6 > 0 is a constant. From this inequality the statement of the theorem follows
easily QED.

The arguments used during this proof can be called "balance arguments."
Roughly speaking they show that the set of particles which would cross the point d
from the left side in the free dynamics during the time interval (τ, ί] consists of
particles which lie at the final moment of time in the spatial interval Δ{t) and have
positive velocities, and of particles which interacted with the m.p. during the same
time interval. This idea will be used also in the proof of Theorem 3.

Proof of Theorem 2. Assume that with a positive μo-measure there exist particles
which have infinitely many collisions with the m.p. For definiteness we consider
particles which are on the left side of m.p. The subsequent velocities of any of these
particles form a sequence of decreasing positive numbers tending to zero, because
if it becomes negative then in view of Theorem 1 the particle eventually escapes to
infinity.
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Let us denote by /(7) and g(Y) the velocity and position of the particle which
lies on the left side of m.p., has infinitely many collisions with m.p. and is the nearest
particle to m.p. having these two properties. Then it is easy to see that /ΞgO and

] f(T(Y))dt£δqo(T)-g(Y).
o

From Theorem 1 lim —(δqo(T)) = 0, μ0 a.e. Thus
Γ->oo I

lim ^] f(T\Y))dt=Q

a.e., i.e. / = 0 μ0 a.e., which is a contradiction QED.

3. An Expression for the Displacement of the M.P.

We start with several notations:

si ~ (t, Y) = {(«, υ)eXcY: q(t) < qo(t), q(i) - tv(i) > qo(t)} ,

t9 Y) = {(q,v)eXcY:q<qo,q(τ) = qo(τ) for some τ;

A~(t, 7) =

Here is a more precise formulation of Theorem 3.

Theorem 3.

δqo(f)= l-(A+(t, Y)-A~(t,

where —pβ(t9 )->0 in probability (with respect to μ0) as ί->oo.

ft
Proof. We shall show first that

^ α(t, 7), (3.1)

where α(ί, )/|/ί ->0 in probability as t-+ oo. In view of Theorem 1 we may consider
only those 7 and t for which |(5go(Λ 7 ) | ^ ί 1 / 2 + ε for a sufficiently small ε.

Assume that δqo(ή > 0. The set si+(ί, Y)\&(t, 7) = &(t, 7) consists of particles
(q, υ)eX such that

a2) ι<ί)>0,
a3) ί(s) < ήfo(s)

 f o r
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Denote

g(t9 Y) = {(q9 v)eX: v(t) > 0, q(t) e [ ί o, βo(ί)]} ,

The difference S1(t9Y) = S(t9Y)\£ί(t9Y)9 Ex(t9 Y) = card{(f1(ί, 7)} consists of
particles with positive velocities which are at the moment t in the segment
[gθ5 #0(ί)] and interacted with m.p. at a moment s e [0, ί]. We shall prove that
Ei(U )/j/*->0 in probability.

For (g, ϋ) e Sx{t, 7), introduce τx equal to the last moment of collision with m.p.
in the interval (0, t). We shall consider separately two cases.

Case L τί<t — t3/4. The number of particles with this property is denoted by
p1(ί, Y). Each of these particles moves freely in the time internal (τ1?ί) with a
positive velocity and therefore, for the displacement δq(τu t) of this particle during
the interval (τl9t) we have

Also for these particles

«o(0 -

Thus pi(t,Y) is not more than the number of particles (q,v)eX such that
9(0e[(ϊo(0-ί1/2+β>βo(0]» 0^t;(ί)^ί" 1 / 4 + 8 , which has the Poisson distribution
with parameter

For sufficiently small ε we have t"ll2p1(t,')->0in probability as ί—>oo.

