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Abstract. The large scale asymptotics of the correlations for a family of two
dimensional lattice field theories is calculated at the critical "temperature".

Introduction

This paper is devoted to an examination of the large scale asymptotics of the
correlation functions for monodromy fields at the critical point. Monodromy fields
on the lattice were introduced in [25] based on a natural generalization of the two
dimensional Ising field. They are lattice versions of the continuum fields studied by
Sato, Miwa and Jimbo in [33] and have also appeared in work on the Federbush
and massless Thirring model again in a continuum setting [29,30,32]. In [25] the
asymptotics of the correlations were examined in the limit that sends the lattice
spacing to zero and the "temperature" to the critical point so that the correlation
length remains fixed, (massive scaling regime). In this paper we examine the large
scale asymptotics of the correlations at the critical point (massless regime) [18]. The
original inspiration for this work was the calculation of the critical asymptotics for
the two dimensional Ising model. The Ising field is a special case of a monodromy
field in the following sense. For each p x p matrix M we define a field operator σm(M)
(meZ2). The terminology "monodromy field" used in connection with σm(M) is
motivated by the fact that it is possible to "create" monodromy (M) located at meZ2

in the solution to a certain linear difference equation on the lattice through a formula
involving σm(M) (see 4.1 in [25]). When M is the scalar — 1 ( 1 x 1 matrix) one has the
Ising model in the sense that the vacuum expectation of a product σWl(— 1)
σWn( — 1) gives the square of an Ising correlation (see [20] and [21]).

The critical scaling limit of the Ising model is of interest for a variety of reasons
related to the renormalization group analysis of critical phenomena [18].
Attached to a critical point in a statistical mechanical system are various critical
exponents which measure how different physical quantities behave as the critical
temperature is approached [13]. It is observed experimentally that wide varieties of
physical systems have the same critical exponents [13]. To "explain" this
universality one posits a connection between the critical exponents which measure
the behaviour of the system near the critical point and the large scale asymptotics of
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the correlations at the critical point (scaling hypothesis). The large scale asymptotics
of the correlations at the critical point are governed by scale invariant random fields
[18]. The possibilities for such random fields are presumably circumscribed in much
the same way that the central limit theorem limits the possibilities for the
distribution of fluctuations of sums of independent random variables (they are
Gaussian in the finite variance case). The difference between the assignment of
critical exponents and the assignment of scale invariant random fields to a critical
point may be likened to the difference between the assignment of Betti numbers and
the assignment of cohomology groups to a topological space. In the first case it is
hoped and in the second case it is known that one has achieved a deeper level of
understanding.

The Ising field is one of the few models in more than one space dimension in
which an explicit calculation of the critical scaling limit appears feasible with current
technology. Indeed much work has already been done on this problem. In [36] T. T.
Wu rigorously calculated the large scale asymptotics of the two point function on
the diagonal, and made a formidable asymptotic analysis of the horizontal
correlations at T=TC. Kadanoff calculated the collinear 2w-point asymptotics
based on some ideas about operator product expansions. Kadanoff's formula does
not have an obvious extension to non-collinear points. H. Au Yang calculated the 4
point asymptotics for two pairs of points, each lying on a diagonal [37]. In [10]
Luther and Peschel conjecture a general formula, and in [1] Bander and Richardson
demonstrate the non-obvious fact that the Luther-Peschel conjecture agrees with
the Kadanoff prescription for collinear points. There are many other references
[9,19,2] where similar results are described, but I think it is fair to say that the
"proofs" of these results lack conviction. A description of the Luther and Peschel
analysis should suffice to indicate the difficulties to be found in much of this work.
Luther and Peschel examine the Baxter model at the critical temperature in its
incarnation as pair of Ising models coupled by a four spin interaction. Almost
immediately they introduce a continuum field which is intended to capture the large
scale behavior of the correlations at the critical point. This continuum field is defined
via a continuous analogue of the Jordan-Wigner transformation. They make
assumptions about the dispersion relation for the spin transfer matrix (an elusive
object in the Baxter analysis which deals directly with the arrow transfer matrix) and
they make an arbitrary choice in the definition of the continuum Jordan-Wigner
transformation which directly effects the outcome of the calculations. Cutoffs are
introduced to make sense of the continuum fields and an analytic continuation is
made to take advantage of formally simpler calculations in the Minkowski regime.
When rotational invariance is lost in the final answer it is put back in again by hand.
The bold assumptions made in this analysis should be compared with the fact that
the asymptotics of the two point function for Ising spins separated along a
coordinate axis at the critical temperature involve the application of Szego's
theorem to a delicate borderline case which is not yet rigorously justified in spite of
recent progress on the singular case [3].

These reservations not withstanding the Luther-Peschel conjecture is an
attractive one. In a sense that will be explained later it corresponds to approximating
the Ising field σ ( - l ) on the lattice by the symmetrical choice (σ{λ) + σ(λ)*)/
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2(λ-+ — 1). It is not clear that the fields (σ(λ) -f σ(λ)*)/2 are random fields on the
lattice, but there are strong indications that the critical scaling limits for these fields
can be identified with chiral fields in two dimensions (formally the cosine of the non-
existent mass zero Gaussian [7]). Thus the scaling limits ought to possess the
positivity properties which would be inherited by a limit of random fields. Such
speculations will be addressed at greater length in the final section of this paper.

We are now ready to discuss the results of the present paper. To a certain extent
these results show that the Luther-Peschel analysis can be made rigorous for
monodromy fields (we do not know about the application to the critical Baxter
model).

The first section is devoted to showing that the monodromy fields σ(M) have
correlations which are continuous functions of "temperature" up to and including
the critical point. These results also show that the monodromy correlations are
continuous functions of the matrices M at the critical point. This implies that the
Ising correlations are limits of correlations for the monodromy fields σ(λ) as λ -> — 1
at the critical point. The first section ends with a formula for "paired" monodromy
correlations in which the two point functions (σa(M)σb(M)~1 > are factored out and
the remaining portion is expressed as an explicit perturbation determinant. This
formula is the basis for the scaling calculations in Sects. 2 and 3 and it is here we must
make the additional assumption that none of the monodromy matrices has
spectrum on the non-positive axis. The Ising case is thus excluded from explicit
consideration in Sects. 2, 3 and 4.

In Sect. 2, the two point functions <σα(M)σ5(M)~1> are expressed as block
Toeplitz determinants with a singular symbol. We use a matrix generalization of
some results of Basor and Widom [3] to calculate the leading order contribution to
the asymptotics. The principal result, Theorem 2.1, is stated at the end of this section.

The third section analyzes the scaling behavior of the perturbation determinant.
As in [21,25] the entries in the determinant are isometrically embedded in a
"limiting" Hubert space and then shown to converge in Schmidt norm. The
isometric embedding is carefully chosen to straighten out the Q matrix of the Ising
model. This makes possible the identification of the limiting Q± decomposition of
L2(!R,C) with a familiar Hardy space splitting. This is used inlhe next section.

In the fourth section the structure of the limiting perturbation determinant is
exploited to evaluate it explicitly in the case in which all the monodromy fields
commute with one another. It is here that the arguments most closely resemble those
of Luther and Peschel. The structure of the determinant suggests that it is the
vacuum expectation of a product in a current group. Unfortunately, the elements in
this current group are singular and so a cutoff must be introduced to make sense of
the vacuum expectation of a product. Inside the current group there is a cocycle
formula which permits the explicit calculation of the vacuum expectation. The
vacuum expectation of the cutoff product can also be calculated using determinants.
The idea is then to control the convergence of the two results as the cutoff is
removed. In order to do this in the determinant formula one must have non-zero
transfer. This upsets the current group cocycle calculation but may be circumvented
by introducing pure imaginary transfer, then doing an analytic continuation. When
this is done and the cutoff is removed the perturbation determinant converges to the
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result of Sect. 3 and the cocycle formula converges to an explicit product of
homogeneous functions. The identity of these two expressions is then the principal
result of this section. The results of Sect. 2 and this section may then be combined in
the following theorem:

Theorem4.1. Suppose M^eGlίp, C) (y=l, . . . ,n) and that no matrix Mj has an
eigenvalue which is 0 or negative. Suppose Mj = {Pj9rj)9 and W/= (<?/, fy) with pj<
qjU=U.>.,n) and r1<r2 -<rn. Let Gj(N) = σNmj(Mj)σNn.(MjΓ\ where σm(M)
has the "unitary" normalization (1.9). Let:

ΐ = l

where:

1 f logz

ί
and the contour C is a counterclockwise oriented simple closed curve which surrounds
the spectrum of Mj and does not intersect the non-positive real axis. Then lim

N->oo

τN(m, ή) = T J W , ή) exists, and in the event that all the Mj commute amongst themselves
the limit is given by:

Um,n) = c ft I*,- n
ii

where c is a constant that depends on M 1 , . . . ,M Π .
One observation we would like to make about this result is that the choice of

logarithms for the Mj is fixed. The way in which the lattice theories "pick out" a
choice of logarithms is a somewhat subtle point in the choice of approximations
which is discussed further in Sect. 4.

The final section of this paper concerns speculations about the application of
the results of this paper to the Ising case. The idea is that an indirect approach looks
more promising than a frontal assault. Also discussed is a rather natural conjecture
for the scaling limit in the general case. It should agree with the tau-function
introduced for the Riemann-Hilbert problem by Sato, Miwa, and Jimbo [33].
Recently, the existence of the tau-function was clarified in a beautiful geometric
analysis of Schlesinger's equations by Malgrange [11]. There are, however, some
obstacles to overcome in forging a link between these continuum results and the
lattice theories examined here.

