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Abstract. We give a simple proof that all C 4 diffeomorphisms of the torus can be
factorized into a finite number of diffeomorphisms commuting with reflection.

In one dimension, C 3 suffices and even C 2 can yield that the factors are
almost diffeomorphisms. (The derivatives of the function and the inverse are in
L1 and are positive.)

In one dimension under C°° assumptions, this had been proved by J. Langer
and D. A. Singer in their study of geodesic fields by different methods.

1. Introduction

J. Langer and D. A. Singer proved in [1] that Diff+ΐS1)—the group of C00

orientation preserving diffeomorphisms of the circle—is generated by symmetric
diffeomorphisms; that is, every C00 diffeomorphism is the composition of a finite
number of diffeomorphisms that commute with reflections. (Taking S — (R/Z, a
reflection about θ is Rθ(x)= —(x — θ) + θ (modi), / : S 1 ->5 1 commutes with
reflections if f°Rθ = Rθ°f.)

The interest of this theorem for the authors above was that, in the same paper,
they showed it implies that given any orientation preserving C00 diffeomorphism /,
there is a C°° gradient flow in the annulus that sends the point θ in the inner
boundary to f(θ) in the outer boundary; this in turn, can be used to characterize
which transformations in rays can be achieved through geodesic flows in conformal
metrics; in more physical terms, they characterize the transformations that can be
achieved by isotropic lenses (scalar index of refraction) in 2-D. Other applications
are also possible. Since the conformal group in two dimensions (indefinite metric) is
just the product of two diffeomorphism groups of the circle, it suffices to show
invariance under changes that commute with reflections to show conformal
invariance.

The object of this note is to provide a different and simpler proof of the result that
works with weaker differentiability assumptions and obtains stronger differentia-
bility in the factors.
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In distinction to the proof in [1] our proof is not based on rapidly convergent
iterations but, rather, we reduce it to a sequence of steps that can be accomplished by
a method of proof introduced by M. Herman [2,3] to improve the differentiability
conditions of the local Arnold theorem on conjugacy of diffeomorphisms to
rotations and of J. Moser's twist mapping theorem. This method was also shown in
[4] to yield good numerical values of the stability domains in C. Siegel center
theorem.

We first show that all diffeomorphisms close to the identity can be written as the
composition of a rotation and two diffeomorphisms symmetric about two different
axis. (We call this the reduction theorem.) Afterwards, we show that rotations can be
also expressed as compositions of diffeomorphisms symmetric about the same axis.
To show that rotations can be decomposed in this way we just apply a strong version
of the reduction theorem—including uniqueness—to a carefully chosen family.

For the first application of the reduction theorem, uniqueness plays no role and
it is possible to give a proof that does not include uniqueness in the conclusions but
which uses one derivative less. For the decomposition of rotations, derivatives in the
hypothesis are no burden. Since the theorem including uniqueness is simpler to
prove, we do it first.

Both theorems can be proved by Herman's strategy: write a carefully chosen
functional equation, take derivatives and logarithms—so that compositions
become simpler—and treat the resulting equation as a fixed point problem; the
version without uniqueness is obtained using Schauder fixed point theorem in the
last stage and the one with uniqueness using the contraction mapping principle.

One we have decomposition in a small ball, around the identity, extending it to
all DifT+ίS1) is a simple argument in a point set topology.

Notice that taking logarithms only makes sense in 1-dimension—and, besides,
in setting up the fixed point theorem we will have to assume number theoretic
properties which only hold for n-tuples when n = 1 (and then only in a set measure
zero). So, this strategy is quite linked to 1-dimension. Nevertheless, we show that
some multi-dimensional generalizations are possible by reducing the problem to a
sequence of one dimensional problems. This requires use of the implicit function
theorem in place of contraction mapping—so as to obtain smooth dependence on
parameters in the previous results—and requires one derivative more.

Unfortunately, those multidimensional results are not enough to derive
analogues of Langer and Singer geometric results in higher dimensions; we prove
them for Td and, the geometric results would require Sd which, of course, is different
when d Φ 1, but maybe it will be possible to remove this shortcoming.

More precisely, the main theorem we want to prove is the following.