Case2. τ{^t — ί3/4. The number of particles with this property is denoted by
p2(t, Y). Let us put

δqo(t - ί3 / 4,0 = max \δqo(s9 ί)|,
se[t-ί3/4,ί]

where δqo(sί, s2) is the displacement of the h.p. in the time interval (su s2). A simple
stronger version of Theorem 1 gives that δqo(t — ί3/4, ί) ̂  ί3/8+ε for any ε > 0, a.e. Y
and sufficiently large t. We assume that we already deal with so large t. Thus

The number of particles for which q(t)e[qo(t) — t3ls+ε,qo(ty] has the Poisson
distribution with parameter γ ̂  const ί3/8+ε. Thus for sufficiently small ε we have

i n probability as ί->oo. Now we finally get

^ , Ύ)\Λ{t9 7 ) } ) ^ 0 ? (3.2)
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and

A + ( U r) = B(t9Y) +

= B(ί, Y) +

•E1(ί,Y)-card

£(ί, 7)-card {

Ya. G.

{̂ (ί, 7̂

;«(ί, 7)\

Smai and M

)W+(t, y)}

^ + ( ί , Y)}

where α^ί, ) = o(]/ί) in probability. From the strong law of large numbers

>v)) =inf ( 5 : 5 ^

where α2(ί, )/^-*0 Now in order to complete the derivation of (4) we have to
estimate card{J*(ί, Y)\s/+(t, Y)}. The set J*(ί, Y)\.s/+(ί, 7) consists of particles
(q9 v)eX with q<0, ϋ<0 and of particles (<?, v)eX with q<q0, v>0, q + tv<q0

and interacting with the m.p. during the interval (0, ί). The number of particles of
the first (second) group is denoted by p3(ί, 7) (p4(ί, 7)). For the particles of the first
group g e [g0 — ί1/2+ε, g0]. Again we introduce the moment τ1 of the last collision
with the h.p. If τ1<t3/4, then as above ge[g o -ί 3 / 4 ( 1 / 2 + ε ) ,g o ] and the number
of such particles is o(]/ί) in probability. If τ 1 >ί 3 / 4 , then the velocity v of the
particle must be small 0<f<ί~ 1 / 4 + δ , which together with the inclusion
<1e [<?o — t1/2+ε, <20] shows p3(ί, 7) = o(]/ί) in probability.

Now we shall estimate p4(ί, 7). Let us define

and put

We have p4(ί, 7) = W l(ί? Y) + n2(ί, 7).
Firstly we estimate n^t, 7). If <3o(τ2):>^o — ί1/2~ε

? then

i.e.

The number of particles satisfying the last inclusion has the Poisson distribution
with the parameter y^constί1/2~ε. This gives nt(t9 ) = o(|/ί) in probability. In
order to estimate n2(ί, 7), we remark that from inequalities δqo(τ2) ^ — ί1/2 ~ε and
δqo(t)>0, we have δqo(τ2,t)^tίl2~ε, which gives ( ί - τ 2 ) 1 / 2 + ε > ί 1 / 2 ~ ε . Here we
again use a stronger version of Theorem 1. Thus t—τ2>t1~5ε for sufficiently small
e. From another side

q + vτ2 + v(t - τ2) = qo(τ2) + v(t - τ2) < q0,
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This yields

n2(t, Y) ̂  card{(q, v) e X: q + tv e [q0 -11'2+\ ? 0 ] ,

This immediately gives n2(t, ) = °(]/θ in probability, and thus (4) is proven
in case δqo(i)>0.

Now we assume δqo(t)-^0. Let us introduce

jF(ί, Y) = {(q, v) € X: v > 0, q < q0, q + tv > qo(t)} .

It is clear that &?+(t, Y)g^(t, Y) when δqo(t)^0. We shall show that

in probability. We have

where

$+ = {(ί,v)eX:(q,v)eΛ(ί, 7),»>0, 9 + tv<qo(t)}.

For (q,v)e^±, we put

<(«,»))= i n f {s = s 6 [0, ί], g(s) = qo(s)}

and

i.e. β e [ ί 0 - ί3/8 + 3 / 4 ε, ί 0 ] , and therefore card{¥l\t, •)} = O(|/t) in probability. If
( ) ^ < ? > h

min q o (s)^g o -ί 1 / 2 + % M < r 1 / 4 + ε .