In conclusion I would like to point out than A. Carey, S. Ruijsenaars, and J.
Wright have a recent preprint which clarifies the status of the Klaiber H-point
functions for the massless Thirring model (Wightman positivity is proved) [38]. In
another preprint A. Carey and S. Ruijsenaars develop results similar to those used
in Sect. 4 for current algebras [32].
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Section 1

In this section we introduce the induced rotation for the transfer matrix of the Ising
model and examine certain aspects of its behavior at the critical point which will be
of use to us later on. We then recall the definition of monodromy fields from [25] and
we investigate the behavior of the correlations for these fields as the critical point is
approached (Proposition 1.0). For those familiar with the Ising model the results in
the first part of this section are analogues of the Montroll, Potts, and Ward formulas
for the Ising correlations as finite dimensional Pfaffians. Finally we give a formula
(1.14) for "paired" correlations in which the two point functions are factored out,
using Theorem 3.0 in [24]. This formula will be the basis for the scaling calculations
which are carried out in Sects. 2 and 3.

We begin by recalling some notation from [25]. Let H = L2(S\ C2) and define:

τ(θ) = Γ Q2^ ~ cos θ s sin θ ~ ι^s ~c cos ^ Ί
1 j~"[ssin0 + ί(φccos0) c2/s-cos0 J

where c, s > 0 and c2 — s2 = 1. The matrix valued multiplication operator on
L2(S\ C2) associated with T(0) is the induced rotation for the transfer matrix of the
Ising model [21]. The parameter s is a function of the temperature in the Ising model.
For our purposes it is enough to know that s < 1 corresponds to T < Tc, s = 1
corresponds to T = TC9 and s > 1 corresponds to T > Tc. In this paper we are mainly
interested in T =TC or 5 = 1 . However, in this section we will also consider
correlations in the limit 511 as results for this limit are important if one is to make the
connection with critical Ising correlations. We now make the preliminary study of
the transfer matrix as s ΐ 1 which will be used to prove Proposition 1.0. For 0 < s < 1
define functions y(θ) > 0 and α(0) by

cosh γ(θ) = c2/s — cos θ

sinh γ(θ)eiaiθ) = (c/s-c cos θ) + is sin θ. ( ' '

We normalize α(0) so that α(π) = 0. The importance of these functions for us is the
formula:

T(θ) = exp[-y(0)β(0)] = <Γ*«Q+(0) + e"wβ.(0), (1.2)

where

Γ 0 ieiΛ(θ)l
= L-/e-^> o J

a n d Q±^ = 2U

The projections Q± will determine the spin representation in which the monodromy
fields live. It is not hard to see that when 0 < s < 1 the functions y(θ) and α(0) are
smooth functions. Indeed solving (1.1) for γ(θ) one finds:

-l]n (1.3)

where A(θ) = c2/s — cos0. When s < l the quantity c2/s = s + s~1 >2, so that
A(θ)> 1. It follows from this and (1.3) that y{θ) is a smooth function of 0. The
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pointwise limit in (1.3) as s | 1 is elementary and one finds:

yc(θ) = log(2 - cos θ + [(2 - cos θ)2 - 1]1/2), (1.4)

where yc(θ) = lim γ(θ). The smoothness in θ is lost in the limit and yc(θ) has a cusp

at θ = 0.
Now take the second equation in (1.1) and divide it by its own complex

conjugate. One finds

2i«(β) _ cls ~ c ' c o s 0 + ίs si
/ — c-cosθ — is'si

Next differentiate this relation in θ to obtain:

don c(cos θ — s)

dθ (cosθ-c2/s-l){cosθ-c2/s+l)' ( L 5 )

For θ in intervals [α, fe] which do not contain 0 the derivative da/dβ converges

uniformly to y/ϊ (cos θ — 3) as s ΐ 1. Thus by dominated convergence:

, 0φ[a,b]. (1.6)

But the normalization point α(π) = 0 shows that lim α(π)=0. Together with (1.6) this

shows that the limit of α(0) as s | 1, αc(θ), exists for θ Φ 0 and we have:

A simple calculation shows that lim αc(0) = + π/2. It will be convenient to make
0-O±

use of this to rewrite the result for αc as follows:

where ε(θ) = < . The jump discontinuity in <xc(θ) at θ = 0 revealed in (1.7)
(̂  — 1 σ<0

will be the source of all the special difficulty we have in studying the critical
correlations. It is the reason that the single site monodromy fields do not make sense
at s = 1 and is thus the reason we are forced to consider only paired correlations. We
will write Qc and Q* for Q and β + at the critical temperature (i.e., with α(0) replaced
by αc(0)).

We now recall the definition of the monodromy fields in [25]. Let p denote a
positive integer and write HP = L2(S1,C2)® Cp (which we sometimes identify with
L2(S\C2p). Suppose MeGl(p,C) and define an action of M on Hp by:
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For f(θ)eL2(S\C2η define:

/W = T - f e-lkβf{θ)dθ, (1.8)

where fceZ + | = Z 1 / 2 . These Fourier coefficients establish a well known isomorph-
ism between L2(S1,C2p) and /2(Z1 / 2,C2 p), which we often make use of without
mentioning the transformation (1.8) explicitly. Let ε act on Hp by multiplying the

half integer Fourier coefficients by ε(k) = < . Define s(M)~(l— e)/2 +

((1 + e)2)M. In [25] it was shown that s(M)eG\Q{Hp) (we write T, Q and Q± for
T®IP> Q®IP, and β ± ® / p acting on Hp. On the other hand the discontinuity in
occ(θ) is directly responsible for the fact that s(M)φGlQc(Hp) (see [24] for a definition of
GlQ(H)). We now make the assumption that none of the eigenvalues for M are
negative real numbers or 0. In this case the operator Qs(M)Q- is invertible for all
values of the parameters 0 < s ^ 1. This follows from the results of Sect. 1 of [25], but
it is instructive to notice that it can be understood in a completely elementary
fashion as follows. The matrix M is similar to its own Jordan normal form JM with
eigenvalues λl9...9λp on the diagonal. Thus Qs(M)Q- is similar to Qs(JM)Q-
which has entries on the diagonal given by (l/2)g _((λk + 1) + (λk — l)ε)Q _. Evidently
Q-s(JM)Q- will be invertible precisely when each operator Q((λk + l)-f- (λk

— l)ε)Q_ is invertible. The operator QsQ- is self-adjoint with spectrum contained
in the interval [—1,1]. Thus (λk+l) + (λk-l)Q-εQ- is invertible provided λk is
not a negative real number or 0. (The precise spectrum of Q _ s(M)Q _ is calculated in
[25].) In order to represent s{M) in G\Q(HP) we choose the factorization of s(M)
described in Sects. 1 and 2 of [25]. We write:

s{M) = s{M)D(M),

where D(M) = / + ® ( P + ® / p + P _ ® M ) _ i s defined after (2.5) in [25].

The monodromy field at site (0,0) in Z 2 is now defined to be:

σ(M) = ΓQ(s{M))Γ(D(M)). (1.9)

The homomorphisms ΓQ and Γ are defined in Sect. 3 of [24].
Next we translate these fields around on the lattice. Let z denote multiplication

by eiθ on Hp = L2(S\ C2p). Write Vί = Γ(z) and V2 = Γ(T) in the Q spin represent-
ation of Gίg(iP). We define:

sa(M) = Ta2za's{M)z-a'T-a\ σa(M) = Va

2

2V

for points aeZ2. The monodromy fields σa(M) act on a common dense invariant
domain in the alternating tensor algebra Λ(HP

+ φ Ht), where HP

± = Q±HP and H is
the conjugate of H (see [24] for details). We wish to study the behavior of the
correlations < σαi(M t) σan(Mn)> (vacuum expectations) as s 11. At first we consider
the case in which the monodromy fields occur in pairs σm(M)σn(M)~1. In a sense that
will be made precise in a moment one can imagine the "monodromy" associated
with such a pair emerging at "m" moving along a path joining "m" to "n" and then
disappearing at "n". We conjecture that this "confinement" of monodromy is
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important if one hopes to get non-trivial limits for the correlations as s | 1. More
specifically we will show that:

lim<σWl(M1)...σmM(Mπ)>

exists and is finite if Mx Mn = /. If Mx Mn Φ /, then we conjecture this limit is 0
or oo.

The method we have for dealing with "paired" correlations
< σ m i ( M 1 K 1 ( M 1 ) - 1 . . . α J M X j M , ) - 1 ) depends on the results (2.9), (2.11), (2.12)
and (2.13) in [25] which we summarize here for the convenience of the reader. Let
et = (1,0) and e2 = (0,1). Then:

σo(M)σei(My1 = (det M)~

σo(M)σe2(M)~ί = ΓQ(s0(M)se2(MΓ'). (1.10)

This is (2.9) and (2.11a) in [25]. We also have:

s(M)zs(M) ~1=z + (M-l)P1/2z,

s(M)T(z)s(M)-1 = T(z)+T+(M-\)Pίl2z+T4M-1-\)P-ί/2z-\ (1.11)

where T(z)= T+z + To + T_z~ι (see 2.1 in [25]) and Pk is the projection in
/ 2(Z 1 / 2, C2p) on those functions supported at fceZ1/2. These are Eqs. (2.12) and (2.13)
in [25]. We are now prepared to state one of the principal results of this section.

Proposition 1.0. Let MJEGVJ), C) (J = 1,... ,r). Suppose that none of the eigenvalues/or
Mj is a negative real number or 0. Then:

lim<σmt(Af >B l(Af 0 " x σmr{Mr)σnr{MrY
1 >

Π / Q c Q c (1.12)

where Gj = smj(Mj)snj(Mj)-1.

Proof. Let m and n denote points in Z 2 and let M denote an element of Gl(p, C) with
no negative or 0 eigenvalues. Join m to n with a sequence of horizontal, (c, c ± ex),
and vertical, (c,c±e2\ bonds. Write σm(M)σn(M)~1 as the appropriately path
ordered product of horizontal, σ c(M)σ c ± e i(M)"1, and vertical, σc(M)σc±e2(M)~1,
factors. One finds:

σm(M)σn(M)-' = Π σc(M)σc,(M)" \ (1.13)
(c,c')ePath(m,n)

where c and d are nearest neighbors and the product is path ordered along a path,
Path(m, π), joining m to n on the lattice Z 2 . Equation (1.10) shows that σc(M)σc{M)~ι

is an 5 independent multiple of ΓQ(G\ where G = sc(M)sc>(M)~Λ. Equations (1.11)
show that in each case G is a finite rank perturbation of the identity. Choose a basis
ek for Hp so that only finitely many of the vectors (G — \)ek are non-zero. Formula
(1.1) of [24] applies and we may write:



Monodromy Fields 361

where FQ is the β-Fock representation, and θ is the j ordering map from the

Grassmann algebra A(HpφΊP) to the Clifford algebra (Hp®lP) (see Sect. 1 of

[20]). Consulting (1.11) one sees that the canonical basis of Hp = / 2 (Z 1 / 2 ,C 2 )® Cp

has the property that G — 1 vanishes on all but finitely many elements of this basis.