Main Theorem. There exists a number p such that all C r ^ 2 orientation preserving
diffeomorphisms of the circle can be written as composition of a finite number of factors
that commute either with Ro or Rp. When r > 2, the factors can be chosen among Cr~2

diffeomorphisms, and when r = 2 they can be chosen so that they and their inverses have
positive weak derivatives in //, all l^p< oo.
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2. Preliminaries and Notation

Since S1 = R/Z, all maps of R to itself satisfying

l (1)

can be thought of as maps of the circle to itself. Since we are going to be concerned
mainly with maps close to the identity, we can decide unambiguously which map of
the real line represents a map of the circle and we will, therefore, identify two such
objects even without saying it explicitly.

The space of maps satisfying 1 can also be thought of as the affine space obtained
adding to the identity a space of periodic functions. We will find useful the following
spaces of periodic functions. (We will systematically use the notation / = / — Id.)

kel

where fk is the fc-th Fourier coefficient of/, f(x) = Σ/Λe2 π ι f c*. When r is an integer—
keZ

the only case we are going to consider—

Il/H2 = if II/ΊU

where f is the r-th distribution derivative of/.

All Hr are Hubert spaces with the obvious scalar product.
We will repeatedly use the following facts:

i) Hr is embedded in C~1 for r ^ 1. This embedding is compact. On the unit ball of
W the weak topology of W and the topology induced by C1""1 coincide,
ii) If/, geHr, r^, then f gelΓ and

iii)

We give the proof of iii) for r = 2. The other cases are similar,

f°ig + Id)" =/"°(0 + ld)(g' + I)2 +f'°(g + U)g",

] ) 3
\\f'Ό(g + ld)(0' + I)2 Ilia = ]\f"°(g + Id) I V + ίW + I)

J |
range (g + Id)

and these terms can all be bounded uniformly by a constant times || / | | r. The other
terms with the integrals are easier.

This inequality is one of the elements of the proof that are not known in higher
dimensions even if there are some weaker forms. •
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(See [9] p. 67 ff and references there for a survey of results on composition of
diffeomorphisms with Sobolev regularity.)
iv) If r ^ 2, there is an Hr neighborhood U of the identity such that all functions in it
are invertible and, moreover, the W norm of all the inverses of functions in U is
bounded.

Proof of iv). We construct the inverse of a function by integrating the derivatives
(f~1)= 1//' of Since / ' is bounded away from zero uniformly for fe U, we can see by
the same argument used for diffeomorphisms that the r-th derivatives of / " * exists
and its L2 norm is bounded.

Unfortunately, it is not true that an H1 neighborhood of the identity has only
invertible elements, as can easily be seen.
v) If meCr+ι+\ r, leN the map τ: H r ->H r defined by h^m°h is of class C1.
Moreover, when h ranges in a bounded set

\\Dτ(h)\\ύ\\m\\cr+iK.

Proof of v). We will prove the statement for / = 1 and that the derivative is
multiplication by m'°h. Hence, the full result follows by induction in /.

It suffices to show that

\\mo(h + Δ)-m(h)-(m'oh)Δ\\Hr^K\\m\\cr+i(\\Δ\\Hr)2.

For r = 1, taking the derivatives

m'o{h + Δ)(h + Δ)f - m'ohh' - m"°hh'Δ -{m'°h)Δf

= h\m'o(h + Δ) - m'°h - m'ΌhΔ) 4- Δ\m'°(h + Δ) - m'o/z),

and it suffices to bound the L2 norm of this by (|| Δ \\Hr). Now, the second factor in the
first term is bounded in C° by 2| |m||C2(| |4 \\Ho) in turn is bounded by | | 4 | | H i .
The second factor in the second term is bounded in the supremum norm and A' is
bounded in the L2 norm both by \Δ | |H 2.

By induction in r we can show that, taking the r-th derivative, the only term
containing Δr is

whose L2 norm can be bounded.
Since we are in 1 dimension, we can bound the supremum norm of all other

derivatives by \\Δ \\Hr, and all the other terms appearing are bounded in the same
way as when one wants to prove this theorem by C rather than Hr.

Remark. When h ranges over a bounded set in Hr this implies uniform bounds for
|Λ|. The norms of m need only be taken over that set.

Remark. From this, it also follows that if / ranges over a bounded Hr+ί

neighborhood, the application Inv: Hr^Hr sending f-^f'1 is differentiate.
Indeed, the differential is

α°InvF
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If a diffeomorphism of the circle commutes with reflections about 0, the function
representing it should be odd about zero, that is: /(x) = —f( — x).