Using also ήfe [qO"~tl/2+ε>3o]» w e easily have that

and therefore card{^_(ί, •)} =^(|/ί) in probability.
For the estimation of card{^+}, we remark as before that

Again we decompose ^ + =^ (+ )u^ (+ ), where
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In the first case as above

Also

which gives itf1"4"^ «<>(*) ~«o(τ) and 0<v^2tlj2+εΓ 1 + 4 ε = 2 r 1 / 2 + 5ε. Using the
inclusion

we easily get that card{^(

+

υ(ί, Ol/jA^0 i n probability. If (q9v)e&%\ then

[ ί 0(τ), ί 0 (ί)] C [ ί o (0 - ί1/2"ε,
(3.3)

We shall use the following lemma.

Lemma 3.1. Let be given positive numbers s > l , l>α>/?>0, and the segment
J s = [ — s,0]. Pwί /or eί erj; ί>0 αwd a segment A,

η(t,Λ,Y) =

Then

max η(t,A,Y)£ξ(t,YY,
ΔQAs,\Δ\<sβ

where ξ(t, 7) is a stationary process (in t), E(\ξ(t, 7)|)< oo.

This lemma will be proven later. Using (5) and Lemma 1 with s** = t1/2~8

9

s = 2tί/2+ε, sa = tll2~ε, we get tha t caτd{&φ(t9 -)} = o(]/t) in probabil i ty. T h u s
card{J^(ί, 7)\#Xί, 7)} = o(|/ί) in probability.

The next step is to show that in probability,

lim 4^Γcard{^(ί,7)W+(ί,7)}-^|^0(ί,7)|] =0. (3.4)
ί-ooj/ίL 2 J

The set #"(ί, 7)\j/+(ί, 7) consists of particles for which

q + tvelqo(t9Y)9qo'].

We shall use the following lemma.

Lemma 3.2. Let us put for t > 0, ε > 0,

card {(4, ϋ

CM(7) = sup
L

Then E\ζ8tt(Y)\ is uniformly (in t) bounded.
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The proof of Lemma 3.2 is an simple exercise and we omit the proof. Using it
we have

, Y)} = card{#(ί, Y)} + ]
+(t, 7)}

= A+(t,Y)+pq0(t,Y)\.

This gives

A+(ί, Y) = B(t, Y) + I δqo(t, Y) + oQ/t).

Now we can finish the proof of the theorem. Let us introduce the involution
ψ: Ω->Ω, where φ(Y) = Y' and Y' appears after changing the signs of all velocities.
It is clear that φ ° V = T~' ° φ. Now we remark that

δq0(t9Y)=-δq0(t9φor(Y))>

This gives

B(t9 Y) = A + (t, Y)-%δqo(t, Γ) + α1(ί? Y)

where αx(ί, ) = o(|/ί) in probability. Also

in probability because φ ° T* is measure-preserving. Now we have

δqo(t, Y)= l-(A+(t, Y)-A~(t,

Putting «*({, Y) = A±(t, Y)-E(A±(t, Y)), and taking into account

we get the statement of the theorem. Q.E.D.
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Proof of Lemma 3.1. First we shall prove the lemma in a particular case t = 0. It is
sufficient to assume that s is an integer. Indeed, for J s = [-s,0] with arbitrary

sup M0,Λ,Y)^ sup
ACAS, \A\<sβ ACA[sl+ i, M

sup

where ξ*(Y) = ξ(Y)sup-

Let us choose y:β<y<u and put

L{s)

Then IJ ziP2^ s Also we remark that the Lebesgue number of the covering {Δψ}

is equal to sy. It means that if \Δ \ < sγ and A C As, then for some j , 0 ̂ j ^ L(s) we shall
have ΔQΔψ. Denote

ηψ{Y) = card{(^, ι;) 6 X: 4 e Δψ9 v> 0} .