We may write the elements of this basis in the following manner:

where e{ is the standard basis of Cp, α takes values in { + ,—}, i = 1,... ,p, and keZ1/2.
The power series expansion of the exponential in the Grassmann algebra has only
finitely many non-zero terms and it follows that σc(M)σc{M)~ι is an element of the
Clifford algebra of finite sums of finite products of elements FQ(e*(k)) and
Fζfeftk)) = F(£tf(k))*. Furthermore, since the matrix elements of G - 1 in this
canonical basis depend on 5 only through linear combinations of s±J, c = (s2 + 1)1/2,
and c/s, it follows that the coefficients in this Clifford algebra representation are
continuous function of 5 at s = 1. What has just been established for σc{M)σc{M)~1

obviously remains true for σm(M)σn(M)~1 because of the product formula (1.13).
Taking products again we may say that σmi(M1)σMl(M1)~1 •• σmr(Mr)σWr(Mr)~1 is a
finite sum of finite products in the Clifford algebra generated by FQ(ea

i(k)) and
FQ(e*(k))*. The coefficients in this representation are continuous functions of s at s =
1. Thus to establish the existence of limit as sf 1 for a "paired" correlation we need
only investigate the vacuum expectations of products with factors selected from
FQ(ef(k)) and its adjoint. The Fock state on the Clifford algebra has the property that
all such vacuum expectations can be expressed as determinants whose entries are
two point functions {FQ{eβ

j{l)*FQ(e'xi{k))y. The two point functions of this sort which
do not vanish identically depend on <x(θ) only through linear combinations of the

Fourier coefficients l/2π f e

±ia(θ)e±i{k-l)θdθ. But l i m e i m = eiaAΘ) {θφQ\ so domi-
- π m

nated convergence implies the continuity of these Fourier coefficients at s = 1.
Making use of (1.10) and the product representation (1.13) one finds:

σm(M)σn(M)-1 = (det Mr<m

Together with the preceding discussion this suffices to establish (1.12).
Q.E.D.

Suppose that M1 Mn = /, we will show that σmi(M1) σmn(MΠ) can be
expressed as a product of "paired" monodromy fields. The fact that the map M-»
σm(M) is a homomorphism for each fixed m (see Sect. 2 of [25]) makes this easy:

~ \σmι(Mx) - σmn(Mn) = J ] σ^M, Mj)σmj+ ^ - Mj)

where the product on the right is ordered from left to right with increasing j . We
made use of:

σmj{Mx » MJ-ι)-ισmJίMι ~Mj) = σmj(Mj) and σ m n (M x •• M Π _ 1 ) - 1 = σmn{Mn\

since M r - - M n = /. Thus Proposition (1.0) implies that Hm<σmi(M1) σmM(MJ>

exists and is finite if M1 Mn = /.
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In the remainder of this section we will specialize our considerations to the case
in which π2(mI ) = n2{n^) (i = 1,... ,r). This will permit us to verify in an elementary
fashion that Theorem (3.2) of [24] applies to the correlation {Γ^G^-'-Γ^G,)},
and in the next section it will allow us to reduce the two point asymptotics to a Szego
limit result for a singular block Toeplitz determinant.

The hypothesis of Theorem (3.2) of [24] which must be checked in order to apply
this theorem to evaluate < Γ^Gγ) ΓQ(Gr) > is that < ΓQ(Gj) > φ 0 j = 1,... ,r. This is
a consequence of the following lemma:

Lemma 1.1. Let G = sm(M)sn(M)~1 with π2(m — n) = 0 and M an element ofG\{p, C)

with no eigenvalues that are negative or 0. Let be the matrix ofG relative to the
\_c d]

decomposition of Hp = Hp

+ φ Hi.. Then d is invertible on Hp- and the inverse is
bounded in norm by a constant which depends on M but does not depend on the first
coordinates π^m), π^n).

Proof. Write m7- = π/m) and n^ = πk(n) (j = 1,2). It is convenient to suppose m1 < nx

(the case nx < m1 may be dealt with in a precisely analogous fashion observing only
that if M satisfies the hypothesis of the lemma then so does M" 1 ) . Recalling the
definition of sm(M) and the hypothesis m2 = n2, one finds:

where P[mlΛn{\ is the orthogonal projection in / 2 (Z 1 / 2 ,C 2 p ) on the space of
functions f(k) which are non-vanishing only for those half-integer values of k for
which m1<k<nι. The maps T ± m 2 commute with β_ and do not effect the
uniformity in the variables ml9 nx which we wish to establish, so we will drop them
from further consideration. Let A = g _ P [ m 1 , n 1 ] β _ . Then A is clearly a non-
negative self-adjoint operator whose spectrum (only a finite number of non-zero
eigenvalues) lies in the interval [0,1]. The operator d whose inverse we wish to
examine is thus the restriction to Ht of/ + (M - I)A. But (M - /) commutes with A,
and it is thus clear from a consideration of the eigenvector expansion for A that to
show / 4- (M - I)A is invertible it is enough to demonstrate that / + (M - I)a is
invertible for all real numbers αe[0,1].

Furthermore:

Hd" 11|< sup IHV + ί M - Z K Γ 1 ! ! . (1.14)

It is an elementary exercise to show that our assumption on the spectrum of M
suffices to render the right-hand side of (1.14) finite. By making a similarity
transformation it is enough to consider matrices M which are in Jordan normal

form. Indeed it suffices to consider a single elementary Jordan block

for M. We want to estimate the norm of the inverse of . 1 I, where

Xa = l + μ - \)a and 0 ^ a ^ 1. Define a function N(λ) in the complex plane λ =
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α + iβ by:

| " 1 / 2 for (α - i ) 2 + β2 < (i)2

+ β2)/β2V/2 all other λ = ot + iβ

Then it is easy to see that Λf(λ) is finite if A is not negative or 0 and by minimizing a
quadratic form in "α" on the interval 0 ^ a ^ 1 one sees that: | λ j ~ ι ^ Λ/(A). The
inverse of the Jordan block with diagonal λa is found by factoring out the diagonal
and expanding the remaining piece in a finite geometric series. Without difficulty the
norm of the inverse is seen to be bounded by N(λ) -f N(λ)2 + + N(λ)q

9 where q is
the dimension of the Jordan block. This finishes the proof of Lemma 1.1.

Q.E.D.
We are now prepared to apply Theorem (3.2) to the paired correlation

Theorem 1.2. Let M7 eGl(p, C) ( j= 1,... ,r). Suppose that none of the eigenvalues for
Mj is a negative real number or 0. Suppose n2(mJ) = π2(nJ) (j= l,...,r), and write

Gj = j J for the matrix ofG} relative to the Hp

+ ®Ht decomposition ofHp. Then:
Lcj dΔ

= Π <ΓQ(GJ)>det2(/ + LR), (1.14)

where L is the r x r block matrix with entries:

(i = k)

and R is the r x r block diagonal matrix Rι® --®Rr with entries Rk on the diagonal
given by:

J
in the H+®H- decomposition of H.

Proof The preceding lemma shows that each d} is invertible and hence that
Theorem 3.2 of [24] applies. The rest is just a transcription of this theorem which we
include here for the reader's convenience. Q.E.D.

Section 2

In this section we will examine the asymptotics of the two point function at the
critical point for monodromy fields paired horizontally. The principal result,
Theorem 2.0, appears at the end of this section.
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We begin the two point analysis. Because of translation invariance it is enough to
consider correlations of the form < σo(M)σm(M)~x >, where meZ, and for simplicity
we have written σm(M) for σ ( m 0 )(M). We shall reduce the calculation of this two point
function to a block Toeplitz determinant and then use a matrix generalization [26]
of a result of Basor and Widom [3] to calculate the asymptotics. Proposition 1.0
implies that:

<(T0(M)σJM)-x > = (det M)-w<Γβ(s 0(M)sw(M)- x)>

= (det M)- m det [<2 -

(see Lemma 3.1 of [24]). But so(M)sm(M)~1 = / + ( M - / ) P w , where Pm is the
orthogonal projection in / 2(Z 1 / 2,C 2 p) on those functions/(k) which vanish outside
the interval 0 < k < m(fceZ1/2). The two point function we are interested in is thus:

; >
where we made repeated use of det | ^ [ = det d. This last identity and the fact that

Pm is a projection imply that det(/ + A J P J = det [(Pm + X P J + ( / - P J ] =
detPm(I + X)Pm. Therefore det[/ + β _ ( M - / ) P J = det PJI + Q.{M-I))Pm =
det P m [ M + + M_Q]Pm, where M ± = (ί ± Af)/2. Thus we have shown that:

(2.0)

Since M acts on C 2 p ~ C 2 (g) C p as I®M and Q acts on / 2 (Z 1 / 2 ,C 2 )®C P as
convolution with Q{ )®IP, it follows that we may put M in Jordan normal form
with a similarity transformation that commutes with Q. This similarity does not
depend on the argument Z 1 / 2 so that it clearly commutes with the projection Pm as
well. Therefore in calculating the determinant (2.0) we may as well suppose that M is
already in Jordan normal form. In fact, only the diagonal terms contribute to the
Toeplitz determinant det Pm[M+ + M _ g ] P w as we shall now prove. Let ef =

e+ ®ey where £,(/= 1,... ,p) is the standard basis for C p and e+ = L e_ = . We

suppose that M is in Jordan normal form with respect to the basis e l 5 . . . ,ep with
entries λl9...,λp on the diagonal and Γs or 0's on the superdiagonal living in
elementary Jordan blocks. Let ef{k) = eikθef (keZ1 / 2). Next consider the matrix for
Pm(M+ + M_Q)Pm with respect to the basis ef(k) (j = 1,...,p, 0 < k < m) for the
range of Pm ordered in the following manner:

), *Γ(l/2), ,eϊ(m - 1/2), e^(m -1/2),

4(1/2),e2"(l/2) ...eϊ(m- 1/2), e~2{m- 1/2)

<(l/2), e;(l/2) ... ejim - 1/2), e;(m - 1/2).