In Fourier coefficients, this means fk= —f-k for all k. More generally, if a
diffeomorphism commutes with a reflection about an axis going through p, the
Fourier coefficients would satisfy

akfk = — a~k?-k for all fc,

where a = exp (2πip).
We denote by Or

p the space of functions odd about p which are in Hr. It is a closed
subspace.

The Fourier coefficients of even functions about p satisfy

We will denote by Er

p the space of functions even about p which are in Hr. It is also a
closed subspace.

The derivative of an odd function is even and the derivative of an even function is
odd. All primitives of odd functions are even and each even function has one and
only one primitive which is odd. Any function of an even function is even.

The other ingredient of this proof is—as in [1]—the fact that the separation of
the two axis which we make reflections is not well approximated by rationals.

The separations we can use in our proof are those given by numbers of constant
type. That is, those numbers p satisfying

\p — p/q\~x ^ yq2 for all p, qeZ and some γ > 0.

An immediate consequence of this is that, when

a — exp(2πip) and p is of constant type, we have

More delicate is the folowing estimate that we will use in Theorem 3,

1 V / p

 < for all p > 1
= p and all N > 0.

Notice that this is much stronger than what one could hope if the inequalities
defining a number of constant type were saturated all the time. However, using the
pigeon-hole principle one realizes that these inequalities are saturated very rarely.
We refer to [2] and [5] to find a proof.

This condition of separation from rationals is extremely strong. In contrast to
the conditions used in [1], which hold for a set of numbers of full measure, it holds
only for a set of numbers of measure zero. However, for the present purposes, this is
no restriction. In [5] it is possible to find a discussion of properties of these constant
type numbers including their abundance.

3. The Reduction Theorem

As was said in the introduction we start by proving a version of the theorem that
includes uniqueness among its conclusions.
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Theorem 1 (Reduction theorem; first version). Let r^.2 be fixed and pbea number of
constant type, let also A1 and A2 be two diameters of the circle forming an angle oflπp
radians. {We will give the circle a system of coordinates so that Ax goes through 0 and
A 2 through p).

Iff: U->Uisa Cr+2 function satisfying

ε0 a number to be determined later.
Then, there exist two diffeomorphisms u, v of the circle of class Hr and a real number

θ so that
(*) u°vof(χ) = χ + θ,

u,v commute with reflections about Ai9 A2 respectively.

Moreover,

- There exists a B so that w, υ can be chosen

Uhr^Be, \\ΰ\\Hr^Bε.

-u, v, θ are determined uniquely by the preceding properties.
- In case feCr+ι + 2, the function that associates to each /, (u,v,θ) is of class Cι.

Remark. Notice that if we were to use an iteration method, it would be much more
convenient to try to solve

u°f°v(x) = x + θ

which, however is unsuitable for this strategy.

Proof of Theorem 1. We observe that satisfying (*) is the same thing as satisfying
(notice that the derivatives exist pointwise, but this formula is also right if the
derivatives exist in weak sense)

u'ovof(χ)vΌf(χ)f'(χ)=l.

Taking logarithms, this becomes

(log tι')°t;°/(χ) + (log v')of(χ) + log/'(x) = 0.

Writing x =f~1°v~1(y), this becomes

- iog(ιr 7G0 = io g (/- 7 oiΓ \yy (2)

A moment's reflection will show that, a solution of (2) is a solution of (*) and that,
since all diffeomorphisms of the circle have derivative strictly bigger than 0, taking
logarithms is allowed on all solutions of (*) and so, (*) and (2) are actually equivalent.

To simplify the notation we will call log(/~ 1)/ just m. What we want to do is to
check that, under suitable assumptions of smallness in m (which are implied by
closeness of/ to the identity) (2) has a solution, unique in a certain region, and all the
other conclusions.

The way of solving Eq. 2 is to introduce the operator <Γ that, given a function
he I + Er

0 produces the only function (we will prove the appropriate uniqueness
statement) lei + Er

0, satisfying
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We will show that this operator is a contraction and, therefore has a fixed point v.
From this fixed point (and the corresponding s) we can construct a solution of (*).
The other properties will follow from a careful reading of the proof.

y will be constructed step by step, keeping good track of the constants. In this
construction we will need the following

Lemma 1. Let p be a number of constant type.
Iff is a function belonging ίo /Γ, r §; 1, then there are two functions w, v belonging to

Er~\ E^'1 satisfying u + υ=f.
Moreover, these functions are unique up to constants (which obviously have the

constraint §u + jv = jf\ and we have

For convenience, we will denote the map sending / to v — jv by P o .

