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Stability of Coulomb Systems with Magnetic Fields
III. Zero Energy Bound States of the Pauli Operator
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Abstract. It is shown that there exist magnetic fields of finite self energy for
which the operator σ - (p — A) has a zero energy bound state. This has the
consequence that single electron atoms, as treated recently by Frδhlich,
Lieb, and Loss [1], collapse when the nuclear charge number z^9π2/8α2 (α
is the fine structure constant).

I. Introduction

In an accompanying paper [1] the stability of the hydrogen atom in magnetic
fields is studied. The authors considered the following Hamiltonian

f/ = [σ.(p-A)]2-z/|x| (1.1)

whose ground state energy was denoted by E0(B, z). Here the σ/s are the Pauli
matrices and A is the vector potential, B = cuήA. H acts on 2-component spinors
φ. In particular, it was shown that there is a critical number zc > 0 such that E(z)

= inf(E0(£, z) + ε$B2) was finite whenever z<zc and E(z)=— oo for z>zc.
B

ε = (8πα2)"1 and α is the fine structure constant ~(137.04)~ 1. For the physical
interpretation of these results see [1]. When they first did their work, the authors
did not know whether zc was finite or not. However they show, among other
results, that a necessary and sufficient condition for the finiteness of zc, is that the
equation

Q, (1.2)

is valid for some A and some ψ9 which satisfy

φetf^R3), i.e. ψ, Vip ε L2(R3) , (1.3a)

,4eL6(lR3), div^l-0 and B = cuήA e L2(R3) . (1.3b)
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Furthermore, they prove the following formula for zc:

zc = wm(8ΪB2)(ψ,\xΓlψΓl, (1-4)

where the minimum in (1.4) is taken over all normalized solutions of (1.2), (1.3).
The aim of this work is to show that (1.2), (1.3) has solutions. Some of the results

were announced in [1]. We shall give a special class of solutions of (1.2), (1.3).
One of these examples will be used to compute an upper bound on zc via
formula (1.4). This is carried out in Sect. II. The result is

which is ten times bigger than the lower bound for zc given in [1].
Observe that while (1.2) is a gauge invariant equation, (1.3) imposes both gauge

invariant and gauge dependent constraints. The gauge invariant conditions are

ψεL2 and BεL2. (1.5)
The constraints

ΫipeL2 and AεL6, divA = 0, (1.6)

are not gauge invariant.
Assuming (1.2) has a solution then, by (3.3), B can be expressed entirely in terms

of the vector field

(1.7)

and its derivatives. (U = twice the spin density and < , ) denotes the usual inner
product in C2.) U itself has to satisfy divU=0 if ψ satisfies (1.2). One is tempted to
ask the following question: Suppose a vector field U is given satisfying U e L1, U
smooth, divU = 0 and the B associated with U by (3.3) is square integrable. Can
one find ψ and A satisfying (1.2), (1.3), (1.7)? Under the assumption that U is
nonvanishing the answer is yes. We prove this in Sect. Ill and thereby provide
some examples of solutions that probably cannot be obtained by the method of
Sect. II.

It is an interesting problem to ask how many solutions of (1.2) exist for a given
A. We do not know a completely satisfactory answer to that question, however, by
squaring (1.2) the problem is reduced to computing the number, N9 of solutions of
the equation

Since \(ψ9σ Bψ)\^(ψ9\B\ψ)9 by the minimax principle the number of bound-
states of the Hamiltonian

(P-A)2-\B\

provides an upper bound on N given by

c is some constant (see [2, 3]).
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II. A First Example and an Upper Bound on zc

A simple class of solutions of Eq. (1.2) is provided by the following remark. Instead
of considering (1.2) we consider the problem

σ pψ(x) = λ(x)\p(x) (2.1)

for some given real (scalar valued) λ(x). Assuming that (2.1) has a solution and that
, all x then, by setting

A(x) = λ(x) <φ, σφ> (x)/< V, φ> W , (2.2)

we find a solution of problem (1.2). For this, observe that the two by two matrix
<2 = σ <φ, σφ>/<φ,φ> has ψ as an eigenvector with eigenvalue +1 (a simple
consequence of the relation <φ,σφ><φ, σφ> = <φ,φ>2), and hence

σ A(xMx) = λ(x)φ(x), (2.3)

and we have at least a formal solution of (1.2). In general, the A of (2.2) will not
satisfy (1.3b), so one has to add some Vχ to A and then check, in any particular case,
that A + Vχ satisfies (1.3b).