This matrix is block upper triangular with mxm block Toeplitz matrices on the
diagonal given by Pm(A/ +λJQ)Pm, where λf = (1 ± λ^/2, and we have written P m
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for the projections on the span of {ef(k)\j fixed, 0 < k < m}. Thus:

detPm(M+ + M.Q)Pm = Π d e t P m μ ; + λjQ)Pm. (2.1)

Γ 0 ίei<x{θ)~]
Suppose λeC and write λ±=(l± λ)/2. Then since Q = . _ia(θ) one sees

that Pm(λ + +λQ)Pm is an m x m block Toeplitz matrix with generating function:

iλ.eiΛ(Θ)~\

λ+ J
It is convenient to introduce β(θ) = a(θ) -f π/2. We may then write the generating
function as:

λ+ λ-e>Π
(2.2)

Next we make a similarity transformation of (2.2) to put the terms which are singular

at the critical point on the diagonal. Transform (2.2) by conjugation with

-1 1J
The result is:

Ί
-iλ.sinβ(θ) λ+-λ-cosβ(θ)

At the "critical temperature" β(θ) = βc(θ) has a discontinuity only at 0 = 0. From (1.7)
it follows that lim βc(θ) = π and lim βc(θ) = 0. But this means that sin βc(θ) is

θ->0+ Θ-+0-

continuous at θ = 0; indeed lim sin βc(θ) = 0. Next we define

where Gc(θ) is G(θ) evaluated at β(θ) = βc(θ). Observe that Gc(0) = φ Mφ 2(θ)φ 3(θ).
Before we proceed it is convenient to introduce some notation that will be in

force throughout the proof of Theorem (2.0). Let P+ (P_) denote the projection in
/ 2(Z 1 / 2,C 2) on the subspace of functions with support on the positive (negative)

elements in Z 1 / 2 . If φ is an operator on / 2(Z 1 / 2,C 2) let . l x „ I denote the
\_c(φ) d(φ)_\

matrix of φ relative to the decomposition P + / 2 φ P _ l 2 of I2. We also write

,1 i , I for matrix of φ relative to the decomposition PJ2®{1 - Pm)l2.
lcm(Φ) dm{φ)]

Our analysis of the asymptotics of det am(Gc) will proceed in two stages. First we
will show that the singularities in the factorization of φiφ2φ3 of Gc are "non-
overlapping" in a sense that they will permit the application of Theorem 2.0 below to



366 J. Palmer

show that

det am(Gc) ~ Π det am(φj), m -> oo, (2.5)

where here and in what follows we use Am ~ Bm to signify that lim AJBm exists and
m~* oo

is /O.
We will then apply the analysis of Basor and Widom [3] to the asymptotics for

the singular scalar Toeplitz determinants det am(φj) 0 = 1 , 3) and the results of
Widom [35] for the asymptotics of regular block Toeplitz determinant det am(φ2)
(observe that since sin βc(θ) and cos2 βc(θ) are continuous at 0 it follows that φ2(θ) is
piecewise smooth and continuous).

Before we state the result needed to prove (2.5) we introduce some terminology.
Suppose φ: S1 -> Gl(p, C). We will say that φ is piecewise C2 if φ is twice continuously
differentiable except at a finite number of points where it has right and left hand
limits in Gl(p, C). If φ and φ are two maps from S1 to the p x p complex matrices then
we say that the ordered pair (φ, φ) has separated singularities if there exists a smooth
matrix valued partition of unity (g, (I — g)) such that φg and (/ — g)φ are continuous.
The n tuple (Φi,...>φn) will be said to have non overlapping singularities if for each
increasing chain l ^ ί < < f c + l ^ n with i g k the ordered pair (Φi' 'φk,φk+ι)
has separated singularities. The result we require to prove (2.5) is the following slight
generalization of a result of Basor and Widom:

Theorem 2.0. For j= l,...n, suppose φ} is a piecewise C2 map from S1 to Gl(p, C).
Suppose a(φj) and d(φj) are invertibleforj = 1,... ,n. Ifa(φ1 - φn) is invertible and the
n-tuple (φ!,...,φn) has non-overlapping singularities then:

where

and

Remark. It is part of the theorem that the determinants defining A and D are
absolutely convergent infinite determinants of the form det(/ + trace class). When
a(Φi'"Φn) a n d d(φ1"'φn) are both invertible then A and D are both non-zero.

Proof. The proof is a straightforward generalization of the proof in Basor and
Widom [3] combined with results for the strong convergence of am(φ )~x and
dJίΦjV1 to aiφj)'1 and d(φ^~x as m-> oo that can be found in Silberman [39].

As a first step in proving (2.5) we will show that the Toeplitz operators a(φj) and
d(φj)9 0=1,2,3) are invertible if λ is not 0 or a negative number. This is one of the
hypotheses of Theorem 2.0, and our success in proving this for φ2 motivated our
choice of three factors for Gc(θ). There are a number of ways to factor Gc(θ) into a
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single singular diagonal factor and a continuous loop in Gl(2, C). However, we were
unable to give a simple proof of the invertibility for the Toeplitz part of the
continuous loop for any such factorization. Had we been able to use a two part
factorization, the technique of Basor and Widom [3] (see their "main lemma")
would have sufficed for our purposes. For a pίecewise continuous scalar symbol φ
with only a finite number of discontinuities and right and left limits at each
discontinuity, the invertibility of a(φ) is determined as follows (see [40]). Complete
the broken curve described by φ(θ) by joining the right and left limits at points of
discontinuity by straight line segments. If the resulting unbroken curve does not pass
through 0 and has winding number 0 then a(φ) is invertible. The line segments
needed to complete the broken curve θ->(λ+ — Λ,_ cosβc(θ))±ι join 1 to λ±ι. Thus
they will not pass through 0 if λ is not 0 or a negative real number. The imaginary
part of λ+ — A_ cos βc(θ) is (1 + cos βc(θ)) Im (λ)/29 so the curves of interest stay in the
upper or lower half plane and thus have winding number 0. This shows that a(φγ)
and a(φ3) are invertible. Next we consider a(φ2). It is a Fredholm operator [6]. To
show that it is invertible it is thus enough to show that a(φ2) and a(φ2)* have trivial

null spaces. Suppose eP+/ 2 is in the null space of a(φ2). Then one finds:

[λ2

+ - Alα(cos2 βc)~]x + ίλ_α(sin βc)y = 0, - U_α(sin βc)x + y = 0.

Since λ\ - λl a(cos2 βc) = λ + λ2 α(sin2 βc) and α(sin2 βc) - α(sin βc)α(sin βc) =
(sinj?c) = c*(sini?c)c(sinj?c), it follows that:

λx + λ2. c*(sin j3c)c(sin βc)x = 0. (2.6)

If λ = 1 this equation becomes x = 0 for which there are clearly no non-trivial
solutions. If λ φ 1 then (2.6) is equivalent to:

c*cx = - [(A1/2 - A"1 / 2)/2]-2x. (2.7)

But c*c clearly has non-negative spectrum so that (2.7) will not have any solutions
unless λi/2 — λ"1/2 is pure imaginary. This happens only for λ = 0 or λ negative and so
we have proved the null space of a(φ2) is trivial. The proof that the null space of
a(ψ2)* is {0} is precisely analogous. The arguments for the invertibility of d(ψj)
(j — 1,2,3) are similar. The operators a{^xφ2φ^) = a(Gc) and d(ψίψ2ψ3t) = d(Gc) are
invertible as a consequence if the same elementary spectral theory considerations
that are used in Lemma 1.1. Thus A Φ 0 and D Φ 0 in Theorem 2.0.

Finally, we leave to the reader the simple construction of partitions of unity for
the chains encountered in verifying that the factorization I / Ί I / ^ S satisfies the
hypothesis of Theorem 2.0. We note only that it is helpful to observe that θ ->
(λ+ — λ_ cosβc(θ))~ι ύnβc{θ) is continuous on the circle. We have established (2.5)
and we turn to the consideration of the asymptotics for det am(φj)j = 1, 2, 3.

Let log( ) denote the branch of the logarithm cut along the negative axis and
normalized so that log 1 =0. Let eλ(θ) = exp{-[{π-θ)logλ]/2π} and define φ{θ) =
eλ(θ)(λ +—λ_ cos βc(θ))~ι for 0 ^ θ < 2π. By comparing jumps at 0 4- and 2π — one
sees that φ{θ) is continuous at 0; it is also smooth elsewhere. The technique in the
main lemma of Basor and Widom [3] applies to the factorization (λ+ -
λ- cosβc{θ))~ι = βχ1(θ)φ(θ) of the symbol of φx and one finds the asymptotics of
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det ajψj is up to a constant the same as the asymptotics of the product det am(eϊx)
det am(φ). The asymptotics of det am(eϊ *) can be found in Fisher and Hartwig [4].

It is

detαJeΓVm [ ( l θ 8 A ) / 2 π ] 2 (m->αo). (2.8)

The asymptotics of the regular Toeplitz determinant det am(φ) can be found using
results of Widom [35].