Proof of Lemma 1. If we take Fourier coefficients, the equation is just uk + vk =fk.
When k is not equal to zero, the equation for —k is different, but, using the

symmetry relations, it contains the same unknowns, a2kuk + vk=f-k. These two
equations can be solved to give

«* = (-Λ +/-*)/(! - «2t), »* = (-«"/* +/-*)/(! - β2*)-

Using the inequalities for the rational approximations of p we get,

\uh\ ύ (IΛI + \f-k\)CK M £ (|Λ| + |/-fc|)Cfc.

From which all the conclusions of the lemma follow. •
It is clear now, how to construct 2Γ. Given h, we compose it with m. Then, apply

Lemma 1 to produce log Γ (up to a constant), exponentiate to obtain /' up to a factor
and then, find the only primitive of this function which is odd. The "miracle" is that
this last step restores the derivative we had lost in applying Lemma 1. We fix
uniquely the arbitrary factor in such a way that the result is a diffeomorphism of the
circle (that is, /' should integrate to 1).

The reason why this operator should be a contraction under smallness
assumptions in m is because the last three steps have well defined Lipschitz constants
(provided that we only consider bounded sets) and the Lipschitz constant of the first
can be made arbitrarily small by imposing smallness conditions in m.

More precisely, we have:

. f i i F c / i O ^ Hr; FJi = m°K

F2: W -+Er

0~
1:J'2 = Po as in Lemma 1,

^ Fo"1-^ Er

0~
x: ̂ r3h{x) = exp h(x\

]h{y)dy
&Γ Fr ~ x —• 1 A- Πr tf~ U(Ύ\— -

[Ky)dy

What we proved in v) is that, by making |m|cr+i sufficiently small, we can get 7\
to have a derivative of norm as small as we want.
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&'2 is linear and we showed it is bounded. By the same type of C bounds, ^" 3 is
Lipschitz on bounded sets. Moreover, it sends Er

0~* bounded sets to sets of functions
uniformly bounded away from zero. For these functions, normalizing to integral 1 is
a C00 operation and, integration is linear and bounded in the spaces considered.

The function v'1 solving (2) is obtained applying the contracting mapping
principle. Looking at the right-hand side we obtain log(w'). Therefore we obtain u up
to a factor that is fixed uniquely by requiring it to be a diffeomorphism of the circle.
Once one is convinced that w, v are unique in a ball, there is no difficulty in obtaining
the same for θ.

To prove the bound for || v||, it suffices to observe that || e^Id - Id ||r ^ Bx \\\m\\\.
Then, the contraction mapping principle gives

But smallness conditions in m imply uniform bounds in
The continuity of the fixed point with respect to m (given the topology of

HI m|||) comes from the fact that ZΓ γ is linear in m. So that, when we have two m's
ll^'i(m)ft-^ri(m')^llffr = i m ~ m ' l l l uniformly in heV, so that there is a constant D
such that || fim)h - F{mΊh ||r ^ D|||m - m'||| uniformly in he V.

If ϋ~ι is a fixed point for ^(m) it follows that

And thus, the fixed point of ZΓm, is not far away from v 1.
Now, as remarked in the introduction when r ^ 2 , then the inversion is a

bounded operation in a neighborhood of the identity and all the bounds for υ'1

carry over to v itself. •
To obtain that (u, v, θ) depends differentiably on /, we just recall that since

exponentials etc. are C00, ^(f u, v) is a Cι function and we showed its derivative is
bounded away from 1. So that we can apply the implicit function theorem in Banach
spaces.

Corollary 1. In the conditions of Theorem 1, there exists a constant B3 so that

i

θ- ύ B3ε
2

Proof. (*) can be rewritten as:

x + ύ°vof(χ) + v(f(x)) +/(*) = x + 0,

so

Remember that both ϋ and ΰ are odd functions and that, therefore they integrate to
zero over a whole period so that |J ύ°f(x)\ = |Jί°/(x) — ί(x)|. However

\vof(χ)-ϋ(x)\S sup \ff(x)\ sup |/(x)-x|,
xe[0,l] xe[0,l]
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and each of the factors can be bounded by something proportional to ε. The first
term, involving w, can be bounded in a similar fashion. •

Corollary 2. All small enough rotations can be written as products of diffeomorphisms
commuting with reflections.