Then ^ J ) has Poisson distribution with the parameter ^ρ\A{

s

j)\ = ρsy. Thus we have

\Y: max ,»£s«l £ Σ

L(s)

^ Σ exp<!-<

Therefore
—. c -.

: max
selN

The Borel-Cantelli lemma can be applied and it gives the existence a.e. of ξ(Y) such
that for all integer 5 we shall have

max rfiP(Y)£ξ(Yy9 E(«Y))<oo.
O^j^L(s)

Now let AcAs, \A\^s^<sy. Then there exists ;:;e{0, ...,L(s)} such that
ACA(J\ Therefore

Thus for ί = 0 the lemma is proven.
fo 1

In the general case we introduce the flow }Tj in the space Ω such that
0

T({xo,X}) = {xo,X'}, where X' appears from X under the action of the free
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J° 1dynamics. The flow JT*] preserves the measure μ0. Now

ί°
Therefore the statement of Lemma 1 is fulfilled for ί^O with a constant α f ( Y )

(o \ X

instead of ξ(Y). But ξyTζY)) is a stationary random process. This completes the
proof. Q.E.D.

4. An Estimation of the Diffusion Coefficient from Below

We prove in this section the following theorem.

Theorem 4. For each t > 0 the normalized displacement qo(t)/yt has the following
representation,

«o(0

where the random variable y(t) has Gaussian distribution with the expectation 0 and

the variance σ2(ρ,β) = ]/ — —-=9 not depending on M, ζ(i) is a random variable,
V o ρ]/β

independent of γ(t)9 and ξ(t)-^O in μ0 probability.

Proof of Theorem 4 consists of several steps.

1°. Let

Namely

4

1°. Let us introduce the subset Γ0(ί)= U Γ^\t)9 where Γ^(ί)cR2, ί>0 5 ε>0.
i l

Less formally if a particle (q, v) e R2\Γ0(ί), then it would remain outside the space
interval ( - tί/2+ε, t1'2+ε] during the time interval (0, ί). By La, a e R 1 we denote the
following transformation R 2 ->IR2: La(q, v) = (q,υ + a), and Γa(ή = La(Γ0(t)).

For any locally finite set of particles W the functions fi(a) = χΓa(w), f2(a)
= XτsL2\ra(

w) a r e right-continuous.

2°. Let Ω{f) be the phase space of the system, consisting of a finite number of
particles, including m.p. A point F e Ω(/) has the form F = {v0, vl9...,Vj,ql9. ..,qj}9

where (qb vt) are parameters of a particle xt = (qb vt) e F, j + 1 = κ(F) is the total
number of particles.
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oo

ThenΩ ( / )= \J Ω[f\ where Ωψ consists of F for which κ(F)=j. We introduce a
fe=l

non-normed measure m on Ω(/) whose restriction to Ω{β x has the form

j+l

dm(F)=^(f) 2 l/Mexp j - f Mi;2- ( £ t>?l Π *Z, Π ̂

By ^ we denote as before the limit Gibbs measure corresponding to the density ρ
and inverse temperature β, which is a normed probability measure on Ω(X). We
have the natural mapping of the direct product of two measure spaces

where φ(F,X) = FκjX, which is defined a.e. with respect t o m x ^ .

Lemma 4.1. Let A Cut2 be a Borel subset containing the line q = 0. Then for any
feL\Ω09μ0)9

ίf(Y)dμo(Y)= J ί dm(F)d0>(X)χ^A(x)χA(F)f(φ(F,x)), (4.1)
β</> Ω(x)

where χ is the indicator of the corresponding set.