It is:

[ m 2π Ί

— J log det φ(θ)dθ (m -> oo). (2.9)
The symbol (λ + - λ_ cos βc(θ)) of ψ3 may be factored as eλ(θ)φ(θ)~*. The asympto-
tics of det am(eλ) is the same as that for det am(eΐx) in (2.8). The asymptotics of det
am{φ~x) is easily seen to involve the reciprocal of the exponential in (2.9). Thus

det αw(ιAi) det am(φ3) ~ m 2 ^ ^ 2 (m - oo). (2.10)

Finally another application of Widom's result [35] for the block Toeplitz case
shows that:

[ m 2π Ί

— J logdet<M0)i0 =exp(mlogA) = r (2.11)
as m -• oo. If we combine (2.10) and (2.11) with (2.5) and compare the result with (2.1)
we find:

det Pm(M+ + M_Q)Pm ~ m

ΣJ2Wosλβ/2πl (d e t M)m.

Consulting (2.0) we have the main result of this section:

Theorem 2.1. Suppose no eigenvalue for M is negative or 0. Then <σo(M)σm(M)~1 > is
asymptotic to mΣ?Wo**βP*i2

 a s „_> + QOm γfoe χ, a r e eigenvalues ofM and the logarithm
has its branch cut on the negative real axis.

Section 3

In this section we will investigate the asymptotics of the perturbation determinant in
Theorem 1.2 for large separation of the spin sites. As in previous investigations of
this sort [21,25], it is convenient to rewrite (1.14) in a manner that takes advantage
of the smoothing properties of the transfer matrix. To be able to do this we must now
make the additional assumption that the second coordinates occur in increasing
order π^n^ < π2(n2) < ••• < π2(nr) (recall that π2(mj) = π2(n7 ), j = 1, 2,... ,r). This
assumption will be in force throughout this section. To avoid writing n^m ), π2(mj),
etc., we introduce the notation m, = (Pj,^), n , = (qj^rj). Next define

Gj = VrJ~rJ~ ^sPj(Mj)sqj(Mj)' * Γ<o+1 ~rβi\

where nr+ί and n0 are arbitrary except for π2(n0) < π^n^ and π2(nr) < π2(nr+ x). The
reader may easily check that <ΓQ(G1) Γ β (G r )>= ( Γ ^ G ^ Γ^G,)) by making
use of the intertwining property Γ^Γqig^ihy1 = Γ^hgh'x) and Γ(h)\ = 1. For
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precisely the same reason < ΓQ(Gj) > = < ΓQ(Gj) >. Thus the only alteration in (1.14) is
that the operators aj9 bj9 c-3 and d} that occur in the description of L and R which
follows (1.14) ought now to be regarded as the matrix elements of G3 rather than Gr

We do this without introducing new notation and write:

relative to H = H+ 0 H _ . (3.1)

Now let N >0 denote a positive integer and write G.{N) = J; [ ' λ for G,
lCj{N) dj{N)_\

with m, and n} replaced by Nntj and Nrij. Let L(JV) and R(N) denote the operators L
and R of Theorem 1.2 with Gj replaced by Gj(N). We are interested in lim det2

N->oo

(/ + L(N)R(N)) as a function of {mι, nί,... ,mr, nr). Observe that if N tended to oo
through powers of 2 and m7 and n} had components which were dyadic rationals, then
Nrrij and Nrij would eventually end up on the integer lattice and stay there for all
sufficiently large N. Thus we would still be studying the asymptotics of the lattice
correlations in such circumstances. We will not therefore continue to suppose that
rrij and n} are on the integer lattice. We will, however, maintain that Nrrij and Nrij stay
in Z 2 as this will simplify an estimate at the end of this section.

The scheme of the convergence proof follows that in [21] and [25]. We will
introduce a family of isometric embeddings iN mapping L2(S\ C2p) into L2(U, C2p)
such that iNR(N)i% converges in Schmidt norm and iNL{N)i% converges strongly to a
limit in L2(U). The continuity of det2(l + A) in the Schmidt norm for A then finishes
the proof. We will now present the details of the argument for the case in which each
Mj is a scalar λy, The matrix case is identical except for more involved notation.

Suppose f(θ)eL2(S\ C2), we define iNfeL2{U, C2) as follows (note: L2(S\ C2) is
identified with L 2 ([-π,π],C 2 )) :

= χN(k)IN(k)f(k/N\ (3.2)

where χ,(/c) = | o | f c | j y π a n d

JVY / 2Γ e~iί/2 eίδ/2l

J J δ

and

def ε(θ)π ? Jldφ

ψ liLJL (Seel.7).
It is not difficult to check that iN is an isometric embedding from L2(Sί,(dθ/2π)) to
L2(R, (dk/dπ)). There are two observations concerning this embedding we would like
to make. The first is that IN(k) is actually a smooth function of k for |fe| < πiV. The
second observation is:
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Γ 0 ieiac{θ)l
where Qc(θ) is the matrix valued multiplication operator . _iotc(β) on

L2(S\C2). These two properties essentially decided the choice of IN for us. The
second property (3.4) will allow us to identify the scaling results obtained here with
similar results obtained for a current group representation associated with the usual
Hardy space decomposition of L2(R,C2). This will be done in Sect. 4 and it will
provide an explicit evaluation of the scaled perturbation determinant in certain
cases.

We now isometrically embed the Hubert space on which L and R act into a direct
sum of copies of L2((R, C2) using the direct sum of copies of iN which we continue to
denote by iN. The invariance of det2 under unitary transformations is easily seen to
imply:

det2(/ + L(N)R(N)) = det2(/ + iNL(N)R(N)φ.

It is well known that the product of a strongly convergent sequence of operators
with a sequence that converges in Schmidt norm will converge in Schmidt norm to
the appropriate product of the limits. A glance at the structure of the operators L and
R shows that it will suffice to prove strong convergence for:

ίNaj{N)i%, iNdj \N)i% 0 = 1 , . . . ,r) (3.5)

and convergence in Schmidt norm for:

iχb3(N)dj 1(N)c£N)i%, i^b^^dj ι(N)i% (3.6)

and

There is no need to carry around the subscripts j and so we shall prove (3.5) and
(3.6) for the matrix elements of an operator G of the special form

G = Tn>s-m{λ)sm{λ)-'Tn> = Γ" b \ (3.7)

where nl9 n2 and m are all > 0. We made use of the "translation" invariance of iN

(eimθ -• eiNmk/N = eimk) to locate the first coordinates in G symmetrically about the
origin (this is not essential but simplifies the appearance of the integral kernels which
arise). Write:

and recall the running assumption that NmeZ. Then s_iVm(A)syw(/l)"1 is given by
/ + (λ - I)PNm, where PNm is an integral operator on L2(S1

9 C2) with kernel:

sin mN(θ~ θ')

2π sin [ (0-00/2] '

Our first result is:
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Lemma 3.0. The operator iNPNmiN converges as iV -> oo in the strong operator
topology to an operator P(m) on L^S^C 2 ) given by:

] ψ^f(W (3.8)
7C — oo it — it

Proof. The operator iNPNmi* is an integral operator with matrix valued kernel given
by:

χN(k)χN(k')smm(k - kf) Γ cos(g-y)/2 iήn(δ-δ')/2l

2πNsm[(k-k')/2N] \_ism(δ-δ')/2 cos(<5-(5')/2_Γ ( '

where δ = δ{k/N) and δ' = δ(k'/N). The operator associated with this kernel is
uniformly bounded since PNm is. Thus to prove strong convergence as N -• oo it will
suffice to prove convergence on a dense set. We take this dense set to be the set of
integrable function in L2(U) with compact support. Suppose then that/(fc) is an L1

function contained in L2{U) whose support is contained in the interval [ —L, L]. We
examine the diagonal part of (3.9) first. Thus we wish to show that the function gN(k)
given by

Nπ — k')

tf-oo

converges in L2 as N -» oo, where δ = δ(k/N) and δ' = δ(k'/N). Choose ε > 0 so that
ε < π/2. For sufficiently large N we have L/2N < ε. For such an N the relevant values
of (k — k')/2N in the integral defining gN(k) lie between — (π/2) —ε and (π/2) + ε. For
ε<(π/2) it is easy to see that there exists a constant cε such that |sin0| ^ c ε | 0 | for all
0e[-(π/2)-ε, (π/2) + ε]. Thus \Nsin[_{k-kf)/2N']\~ί^ic^lk-k'Γ1 for (k-k')/

2ΛΓe[-(π/2)-ε, (π/2) + ε]. This last estimate, the fact that lim δ(k/N) = 0, and

dominated convergence together imply that:

lim gN(k) = g(k) = J

in the sense of pointwise convergence. If we can prove that \gN(k)\2 is bounded by a
fixed integrable function, then dominated convergence shows that gN actually
converges to g in L2. Make the same estimate in the definition oϊg^(k) that was used
in the proof of pointwise convergence and use the Cauchy-Schwartz inequality in an
obvious fashion to obtain:

\gN(k)\2 MconstUfW, f ™m(k-krιmιdk, ( 3 J 0 )

k-k'

where \\f\\x is the L1 norm of/. The convolution involves two L1 functions and hence
is in L1. This last inequality is thus sufficient for the application of dominated
convergence to prove gN->g'm. L2.

Next we consider the off diagonal operators in (3.9). Let / be given as above.
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Then we define:

where δ = δ(k/N) and δ' = δ(k'/N). If we employ the same estimate for (N sin
[k — k')l2N~\)~ι used above, then one application of dominated convergence implies
lim hN(k) = 0 pointwise and a second application using an analogue of (3.10) shows

that hN^>0in ί λ Q.E.D.
Introduce the notation SN(m) = iNs_m(λ)sm(λ)~ ίi% and S(m) = I + (λ — I)P(m).