Proof We construct a continuous family of gλ9 Ae[-/lo>^o] of diffeomorphisms
with the following properties:
i) gλ is well into inside the domain of applicability of Theorem 1 (so that θ is a well
defined continuous function of λ).
ii) All gλ are products of diffeomorphisms commuting with reflections.
iii) θ(gλ) changes sign in [ — λQ,λ0~\.

It follows that, for all diffeomorphisms / close enough to the identity, (in
particular small rotations) θ(gλ°f) changes sign so that there is one /I*, θ(gλ*°f) = 0,
which means that/can be written as a product of diffeomorphisms commuting with
reflections. In view of Corollary 1, iii) can be substituted by:
iv) gλ is differentiable with respect to λ9

v) % o ) = ί<7o = 0,

Such a family can be constructed in the following way: Call hλ(x) — x + λ sin 2πx.
If k, I are diffeomorphisms commuting with reflections about 0 and p

respectively, gλ = hλ°k°l is an acceptable family provided Jsin(/c°/(x)) φ 0, and fc, /
are suitably close to the identity. (Notice that we obtain θigo) = 0 by just observing
that Γ1°k~1°go(x) = x.) k and / can be obtained by adding to the identity
antisymmetric functions centered at 0 and p respectively, which are small and which
"live" in a small interval.

This can be done, e.g. using the Poisson kernel (or rather a trigonometric
polynomial truncation of it),

k = x + εx sin (2πx)P(x, p/100),

/ = x + ε2 sin (2πx - 2πρ)P(x - p, p/100).

One can get easily convinced that, by choosing εt and ε2 all the condition are
satisfied. (If we take ε2 = 2ε1 = ε, J sin(fe° l(x)) is an analytic function of ε and one only
has to check that it is not identically zero to conclude that in any small
neighborhood there are points where it is not zero. The derivative with respect to ε
can be seen to be nonzero. So, by getting to a small enough ε we can adjust any
smallness condition.) Depending on how small we have to choose ε, we have to
impose more severe smallness restrictions for λθ9 but there is still a strictly positive
number that will work.

Theorem 2 (Reduction theorem, second version). Letr^2 be fixed and pbea number
of constant type. Let also Aγ and A2 be two diameters of the circle forming an angle of
2πp radians.

Then there exists an ε0 > 0 (ε0 depends on r) such that, whenfeCr+1 and | | / | | r =
ε g ε0, then there exist two diffeomorphisms u, veld + Hr so that
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w, v commute with reflections about AUA2. (**)

θ is arbitrarily small when ε is sufficiently small. (***)

Proof of Theorem 2. Again, we start by remarking that if we find a solution of (2) we
can find a solution of the problem and again, we find a solution of (2) by treating it as
a fixed point problem for 9~. The difference with the previous proof is that we do not
involve the contraction mapping principle but rather, Schauder-Tychonoff fixed
point theorem. Even if we do not obtain uniqueness this way, we only have to control
where the image under F lies and not the Lipschitz constants; this allows the use of
one derivative less in the hypothesis.

We start by fixing Kr small enough in such a way that in

we can perform inversion and it is a bounded operation.
We see, using iii) that, by imposing sufficiently strong smallness conditions in

|| m || r, we can make 2Γx V to be contained in an arbitrarily small ball around zero.
By carrying the argument the same way as we did in the previous version we can

obtain that 2ΓV is contained in a ball as small as we please around the identity. In
particular it can be made to be contained in V.

Since V is clearly convex, the only hypothesis of Schauder-Tychonoff theorem
which remains to check, is that 3Γ is continuous in a topology in which V is compact.
However, for maps between Hausdorff compact spaces, continuity is the same as the
closeness of the graph. So, it suffices to find a topology in which V is compact and (2)
is a closed relation.

The C 1 topology is acceptable. Compactness of V comes from the compactness
of Sobolev's embedding and closeness of the graph is most easily established looking
at the extended operator &~*:&~*h = (s,t) (The same notations as in (2)), so that
(h, s, I) in the graph of &~* is the same as those satisfying (2) which is a property clearly
preserved under C 1 limits. Since $~* also maps a compact set into a compact set, it is
continuous, and since βΓ is obtained by projecting, it is also continuous.

To finish the proof we only have to remark that the smallness conditions for
| |m| | r can be obtained by imposing smallness to | | / — I d | | r + 1 .