Example. Choose
- )^0, (2.4)

where φ0 is an arbitrary, constant, normalized spinor. Call w = <^0, σ^0> and note
that |w| = l. A simple calculation shows that

a pw= -w (2.5)
Γ ' Ί i -i/ ̂  ' ^ ^

and hence, by using (2.2), (1.2) is satisfied with

φ>, (2.6)
where

<t/;,σφ>-t7-(l+jc2)-3{(l-x2)w + 2(w x)x + 2 w x x } . (2.7)

It is easily seen that the β-field is

B = cuήA = ΠU. (2.8)

Observe that

"(1+x2)2

but, defining

where — Aχ(x) = divA(x) or

χ(x)-—ί|x-)/
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it is easily seen that A' e L6 and divA' = 0. Certainly, φ' e H 1 and B e L2. With this
example we can compute the upper bound on zc mentioned in the introduction.
After normalizing (2.4) we obtain, upon inserting into (1.4), an upper bound in
terms of Beta functions, and the result is

z^fπ2α-2, (2.9)

which is ten times larger than the lower bound given in [1].
The following might help the reader to visualize the field lines. The field lines of

B can be found by solving the differential equation

i^(l_x2)w + 2(w x)x + 2 w x x . (2.10)

We assume w to point in the 3-direction. By passing to a rotating coordinate
system

/ cos2ί sin2ί

x = R(f)y 9 R(f) = - sin 2ί cos 2ί 0

\ 0 0 1
we find for y the equation

)0j>. (2.11)

This system is rotation invariant around the 3-axis and it is easily seen that the flow
lines of system (2.11) are 2 dimensional circles and the motion is periodic with the
same period as that of R(ί). In other words, the y field is qualitatively the same as
the field of a current loop with closed circular field lines that lie on torii. The effect
of R(f) is to twist the y lines in the (x l5 x2) plane in such a way that they stay closed,
because the period of the twist is the same as the period of the y motion.

Remark. Note that the solutions of σ - pιp = λ(\x\)ψ can be classified according to
the invariant subspaces of the total angular momentum operator J=^σ + L
(L= angular momentum) labeled by j=i,|, ... . The solutions constructed above
belong to the subspace with j —\. In a similar fashion it is possible to find solutions
of (1.2) and (1.3) where the ψ carries any j value.

Following [7, p. 62], define the spinor

where 7Λm are spherical harmonics and — j gmrgj, with j = ̂ +i being the total
angular momentum. The solution to (1.2) is then

wίth w(x) = <«,,«, ™,

Unlike the; =% case, w now depends on x. The A field given above does not satisfy
= 0 but, as before, one can add Pχ to A so that divv4 = 0 and BeL2 and A e L6.
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III. Another Class of Solutions of Eq. (1.2)

In this section (1.2) is viewed in a different way. We suppose that ip e H1 is given
and want to find A such that the pair ψ, A satisfies Eq. (1.2). Assuming <v?, v>> (*) is
nonvanishing, this problem is easily solved, and we get

>, (3.1)

provided ψ satisfies the additional constraint

div<φ,σφ>=0. (3.2)

A computation shows that for this A and ψ (1.2) is formally satisfied. A more
tedious calculation shows that

(3.3)
ijk

where 17 = <φ, σφ>. We emphasize that B depends only on U and its derivatives.
This suggests that U essentially determines the whole problem. The following
theorem shows that this is true in a certain sense. Let C2'α be the space of functions
which are C2 and their second derivative is Holder continuous of order α for some

Theorem. Let U be a C2'* nonvanishing vector field which satisfies
(a) divl/ = 0,
(b) J |I7 |dx<oo.
Further, suppose that the B-field given by formula (3.3) is square ίntegrable.

Then there exists ip and A which solve (1.2), i.e. (1.2) holds together with the
conditions given by (1.3). Moreover, (ψ,σιpy = U and cuήA = B.

Proof. Define

η_ is well defined and smooth outside the closed set

r_ = {xeR3|(y2 + [/i = 0, U3<0}.

Note that η _ is chosen such that (η_,ση_y = U. Now we invoke formula (3.1) and
find (outside Γ_) the vector potential associated with f / _ :

A. =(2( UIΓ1 curlC/+i(l - U3/\U\)7Θ, (3.5)

θ = Arg(I/1 + it/2), (3.6)

Fβ = (l71Fl72-l/2Fl71)/(l7f + t/|). (3.7)

Observe that θ is defined as a multiple valued function on the set R3\Γ, where

Because U is nonvanishing, Γ=Γ+uΓ_, where
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Also note that the second term in (3.5) is, in fact, well behaved on Γ+ since η_, and
hence A_ is C1 outside Γ_. Formally, ^_ and A_ solve (1.2). By Theorem A.I in [1]
we can find A e L6 such that curl 4 = B and div^4 = 0. In [1] the A field is given by