Then Lemma (3.0) implies that s-lim SN(Nm) = S(m). Furthermore since Q+ =
N-+00

(where θ(k) = \ ) in the L2(R,C2) representation, it is

clear that:

s-lim a(SN(Nm)) = a{S(m)\

s-lim d(SN(Nm)) = d(S(m)), (3.11)

where S = , f/ M is the matrix of S relative to the splitting Q+L2®Q_L2.
\_c(S) d(S)_\

When λ is not 0 or negative Lemma 1.1 implies d(SN{Nm)) is invertible on ijyL^S1, C2)
with an inverse that is uniformly bounded in N. Since P(m) is well known to be the
orthogonal projection on those functions f(p) whose Fourier transforms /(x) have
support contained in [ — m, m] the same spectral theory arguments used to prove
Lemma 1.1 also imply that S(m) is invertible on L2(IR,C2). Because of the uniform
bound (3.11) implies:

s-lim diS^Nm))'1 = d(S(m))~\ (3.12)

(for this result we set d(SN)~ι f= 0 on those functions/in L2(U, C2) whose support
lies outside [-Nπ,iVπ]). We will now use (3.11) and (3.12) to obtain the strong
convergence results needed in (3.5). The reader should have no difficulty in checking
that:

iNa{N)i% = e~Nniya(
1 N 1 e - N n ι \ (3.13)

where for brevity we have written e~Nnγ for the multiplication operator
e~Nnγ{klN)χN{k) on L2(U, C2). We will now show that e~Nny converges uniformly to a
limit as a multiplication operator on L2((R,C2) as N->oo (provided n>0) . The
function γ(θ) is not differentiate at 0 but it does have the one sided derivatives

lim ? ( ) y ( ° ) = ± i (note y(0) = 0).

Thus lim iVy(fe/N) = |fe|. Furthermore the function y(θ) is concave down between
N->ao
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— π and 0 and between 0 and π. Thus there exists a constant c> 0 (which one could
take to be y(n)) so that y(0)£c|0|, | 0 | ^ π . It follows that £-*»**/*>^e-«»i*i f o r

\k\^Nπ. This bound implies lim e~Nny{k/N)χN(k) = e-n^ in the uniform norm (i.e., in
JV-oo

L00). Combining (3.11), (3.12), and (3.13) we have shown the strong convergence of the
operators appearing in (3.5).

We turn now to the problem of showing Schmidt norm convergence for those
operators appearing in (3.6). It will suffice to illustrate the method for
iNd(N)~~ιc(N)i%. A straightforward calculation shows that:

The strong convergence results for the last two factors on the right-hand side of this
equation show that it is enough to prove convergence in Schmidt norm for
c(SN{Nm))e~Nna. We will actually prove a little more; namely that SN{Nm)e~Nny

converges in Schmidt norm as N -• oo to the operator on L2(IR2, C2) with kernel
(sin m(k-k')/π(k - kf))e~ΦΊ {n > 0). Let:

} lism(δ-δ')/2 cos(δ-δ')/2J

where δ = δ(k/N) and δ' = δ(k'/N).
The difference of the kernel for SN(Nm)e-Nny and (sin m(k - kf)/π(k - k'))e~nm may

be written as the sum of three terms:

Γ sinm(/c-fc') smm(k-k')Ί k>) Nny(kΊN)

l2πNSml(k-k')/2N] π(k-k') ]M^kk>e Z

k. K) - Be - ^

We wish to show that each of the three terms in this sum converges to 0 in
L2{U,dkdk'). The last two terms are easy to deal with. The uniform estimate
e~Ny{kΊN)χN(k') ^ e~cm shows that each of these two kernels is bounded in absolute

value by a constant times the L2(1R2) function: — — e~cn]k>]. Thus dominated
k — k

convergence implies the L2 norm of the last two terms does tend to zero as N -> oo
(we use M(k,k')-+I as N->oo). Since M(k,k') is uniformly bounded and
e~Nny{kΊN)χN{k') <£ e~cnm to show that the first term in (3.14) tends to zero in L2(tR2) it is
enough to prove:

Λh\ s i n w ( ^ - ^ ' ) sin m(fc -

[
k-k')Ύ

Γ : JNr -LUK l2πNs\nl(k-k')/N-] ~~φ

In order to prove this split the range of the dk! integration into the pieces |fc'| ^ εN
and εN^\kf\^πN, where 0 < ε < π . On the first interval {-π-ε)N ^ k-k' ^
(π + ε)N or | (k - k')/2N | ^ (π + ε)/2, and as above we have the estimate |2Nsin
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[( i t-fc ')/2JV] l ' 1 ^const ik-k 'T 1 for \k\^πN and \kf\^εN. This is sufficient to
apply dominated convergence and we conclude that this part of the L2 norm
vanishes in the limit ΛΓ-»oo. In the remaining integral over the domain
πN make the change of variables θ = k/N and θ' = k'/N to obtain:

dff Γ Si

Since Nm is an integer, (sin ΛΓm(0 —0'))/sin[(0 - 0')/2] is the sum oϊlNm terms in a
geometric series, each term having absolute value 1. Dividing by N one gets a
uniform bound. We also have |(siniVm(0 — Θ'))/Nm(θ — θf)\ rgsup|(sinu)/u| ^ oo.

u

But 10' I is bounded away from 0, so e~
2cNmN2 goes uniformly to zero. Thus the whole

integral tends to zero. We have finished the proof that iNd(N)~ίc(N)i% converges in
Schmidt norm.

In order to state the principal result of this section it is useful to introduce some
notational conventions for the continuum situation which arises. In order to
emphasize the similarity in the structure of the continuum and the lattice
determinants we will adopt the lattice notations for the continuum objects without
burdening the notation with distinctions. As this abuse of notation will be confined
to the remainder of this section and Sect. 4 it is hoped that the reader will find it
suggestive rather than confusing. Let H = L2(U, C2), and let Q denote the matrix

valued multiplication operator , where ε(k) = 1 for /c>0 and ε(k) =
L ^ β W J

— 1 for k < 0. Let Hp = H ® Cp and write Q = Q ® Ip for the direct sum of p-copies of

Q acting on Hp. If X:HP-+ Hp is a linear map we write X = for the
\_c(X) d(X)j

matrix of X relative to the Q+Hp® Q-Hp decomposition of HP(Q±=$(I± Q)\ If
MeGl(/?,C), then we let M act on Hp by:

For m < n let P(m, n) denote the orthogonal projection in Hp on those functions
whose Fourier transforms are supported in the interval [m, ή\. Thus

\ oo £i{k'-k)n _ Ji(k'-k)m

For m < n and MeGl(p, C) we also write:

5m,M(M) = / + ( M - / ) P ( m , 4 (3.15)

We now state the principal result of this section:

Theorem3.1. Suppose M7 eGl(p,C) ( i /=l, . . . ,n) and that no matrix M ; has an
eigenvalue that is 0 or negative. Suppose mj = (pj,rj\ n} = (q^r^ are in Q x Q (Q =
rationals) and Pj<qj ( ;=l, . . . ,n) and r1 <r2 < ~-<rn. Recalling the operators
L(N) and R(N) introduced at the beginning of this section we have:

lim det2(/ + L(N)R(N)) = det2(/ + L^RJ (Nmp Nn}eT2\
N->αo
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where L^ is the nxn block matrix with entries:

r-e+ k=i
hk=<-ai+1Q+ k = i

t - α / + 1 α t _ 1 β + k>'\ + 2

i = k + 1

is the block diagonal matrix R1(B •••©/£„ with entries on the diagonal:

o J
The operators ak, bk, ck and dk are the matrix elements of Gk relative to the
Q + HP®Q-HP splitting ofHp, where:

and T is the operator of multiplication by exp (~\k\ Q(k)) on Hp. Observe that although
T is unbounded on Hp the contributions which T makes to the operators L^ and R^ are
all bounded operators.

Proof This is simply a transcription to the matrix situation of the scaling result
whose proof is detailed in the first part of this section.

In the next section we will make use of the fact that det2(/ + L^R^) looks like the
vacuum expectation of a product in a spin representation to evaluate this
determinant in the abelian case. Some technical problems are caused by the fact that
SnJM)φGlQ(Hp).

Section 4

In this section we will use some results for the representation of current groups
(known as loop groups when S{is involved instead of U) to evaluate the perturbation
determinant which appears in Theorem 3.1 in the abelian case (i.e., when all the
monodromy matrices commute).

We begin with a description of the representation of interest. Let H = L2((R, C2),

and let Q denote the matrix valued multiplication operator , where
| 0 WJ

ε(fc)= 1 for k>0 and ε(/c)= - 1 for k<0. Let HP = H®CP. We continue to write Q =
Q®lp acting on Hp. Recall that associated with Hp and Q there is the restricted

general linear group G\O{HP) determined by the property that the matrix I of

a group element relative to the Q + Hp © Q _ Hp splitting of Hp has diagonal elements
"α" and "d" which are Fredholm operators of index 0 and off diagonal elements "fc"
and "c" which are Schmidt class operators. We also have the spin representation of
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the central extension GΪQ(HP) oϊGlQ(Hp) described in [24] (see also [34]) which will

be the object of interest for us here. Suppose geG\0(Hp) and write I for
\_c(g) d(g)_\

the matrix of g relative to the Q+Hp® Q-Hp splitting of Hp. Consider the collection
of elements g in G\Q(HP) with d(g) invertible. This is not a subgroup of G\Q(HP) but it
has a cross section in GίQ(Hp) which we write as:

) = ΓQ(gd(gyι)Γ(d(g)% (4.1)

0 1 .
M \ a C t l Γ

definitions of ΓQ() and Γ(). Suppose gγ and g2 are in GIQ(HP) and d(gt\ d(g2\ and
d(g1g2) are all invertible. We may then write down a simple determinant formula for
the cocycle associated with the cross section π in (4.1):

-1). (4.2)

where for brevity we have written d(g) for | Λ | acting on Hp. See [24] for

To see this we first make use of the fact that π(g) is characterized by having vacuum
expectation 1. This is a straightforward calculation (ΓQ(gd{g)~i)Γ(d(g))s) =

i = detd(gd(g)-ί) = det 7 = 1 (see [24]). It follows from this that
π(02)> We n o w m a k e u s e of Γ{h)ΓQ{g)Γ(h'ι) = ΓQ{hgh~ι) and

ΓQ(gι)ΓQ(g2) = ΓQ(gxg2) to write:

= det(d(g1g2)d(g2Γ
1d(g1Γ

1)