Remark. Observe that by using this method in the proof we only "lose one
derivative" whereas Nash-Moser methods would lose more.

The proof is, however, not optimal in the differentiability assumptions. The next
proof deals with the borderline case of assuming only two derivatives.

Other modifications are also possible. One could e.g. use fractional order,
Sobolev spaces or spaces of Holder spaces for which all the ingredients of this
proof—characterization by decay rates of Fourier coefficients and inequalities for
the composition—are available [6,3], However, the next version seems to be close
to optimal in the differentiability requirements and we have not explored in this
paper the other possibilities.

Theorem 3 (Reduction theorem, third version). Let p be a number of constant type,
and Ax and A2 be two diameters of the circle forming an angle oflπp radians.
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Then there exists an ε0 > 0 such that when || / | | c 2 = s ^ ε0, then there are two
homeomorphisms u, v, and a number θ such that the same conclusions of the previous
theorem hold except uniqueness.

Proof of Theorem 3. Again, we solve (2) instead of (*) by constructing the operator 3~,
but we try to optimize differentiable assumptions.

The intuition is that the most delicate step is the exponentiation because it is the
one which is done in a space with less regularity. Probably the less regular space in
which exponentiation can be controlled with today's technology is B.M.O. (The
functions of bounded mean oscillations) and this fits wonderfully with a remarkable
theorem by Yves Meyer which characterizes which functions, through the
application of Lemma 1, yield functions in B.M.O. The regularity properties
required of m are chosen in such a way that everything fits together. All this
remarkable strategy comes straight from [2] and what follows, after having found
the right formulation, is very similar to what is in this paper. As a matter of fact,
imitating the proof in [2], one can see that it suffices to use LP, p> 1 bounds in the
second derivative of/instead of the C 2 smallness conditions. For simplicity we just
check the later case. Notice that, already a C2 proof is beyond Nash-Moser
techniques. Besides that, for our applications, we are only interested in topologies
compatible with the group structure of diffeomorphisms.

The critical lemmas are the following:

Lemma 2 (John and Nirenberg). Given a real function h over the real line, we call

where \I\ is the measure of the interval I and also

PIIB.M.o. = sup—-
/ μ|

(Notice that strictly speaking || ||B.M.O. *5 n°ta norm, since it takes the value zero on all
constant functions).

We say that a function h is in B.M.O. when || Λ HB.M.O. < °°
Then, there exist two constants b > 0, B > 0, so that, when ZieB.M.O., j h = 0 and

b' is a real number so that

We have

Proof It can be found in [7].
The consequence we want to deduce from this lemma is that, by controlling the

B.M.O. norm, we can control the L2 norm of the exponential and we will also need
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lower bounds on the normalizing factor. The latter can be deduced applying Jensen's
inequality.

(ίe^'^ί^Γ^l/ίβ-^l-^^^J

Lemma 3 (Yves Meyer). Let Po be defined as in Lemma 1 (that is, the projection on the
space of even functions about θ with respect to the even functions about p, where p is a
fixed number of constant type). Then, given any p > 1, there is a constant depending
only on p such that

Proof of Lemma 3. This lemma is not quite the same as the one enunciated in paper
[8], but its proof applies without any modification. The key step in his proof is
Lemma 3 of [8] and, using the Fourier representation of the operator Po that we
gave in Lemma 1 and the estimates for constant type numbers mentioned in the
introduction, we can prove very easily the estimates needed to apply it. •

The proof has to be slightly more careful than before, since we do not have as
many properties to control the spaces. The choice of V for example has to include the
positivity of the derivative to guarantee that there is an inverse

V = {/(x)|/(x)eld + 0'o, || / ' | |L 2 ^ ε J\x) > 0}.

Notice that the oddness of / about 0 implies that it should vanish at zero, giving
therefore a one-to-one correspondence between functions and their derivatives.
Under C 1 smallness conditions in m we can obtain

So, we have controlled where &ΊV lies. Using Meyer Lemma, we have controlled
II 1°8'' HB.M.O.J a n d using John and Nirenberg lemma we can bound || /' | |L 2 and we can
also bound the normalizing factor.

The upshot of all this is that, under C 1 smallness conditions in m, V is sent into V
and in order to apply Schauder-Tychonoff theorem we just need a topology in
which V is compact so that 5~ has a closed graph. Such a topology is the weak L2

topology for the derivatives (remember that for odd functions the derivative
determines the functions). (This topology, as a matter of fact is the topology of
Holder norms of order 1/2).