Proof. For any set A cTR2 for the conditional measure dμo(YΛ\ 5^2^), provided that
YWi2\Λ=Yn (JR.2\A) is fixed, we have

where the partition function £(̂ 4) = exp -y= f e 2 dvdq). The induced mea-
KyϊπA Jy

sure dμo(Y1Si2\A) is the measure of the ideal gas in R2V4. But Ξ~1{A)dμQ{YBp.\A) is
precisely the measure on the space of X, for which XnA = 0 because Ξ~ 1(A) is the
probability for the measure 9 that none of particles is in A QED.
3°. From (4.1) we have for any Γa,

jf(Y)dμo(Y)= ί ί dm(F)d^(x)χΓa(F) χ^Γa(x)f(φ(F,X)).
β</> β(jc)

We shall show that a similar formula is valid when a is a function of Y= φ(F, X).

Lemma 4.2. Let a = a{Y) be a measurable function of Y. Then

ίf(Y)dμo(Y)= J J dm(F)d&(x)χΓam))(F)
n<« Ω(X)

(4-2)

Proof. Assume that a(Y) takes values aua2, ...,«„,... on subsets
C1,C2,...,CιQΩ0. Then
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and

f f(Y)dμo(Y)=p f(Y)χCi(Y)dμ0(Y)

For each i we apply (4.1) to f(Y)χCi(Y)- This gives

ίf(Y)χCi(YWo(Y)= ί ί dm{F)d0>{X)
β</) Ω(x)

(φ(F, X))χCi{φ{F, X)),

= ψf(Y)χCi(Y)dμo(Y)

= ί J dm(F)d^(x)ZXrSnX^ra{x)XcMF^))'f^(^X)),
β(/> Ω(X) i

i.e. we have (4.2) for functions a(Y) taking a finite or countable number of values.
Let be a(Y) be any measurable bounded function, ||α||«, < oo. We may find a

sequence of a function an(Y) such that each an takes only not more than a
countable number of values, αM(y)|α1(y) as n^oo and HαJ^rg const <oo. Then

Jf(Y)dμo(Y)= lim J J dm(F)d&(X)Xra<φ(FXί)(F)

= J f dm(F)d^(X)χΓa(φiFX))(F)χmΓa(φ(F:X))(X)f(φ(F,X)).
β(j) Ω(X)

The last equality is true because the functions χΓa(F) and χπ2\Γa(X) are right-
continuous, and the sequence of functions

is uniformly integrable if \\an\\ ^ ^ const < oo. Let a(Y) be any measurable function.
Then (4.2) holds for such / that

for some N. But ^ T ^ o and this proves the result.

4°. Let us take the C00 function /x(z) with a compact support and put f(Y)

=A f ^ % 2 \ a(Y) = q-^. Then from (4.2)
\ yt J t

-

qo(t,φ(F,X))\

(4.3)

The natural flow in Ω ( Λ generated by the dynamics of particles of F is denoted by

'}, q(i) is the coordinate of m.p. at t, ά(F)=-q(t). We shall show that with μ0
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probability tending to 1 as t-+co:

a(φ(F,X)) = ά(F),

Using this equality we get from (4.3)

μo(Y)= j Xrim(F)fMF)ft)dm(F)
\ yt

ί JtEV
Ω(X)

(4-5)

where ε ^ ί ) - ^ as ί-»oo. In fact, one can get more precise information about the
order of decay of ε1(ί). Further,

Ω(X) 2π rάiF)

and

ί /i (^p) dμo(Y) = J^ Xr^(F)fi

(4.6)

5°. Now we shall prove (4.4). The equality

-qo(t,φ(F,X))=i-qo(t,F)
L ΐ

holds if the dynamics of m.p. is the same for the flow {T*} and for the flow {T*}
during the time interval (0, t). This will happen if \qo(s)\ < tίl2+εl2 for all s e [0, t].

Indeed, in this case \a\ = jf
Of

particles which do not reach [—\t112+ε, \tlί2+ε], and therefore do not interact with
m.p. during the time interval [0, t]. Thus qo(t) = q(t) for F=YnΓa. Q.E.D.