(see Lemma 3.1 in [24]).
Next we wish to describe the current representation. Split Hp into two copies of

//(S1, Cp), so that on the first copy Q acts as — ε and on the second copy Q acts as ε.
We write HP = HP® Hp

2 for this splitting of Hp. Let f(x) denote the (inverse) Fourier
transform of/(fc)eL2(R,C):

/(x) = (2π)" 1 / 2 \f{k)eikxdk. (4.3a)

Let x-»M(x)eGl(p,C) denote a matrix valued function of x. Suppose M(x) —

/ = ί F{k)eikxdK where F( )eL1(R,C1'2) and J |/c|Tr(F*(/c)F(/c))dfc < oo. For each
— oo — oo

such matrix M(x) associate an operator M on Hp defined by:

M/(x) = M(x)Λ(x) θ M(x)/2(x), (4.3)

where f=fi®f2eHp

ι®Hp

2. Such an operator M is in G1Q(//P). To see this, first
observe that the commutator of M and Q (or equivalently the commutator M — I

OO

and Q) has finite Schmidt norm as a consequence of j" | k | Tr {F*(k)F{k))dk < oo. Thus
- CO

ft(M) and c{M) are in the Schmidt class. It remains to check that d(M) has index 0.
Evidently dQ(M) = rf_ε(M) 0 dε(M) = aε(M) © dε(M), where we use the subscripts Q, ε
and — ε to distinguish the operators which produce the relevant splittings of the
spaces involved. But then:

lnd(dQ(M)) = lnd(de(M)) + lnd(αε(M)).
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However, this last sum is 0 since ε is a compact perturbation of the invertible

operator M = ε ε which has index 0. It is not hard to see that the family of
U dΔ

matrix multiplication operators just described is a group. Suppose M^x) —/ and
M2(x) — I are each the Fourier transforms of L1 functions; then M 1 M 2 (x)~/ =
( M 1 ( x ) - / ) ( M 2 ( x ) - / ) - ( M 1 ( x ) - / ) - ( M 2 ( x ) - / ) is also the Fourier transform
of an L1 function since the convolution of two L1 functions is again in L1. If M/x) —

/ = J Ffk)eikxdk 0 = 1,2,3) with FjβL1 and M3(x) = M1(x)M2(x), then
— oo

J \k\Tτ{Ff(k)Fβ))dk <oo ( ;=1,2) implies J \k\Ύr(F%(k)F3(k))dk < oo. The
— oo — oo

oo

easiest way to see this is to note that j | k\Ύv(Ff(k)Fj(k))dk < oo is equivalent to the
— oo

commutator [ε, Aί, — /] being a Schmidt class operator. Thus the expression for M 3

— / in terms of (Mί — /) and (M 2 — /) given above, the derivation property for [ε, •],
and the fact that the Schmidt class operators constitute an ideal in the bounded
operators altogether finish the demonstration that finite H1/2 norms for Fx and F2

imply a finite Hι/2 norm for F3.

Definition, Let M(ίR, Gl(p)) denote the group of Gl(/?, C) valued functions of x whose
00

elements M(x) have the property that M(x)±x — J = j F+(k)eikxdk, where F+() is an
- oo

L1 function and J \k\Tr(F*{k)F±(k))dk < oo.
— oo

Evidently we may regard M{U,G\(p)) as a subgroup of G\Q(HP) via the action
(4.3). The group M([R, Gl(p)) which covers G\Q(HP) in GΪQ(HP) is an example of what
is sometimes called a current group.

We are now prepared to specialize the cocycle formula (4.2) to the "abelian" case.

Lemma 4.1. Let M(x) and N(x) denote elements ofM(U, G\(p)). Suppose M(x) = emix)

and N(x) = en(x) and that m(x) and n(x) are the Fourier transforms of functions in
Ur\Hll2. Let m±(x) = ε±m(x) and n±(x) = ε±n(x), where ε ± = ( l ± ε ) / 2 . Finally
suppose that the matrix valued function m±(x), n±(x) commute among themselves. Then
the cocycle in (4.2) is given by:

det(dQ(MN)dQ{Ny ιdQ(M)~ι) = eτr(b(m+nn^+c{m^n+)).

we have abbreviated bε(-) and cε( ) as b(-) and c(-).

Proof. Since dQ(M) = aε{M)®dε(M\ the formula (4.2) for the cocycle becomes:

det[a(MN)a(N)~ ιa(M)~ *] det ld(MN)d{Ny ιd(M)~x],

where again we write aE(-) = (•)> and dε{-) = d( ). Let M± =em± and N±=en±. Then

we make use of a(M-M+) = a(M-)a(M+\ a(M±N±) = a(M±)a(N±) and other
similar identities together with the commutativity of m+ and n+ to see that
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det[α(MN)α(ΛO~

= det [a (Λί _ )α(M+)a(Λί ^

The commutator [a(n-\ a(m+)~] = fc(m+)c(n_), since n_ and m+ commute. Write
M = M+M. and N = N+N. to take advantage of d(M+M_) = d(M+)d(M_). A
calculation similar to the one above shows that det(d(MiV)d(N)"1d(M)~1) =

eΎr{c{m-)Hn+)\ j ^ s f m i s hes the proof of Lemma 4.1. Q.E.D.

Suppose now that M7eGl(p,C) and that none of the matrices Mj has spectrum
which intersects the non-positive real axis ( = 1,... ,r). Let C denote a simple closed
curve which surrounds the eigenvalues of all the matrices Mj9 does not intersect the
non-positive real axis, and is counterclockwise oriented. Define:

z, (4.4)
z-

where log z is normalized so that log 1 = 0 and has its branch cut on the negative real
axis. We now suppose that the Mj all commute amongst themselves. It follows from
(4.4) that the L7 all commute amongst themselves as well. For m < n define

SmJMj) = I + (Mj - I)P(rn, ή) = exp 2πLjP(m, ή).

We would like to form a product of operators π(Sm/J(M7 )), and evaluate the vacuum
expectation of this product in two different ways, the first way using the determinant
formulas in [24], the second way using the cocycle formula in Lemma 4.2.
Unfortunately Snm(M)φGlQ(Hp) in general, so we must be more devious. First we
introduce a "smooth" version of Pδ(m, ή) of P(m, ή) so that for δ > 0 we have:

Sδ

mM(M) = (I + (M - I)Pδ(m, n))sGlQ(Hpl

and

We then use the cocycle and determinant formulas to evaluate the expectation of
the product of smoothed operators π(S^n(Mj)). In order to let <5->0 in the
determinant formulas we must introduce non-zero transfer. The same result is
obtained by analytic continuation in the cocycle formulas. Finally we pass to a limit
<5->0. The cocycle calculation yields an explicit product of homogeneous functions
and the determinant formula may be matched with the results of Theorem 3.1. The
results of Theorem (2.0) and Theorem (3.1) are then combined in a more satisfactory
account of the asymptotics in the abelian case (Theorem 4.1).

We now describe our choice for Pδ(m, ή).

( 0 x <m or x> n

(x - m)/δ m^x^m + δ

1 m+δ^x^n-δ
(n - x)/δ n-δ^x^n.
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Let Pδ(m9 n) denote the operator of multiplication by Pδ

m,n(x) m the Fourier transform
variables (4.3a).

Next we introduce the transfer matrix with pure imaginary argument, Γ ir, given

by multiplication _ irk in the H\ © Hp

2 decomposition of Hp. This will allow

us to introduce analytic continuation variables into the cocycle calculations.
Suppose mj^ipj^j) and n — ^ r , ) with pj<qj (j=h - Λ Let Sδ

PjΛj(M$ =

I + (Mj — ί)P&(pμ qj). Then one may easily check that:

), (4.5)

where the direct sum occurs in the H\ 0 Hp

2 decomposition of Hp.

Let Gj=TirJSδ

Pjtq.(Mj)T-irJ; we wish to calculate <π(G1). π(Gr)> using the
cocycle formula in Lemma 4.1. Observe, however, that Lemma 4.1 does not directly
apply since Gj acts differently on H\ and Hp

2. The modification needed is simple and
will now be described. Write Gj = e9j = e*v®9n, where gkj acts on Hp (k = 1,2). Then:

π(eβj)n(e9k) =

where

^gPgk) = Tv(b(gtj)c(g;k)) (4.6)

and

The proof follows that of Lemma 4.1 without essential change. We now state the
principal result of this section:

Theorem4.0. Suppose MjeGl(p,C) ( /=l , . . . , r ) and that no matrix Ms has an
eigenvalue that is 0 or negative. Let L, be defined by (4.4) and suppose all the Mj (and
hence the L7 ) commute amongst themselves (/'= 1,... ,n). Suppose m} = (ppr ) and nj =
(qj9rj) are in Q x Q (Q = rationals), p 3<q-3 (/= l,...,n), and rx < r 2 <rn. Recall
L(N) and R(N) introduced at the beginning of Sect. 3. Then:

where N tends to oo so that Nm} and Nn} are eventually in Z 2.