Since B e Cα, it is easily seen by dividing the integration smoothly into \x — y\ >2
and \x — y\ ̂  1 that the first part is C00 and the second part is C1 by [6, p. 54] and
hence A is C1. By the lemma below there exists a function Φ_ such that
< Φ _ , σ Φ _ > = C/ and the pair Φ_, A satisfies (1.2) on R3\Γ_. In addition,
Φ_ eL2(R3\Γ_. Similarly using

η+=2-1

We repeat the procedure and obtain Φ+ with <Φ + ,σΦ + > = t/ such that the pair
Φ+, A satisfy (1.2) on R3\Γ+ and Φ+ eL2(R3\Γ+). Observe that Φ+ and Φ_ give
the same A on R3\Γ and the same U. From the latter Φ+ and Φ_ can only differ by
a phase factor, say elχ, and, by the former,

Q = σ(p — A)Φ+ = eiχσ(p — A)Φ_ + eiχσVχΦ_ .

Since Φ _ is nonvanishing and satisfies σ(p — A)Φ _ = 0 we have that Vχ = 0, and so χ
is locally a constant, i.e. it is constant on all connected components of R3\Γ. Hence,
in the case where R3\Γ is connected, χ is a constant, c, and

Φ + on R3\Γ+ = Ω + ,

eicΦ _ on R3\Γ_ — Ω _ ,

satisfies ΦeL2, AeL6, and σ (p — A)Φ = 0. Theorem A.2 in [1] proves that
VΦ E L2. In the general case we know that Φ+ and Φ_ differ by a locally constant
phase factor on Ω = Ω+nΩ_. By the Mayer-Vietoris cohomology sequence (see
[4, 5])

one easily proves the existence of locally constant phase factors ela+ and em~ such
that Φ + eia+ = Φ_eict- onΩ. D

Lemma. Let η_ and A_ be given by (3.4) and (3.5) (with U e C2) and let A be any
C1 vector potential for B given by (3.3). Then there exists a gauge
transformation elχ^ such that the pair Φ_ =eιχη_ and A satisfies (1.2) on JR3\Γ_.

Remark. Note that since R3\Γ_ is not necessarily connected χ is determined only
up to a locally constant function.

Proof. Denote R3\Γ± by Ω±, and let {Ωl

±} be the connected components (indexed
by i) of Ω + , respectively. Let p1'eΩL, z= 1,2,... . Define

χ(x)=X$(A-A.) dx if xeΩ1.. (3.8)
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Equation (3.8) is a line integral. Although χ is not single valued, we want to prove
that the branches differ by 2π times an integer, which makes eiχ and Vχ well
defined. (Observe that χ is C2.) This, however, follows once we have shown that

_ , (3.9)
2π y

for every closed curve yeί3_. Observe that the integration depends only on the
homology class of y in Ω_ denoted by [y^eH^Ω-). By the Mayer- Vietoris
homology sequence (see [4])

the map, defined by = [/?] φ _ [/η ,

is hence an isomorphism. [/?] on the left side is considered as a homology class in
JHΊ(Ω+nΩ_) and β on the right side as a homology class in H1(Ω_) and H1(Ω+),
respectively. Hence for any [y] e /^(Ω.) there exists [/?] e #\(Ω_ nΩ+) such that

and hence

-- - _ - - _
2π [̂  2π [/η

= J- ί 04-^4- + PΘMX--1- ί Ffl dx, (3.10)
2π [0] 2π [̂

where θ and Pθ are given by (3.6) and (3.7), respectively. Since A — A_ + Vθ is C1

and has vanishing curl on Ω + 5 the first term in (3.10) is zero and the second, by the
definition of θ, is an integer. That Φ_ together with A satisfy (1.2) is obvious. D

In the following the above theorem is used to give examples of solutions
different from the ones given in Sect. II. Let

where D = x\ + βx% + *l + 1, n is a positive integer and β3 > n2 a positive constant.
It is easy to check that U is a non-vanishing divergenceless vector field and has the
following asymptotic properties :

(a) By considering the leading order of the numerator (it is homogeneous and
vanishes only at the origin), we have U^r~2n, where r = (x2

L+x2 + x 2

5 ) 1 / 2 , i.e.
3R>0, C l 5C2>0, such that

Cΐr-2n^U(x)^C2r~2n for r>R.

(b) Iδjl/^C r"211"1, \AUj\£C r-2n-2 for some constant C.
It is easy to check that the assumptions on U and B of the previous theorem are

satisfied.
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Remark. The example above provides solutions which are stable in the sense that if
/ is any C2 vector field with compact support satisfying div/=0, then ε/ can be
added to U and, for ε sufficiently small, all the assumptions of the theorem continue
to be satisfied.
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