6°. In this subsection we shall investigate the behaviour of

We have (see Fig. 1), and Δ(Q = Δ(Γ0) + Δ(S2)-Δ(S1). Further,

ta\ e 2 dυ+] tve dv ,

a 0 J
oo _

o

α _ M Ί
ί ί ( α - φ 2 dv ,
o J
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Fig.l

tg0=1/t

and therefore

a _ βv2 a _ βv2

A(S2)-A(Sί) = ta]e 2 dv + t](a-2v)e 2 dv
o o

a - t l a _βfL
= 2ta$e 2 dv-2t\ve 2 dv

o o
jf / βά1 \

= 2ta2+— [e ~ir-l) + δ(t,a),
β V J

where \δ(t,a)\Sconst\a\3 ί. For | α | < ί " 1 / 2 + ε / 2

5 we have

|(5(ί)|^ const i
This yields
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The substitution of the last expression into (4.6) gives

, Λ(<ί(J0V7)exp]-ί(<ί(.

;i+e2(ί)), (4.7)

where ε2(i)-+O, ί->oo.

7°. We shall introduce new coordinates in Ω(/) which will be very useful for further
calculations. Denote by ά the measurable partition induced by the function ά(F).
An element C*.α) of this partition consists of all F for which ά(F) = z. It is easy to see
that Cf^L.Cf (for the definition of L2 see 1°).

In the space Ω(

0A of all Fe C(

o

ά) with κ(F)=j+l9 the element Cf is modO, a
countable union of open subsets of (2j)-dimensional planes. Here we use essentially
the one-dimensional character of the dynamics. Each La shifts points F e Ω ^
along the normal lines to these subsets. It means that for any F s Ωjβ one can find
in a unique way α e R 1 and Ve C(

o

ά) such that F = LaV. We shall use α, V as new
coordinates in Qfp.

The next problem is to express the measure dm(F) in coordinates a, V. It follows
from what has been said above that

j j

i = ι li = o

where dV is the Lebesgue measure on each C(

o

α). Further,

α)

The point {υo — a,υ1—a, ...,vj — a,qί, ...,q^ = VeC{S\ Thus

j Ύ

— 1 κ(V)

H(F) = M + * ( F ) (ά(F) - £(F))2 + H(V) - (E(V))2.
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Now we can write

dm(F)=cxp {- βH(f)} Π dq, .Π * ι 4 0

441

+ H(V) - (E(V))2 >dadV- c(κ).

This formula shows that the conditional distribution of ά{F)γt for any fixed V is

gaussian with the expectation ]/tE(V) and the variance ^—-. We shall show
later that

hm
t-*O0

,. κ(V) ,. 1 Λ/τ,... λ β
= km - ^ = lira -Δ(Γ0(t))ρ \ ~=σί

in μ0-probability, where σ1 is a constant depending only on β, ρ and not depending
on M. In fact one can prove the convergence with μ0-probability 1, but for our
goals it is sufficient to have a weaker result. Returning to (4.7) we can write

χΓo(V) • c(j) • dadV+ε3{t)

Here ε3(ί)-^0, βi^-^O as ί-»oo. Putting z = α|/ί? we have
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where G is the distribution function of the random variable γtE{V). The last
expression gives the statement of the theorem. K(V\
8°. We have to prove the existence of the limit lim -. It is easy to see that for

| α | ^ r i/2+ε/2? \κ(y)-κ(F)\^t1/2+B with a big μ0 probability. Again by the same
reasons

The existence of the limit lim ^-J- is obvious.

5. Concluding Remarks

In the paper [10] Szasz and Toth got the estimation of Theorem 4 by a different
method. From our considerations it follows also that if the limit probability

distribution for °r exists then it is absolutely continuous and its density is

analytic. Vt E(q2(t))
The results of [10] also shows that if the limiting variance lim does

ί-»oo ί

not depend on M, then the limit probability distribution of ° is Gaussian, with

ft
the same variance. The authors of the present paper believe that it is more plausible
that the variance depends on M.

Also all arguments of this paper can be applied to the case where m.p. interacts
with particles of the ideal gas through a short-range repelling potential.
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