Proof. We wish to apply the determinant formula in Theorem 3.0 of [24] to the
evaluation of (n(Gx)-- π(GΠ)>. It is convenient to introduce Gj=Ti{τrj-0ί2

Sδ

Pjtq.(Mj)Ti{rj+i~rj]/2 to facilitate comparison of the result with Theorem 3.1. Without
difficulty one sees that <π(G1) π(G/l)> = <π(51) π(βΛ)>. In the determinant
formula for this last expectation, the exponential factors
Γe±iirJ+ι-rj)kβ 0 Ί

+i(r.+ ι-r.)k/2 a ' w a y s occur in conjunction with the corresponding

jiprojections Q±. Thus these exponentials have analytic continuations into the lower
half plane in the difference variables rj+1 — r3- which are strongly continuous up to
the real axis. It follows that the determinants also possess analytic continuations in
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the difference variables which are continuous up to the real axis, since the product of
a strongly continuous map and a Schmidt class map is continuous in the Schmidt
norm. We now effect such an analytic continuation by the substitution (rj+ ί — rs) -•
— i(rj+ί— Tj). It is now important that r1 < r 2 <rn, so that the analytic
continuation takes place in the appropriate half planes. At this point we wish to let
<5-»0, and compare the result with Theorem 3.0. This may be done along the lines of
the proof of Theorem 3.0 but is even simpler. The strong convergence of S^n(M)
to Sm,Λ(M) as δ-+0 is a trivial consequence of dominated convergence and implies
the strong convergence of a{Sδ) and d{Sδ) to a(S) and d(S) as <5->0. The operators
b(Sδ) and c(Sδ) always occur in conjunction with decaying exponential factors
0(±fc)exp ±(rj+1—rj)k/2, and it is trivial to supply the estimates for convergence
in Schmidt norm. The only ingredient worth discussing in more detail is the strong
convergence of d(Sδ)~K Since Sδ

mn(M) = / + (M -I)Pδ(m,ή) and Pδ(m,ή) is a self-
adjoint operator with spectrum [0,1] the arguments in Lemma (1.1) apply without
change to show that d{Sδ

mn{M)) has a uniformly (inδ) bounded inverse provided M
has no eigenvalues which are 0 or negative. Thus the strong convergence of
d(Sδ

mn(M)) implies the strong convergence of the inverse d{Sδ

mn{M))~1 as δ ->0. The
simplicity of this argument is one reason we choose to work with the cutoff in the
form Sδ rather than e x p 2 π U γ This second form is considerably simpler to use in
the cocycle calculation we are about to do but has the disadvantage that a uniform
bound for d(exρ iπLP^'1 is hard to come by. Indeed, for the wrong choice of 2πL=
logM such uniform bounds fail and the cocycle calculation leads to results which
depend on the choice of logarithms for M. The reader should have no difficulty
assembling the various convergence results described above into a proof that
analytic continuation in the difference variables rj+ί — r7- followed by passage to the
limit <5->0, transforms <π(Gt) π(6Λ)> into det2(/ + L^R^), defined in Theorem
3.1.

We now consider the same two step sequence for the cocycle calculation. It is
clear that (4.6) may be iterated to obtain:

where ocu = oc(ghgj) and βu = β(ghg^ Since < π(Gx Gn) > = 1 we have:

< π(G,) π(Gn) > = Π exp(αy + βu). (4.8)

A little calculation shows that:

\m) o

β(a^ j) = 7^2] kΎr(g2i(-k)g2j(k))dk, (4.9)

where

g(k)= J g(x)e~ikxdx,



Monodromy Fields 381

and

gij(x) = \og(S*Pj-.rMj_rj(Mj)txn Qifr) = log(Sδ

Pj+rMj+rj(Mj)W). (4.10)

The spectrum of Sδ

m,π(M)[x] = / + (M — l)Pδ

m n(x) never intersects the non-positive
real axis and we choose the logarithm in (4.10) as is done in (4.4). To proceed with the
calculation of a(gi9gj) and β(gi9gj), it is useful to make some simplifications. Let M
denote one of the matrices M7 and write:

where again the logarithm is defined as in (4.4). The Fourier transforms of the
functions which occur in (4.10) are of the form (m = p}± r}, n = q}± r3)\

n-δ n
ikxdx + \ f(\)e-ikxdx+ J

In this last formula we may integrate by parts once, cancelling all the boundary
terms to obtain:

1 f f'(rLzAe-
ik*δ-ιdx.

n-δ \ 0 J

Now make the change of variables (x — m)/δ <- x in the first integral and (x - n)/
δ <- x in the second integral. One finds:

{ik)-ιe~ikm\f\x)e-iδkxdx-{ik)'ιe-ikn J f(-x)e-iδkxdx. (4.11)
o - l

1 0

Next observe that f/'(x)dx= j //(-x)rfx = logM, then add and subtract

in (4.11). This result may be written:

e~ikm]f'(x)(ik)-\e~mx-e~m)dx - e~ikn J / ' ( - x ) ( i k ) ~ \ e ~ i δ k x -

\e'ikm - e~ikn)logM. (4.12)

We claim that when this last sum is substituted into (4.9) and an analytic
continuation is made in the difference variables (rj+ x - r,), as described earlier, the
first two terms in (4.12) do not make a contribution in the limit δ-+0. The reason for

1

this is easy to see; as a function of k the integral \ff(x)(ik)~1(e~iδkx — e~m)dx is
o

dominated by a constant for |ft| ̂  1 and by (constant/Ik\) for |fc| ̂  1. The same can
o

iδkxbe said for f / ' ( - x ) ( - ik)~1 (e~iδkx - e~m)dx. Each of the integrals just described
1

tends to zero pointwise in k as δ -> 0, and the effect of analytic continuation is to
introduce exponential factors e~irj+*~rj)k into the integrals in (4.9). Thus dominated
convergence applies and all the terms involving these two integrals vanish in the
limit <5 -• 0. We may thus make the replacements:
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in the calculation of the integrals in (4.9). One finds:

Φi, gj) = Ίτ(LJLμφ β(gh gj) = T r ^ L ^ ,

where:

Λij = log(qj - ft + r, - rj + 2δi) - log(p,. - p( + rt - η + 2δϊ)

; - qt + rt - rj + 2δi) + log(p,. - gf + r, - Tj + 2<5i), (4.13)

- ^ + Γj - Γf - 2i5) 4- l o g ^ - ήff + η - r, -

The logarithm which appears in both expressions is normalized so that log 1 = 0 and
has its branch cut on the negative real axis. It is evident that we may analytically
continue (rj — ri) (i<j) to negative imaginary values (i.e., replace (rj — r^ with
— i(rj — rf))5 where we now require rx < r2 < rn% Do this in (4.13) and then take the
limit <5-»0. One finds after some elementary algebra that A^ + B^ becomes:

2 1 |m l -yι J | |n < —ifijl

\mi-nij\\ni-nj\'

Together with (4.8) this finishes the proof of Theorem 4.0.
It is natural at this point to combine the results of Theorem (2.0) and Theorem

(4.0).

Theorem4.1. Suppose Mj eGlQ^C) ( j = l , . . . , n ) and that no matrix M} has an
eigenvalue that is 0 or negative. Suppose m^ip^r^ and nj = (qj9rj) with Pj<qj
( ; = l , . . . , n ) and ^K — Kr^ Let Gj(N) = σNm.(MJ)σNn.(MJ)-\ where σm(M) is
given the "unitary normalization" described in Sect. 1 (1.9). Let

where

and the countour C is a counterclockwise oriented simple closed curve which surrounds
the spectrum ofM} and does not intersect the non-positive real axis. Then lim τN(m, ή)

N-+00

exists, where N tends to oo so that Nm and Nn are eventually in Z2. In the event that
Mj commute amongst themselves the limit, τ^m^ή), is given by:

2 T r ( L i L ' )

where c is a constant that depends on M l 5 . . . , M π .

Section 5

In this section we present some speculations concerning the generalization of
Theorem 4.1 to arbitrary configurations. We begin with the abelian case. The reader
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will have no trouble checking that if we obliterate the distinction between the points
rrij and Πj labeling all the points m} with associated monodromy M J = exp(2πLJ ),
then (4.14) can be rewritten:

c\\\mi-mj\-Ίτ{LiL^\ (5.0)
ifj

This is not quite a good conjecture for the general configuration in the abelian case.
One may see this by examining what happens when the points m( and nt in (4.7) are
separated by a long distance. Suppose | mt - nf | = R for each i = 1,..., n so that the mi

configuration and the nf configuration are congruent and separated by a distance R.
Substitute this into (4.14) and use | m{ - Πj \ = \ mx - nt + nf - nj | = R{ 1 + 0(R " i ) ) and
I m - rπj\ = \ni-mi + mt - m, | = R{\ + 0{R~ *)). Then one encounters R2Tr<*L<)2, and
another factor which becomes the product of two copies of (5.0) as R -• oo. Now when

limit of R2ΎriΣLi)2 is oo as R -• oo. Thus if one believes that the limiting correlations
cluster, then these results suggests that (5.0) is good only when £ L ; = 0 or Mx •••
Mn = /. It is interesting to specialize further to the case when the L, are pure
imaginary scalars il} with -1/2 g l} ^ 1/2. The square of the critical Ising
correlations is then given by:

<σmy«il')-σmSe2*il")>T=Tc,l)=±m. (5.1)

Without difficulty one may check that (5.0) does not give a sensible conjecture for the
Ising scaling limit in the sense that the result depends on which choices lj= ± 1/2 are
made in (5.1). The Luther-Peschel conjecture amounts to approximating σm( — 1) by
[σm(e2πiι) + σm(e~ 2πι7)]/2 (/ -> 1/2). Observe that in this case the expansion of product

J~J(σmj.(e2πίίj) + σm.{e~ 2iτlj)) yields a sum of products of monodromy fields in each of

which ReQΓL2)2 ^ 0, and using the conjectured result (5.0) one finds:

The term δ(/t H — + ln) restricts the sum of those choices of/ i,...,/M which sum to 0.
This is the Luther-Peschel conjecture. It also resembles what one finds if the Ising
case is represented as a sum of Fourier series in the monodromy variables and
various limits are freely interchanged.

We next briefly consider the non-abelian case. The obvious conjecture for the
scaling limit in this case is the τ-function of Sato, Miwa and Jimbo [33] whose
existence has recently been established by Malgrange [11] in the regular singular
case. Of course, some modification is necessary since we have a splitting determined

Γ - ε 0Ί
by rather than by ε, but this is a small matter. A more serious problem is

that Malgrange establishes the existence of τ (or d log τ) by first proving a generalized
Painleve property for the Schlesinger equations. He then uses a formula due to Sato,
Miwa, and Jimbo which express d(log τ) in terms of the solution to the Schlesinger
equations. It seems hard to make analogous constructions on the lattice, but the
McCoy, Wu, Perk "deformation" equations for the Ising correlations [16] certainly
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suggest that the structure is there. We hope to pursue this investigation at a later
date.
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