We just observe that when three functions /, s, h satisfy (2), then they satisfy

and the only thing we have to show is that when /; -• /', h\ -• h in the weak L2 sense, the
left-hand side converges in the weak L2 sense to the value of the limits.

This is true because weak L2 in the derivatives of ht implies convergence in the
supremum norm for f'°hι and convergence in the supremum norm for one factor
and weak convergence for the other, implies weak convergence for the product.
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Remark. Observe that the last step of the supremum convergence also follows from
IF p > 1 boundedness for /". The arguments which are necessary for proving that
under such conditions, 9~ maps a suitable V into itself, do not need modification
from those in [2].

As remarked before, the fact that the derivative is positive guarantees that the
map is invertible. Moreover, since our map does not send sets of positive measure
into sets of measure zero (this also follows from positivity of the derivative), then the
inverse is absolutely continuous and has an L1 derivative.

So, given two C2 diffeomorphisms that can be factored into homeomorphisms
with strictly positive L1 derivative and symmetry properties, their product and their
inverses have similar properties.

We hence proved that, indeed, there is a C2 ball around the identity all of whose
members enjoy this property. The C 2 topology is compatible with the group
structure under composition.

4. The Decomposition Theorem

Any of the versions of the reduction theorem we have proved tells that all functions
which are in a sufficiently small neighborhood of the identity can be reduced to
rotations by composing with symmetric ones and, in view of Corollary 2, all
functions which are close to the identity can be written as a product of a finite
number of functions commuting with reflections.

The C topologies when r is an integer are compatible with the group structure
under composition.

Since the set of diffeomorphisms that can be written as a finite product of
symmetric ones is clearly a group, it is open and, since the complement is the union of
cosets, it should be open too.

However, the group of orientation preserving diffeomorphisms of the circle is
connected and, therefore the set should be the whole group. This finishes the proof of
the main theorem.

Remark. A corollary of the proof is that all small enough rotations can be written as
u°v°gλo. Looking at the symmetries of the factor, it is easy to establish that the
decomposition we constructed of a small rotation and its inverse are not just the
inverse.

It follows that there is a non-trivial factorization of the identity. Hence, the
solution of the inverse scattering problem of making a lense given its action is not
unique.

5. Multidimensional Generalizations

We want to prove the following:

Theorem 4. Let FeTd-+Td be a diffeomorphism of class Cr (r ^ 4) in the connected
component of the identity in this group, then F can be written as a finite product of
diffeomorphisms commuting with reflections across planes {xt = a}.
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Proof. Again, it suffices to prove a local version of the theorem.
All diffeomorphisms of class C, r ^ 1 sufficiently close to Id, can be factorized in

the following way:

where

gt = ld + (09... ,0,<?,0,. ..,0),
i

and the factors are also C. Therefore, it suffices to factorize diffeomorphisms of the
form

We may try to do this also using diffeomorphisms of the same form w, v commuting
with reflections across {xt = 0}, {xt = p) respectively and translations. That is, we
try to find w, v such that

u°vof(χ) = (Xl + θ(x2'"Xd), x29... 9xd). (2)

If we succeed, it is very easy to factorize the right-hand side into diffeomorphisms
commuting with reflections.

In effect, for functions of the form (x1,...,xd)-^(x1 + ύ(x2,...,xd), *2> ••>*<*)>
compositions are the same as addition of the u, and it suffices to show that all
periodic functions can be written as sums of functions commuting with reflections.

In effect, applying Lemma 3, we can write

and, ΊίθsH\ύ,veHr~ι (clearly J θdx2eHr). So that we can apply the induction until
we get to a constant rotation. But we already proved that constant rotations can be
decomposed.

So, we are only left with showing we can choose w, v as in (2).

If we fix (x2> >*d) this is precisely the problem we solved in the one dimensional
version and we can consider (2) as solving a d — 1 family of one dimensional
problems.

By the corollaries on smoothness, the solutions (w, v ~ \ θ) are in Hr ~ 2 and depend
in a C 1 fashion on the parameters.

Now, if v~1eHr~1, then v depends in a C 1 fashion when topoligized in the Hr~2

norm.
Hence, when considered as a function (x1 ?...,xd) it is a diffeomorphism.
Higher differentiability in/will yield higher differentiability in w, v~1, and hence

higher differentiability of the function v-*υ~ι (in the spaces with less
differentiability).
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