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Abstract. The analysis of the ground state energy of Coulomb systems
interacting with magnetic fields, begun in Part I, is extended here to two cases.
Case A: The many electron atom; Case B: One electron with arbitrarily many
nuclei. As in Part I we prove that stability occurs if zα12/7 < const (in case A)
and zα2< const (in case B), (z\e\ = nuclear charge, α^fine structure constant),
but a new feature enters in case B. There one also requires α < const, regardless
of the value of z.

I. Introduction

In the first paper in this series [1] the question of the stability of atoms and
molecules in the presence of magnetic fields was raised, and it was answered in the
case of the one-electron atom of arbitrary nuclear charge z\e\. In the present paper
the stability question will be answered in two other cases:

(A) The many electron atom,
(B) The one-electron molecule.

Unfortunately, the stability of the many-electron, many-nucleus system is still an
open question.

The reader is referred to the introduction in [1] for the motivation and physical
interpretation of this problem. The mathematical essence of the problem is that we
want to decide whether or not the energy functional

,A,R,z) = Σ ί v-(pj-A(xj))ip\2dx + e l B ( x ) 2 d x
j=ι
+ (ψ,V(X9R9z)ψ) (1.1)
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is bounded below by a suitable constant. The three terms in (1.1) are the electronic
kinetic energy, the magnetic field energy and the Coulomb energies respectively.
The notation is the following:

The energy unit is 4 Rydbergs =2mc2u2 and l/ε = 8πα2, with a = e2/fίc= 1/137
being the fine structure constant. The charge unit is \e\.

Ψ — ψ(xι? 5 XN> sι? •> SN) is an arbitrary N particle, antisymmetric (electron)
wave function. The particle spatial and spin coordinates are x9s with s= + 1.
X denotes the collection (xl9...,xN). The σ/, j =1,2, 3 denote the Pauli spin
matrices, ψ is assumed to be normalized

iHlvl l i=(v>,v>)= Σ Sd*Nx\ιp(x9sl9...9sN)\2. (1.2)
Si ...S v

y4(x) is a vector potential and B = curl ̂ 4 is the magnetic field which is assumed
to be in L2(R3). As explained in [1], for any jBeL2, A exists and is uniquely
specified by

R3). (1.3)

The first term in (1.1) is the electron kinetic energy. For particle j it is

\\σj'(pj-A)ψ\\2

2=\\(pj-A)ψ\\l-(ιp,σJ-Bψ). (1.4)

The Coulomb term is

V(X,R,z)= Σ \Xi-x jΓ*+ Σ zVl^-R Γ1

- Σ ΣzΊxt-RjΓ1. (1-5)
/ = l j = l

Here we assume that there are K fixed nuclei of charges zj|e| and distinct locations
RJ e R3, j = 1 , . . . , K. The z's and R's will be denoted collectively by z and R. The
first term in (1.5) is the electronic repulsion, the second is the nuclear repulsion and
the third is the electron-nuclear attraction.

It is useful to have the following notation

T(vU)=Ξ Σ \\v.(pj-A)ip\\2

2 + c\\B\\2

29 (1.6)
j=ι

T(ψ,A)= Σ \\(pj-A)ψ\\2, (1-7)
J=ι

W(φ,g,z)=-(φ,7(X,R,z)φ). (1.8)

We assume B 6 L2 and that (1.2) is satisfied. Then, as proved in [1] (with a slight
modification to handle the JV-coordinate case), in order to make sense of τ and W it
is necessary and sufficient to have ψ e /^(IR3^), i.e. ψ and all its first derivatives are
in L2. The class of all pairs (φ, A) satisfying the above [and also with ψ normalized
as in (1.2)] is denoted by .̂

The energy of our system is defined to be

E = iΌS{£(ψ,A,R,z)\(ψ9A)e<g, all R} . (1.9)

This infimum includes an infimum over R.
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From [1] we know that if any single z 7" satisfies zj > zc (which is evaluated in [1]
and which is proportional to α~2), then E=— oo, simply by moving N—\
electrons and the other K — 1 nuclei to infinity. Therefore zc for the full problem
(1.1) is finite. (When K> 1, zc is defined to be the largest z such that E is finite
whenever all the z j<z.) Our goal here is to show that zc is not too small for (1.1).
Three cases have to be distinguished.

(A) One nucleus (with j^— 0 and zl=z) and an arbitrary number, N, of
electrons. In Sect. II we find some zc, which is independent of N, such that E is finite
when z<zc. We also find some z^<zc for which we can give a lower bound to E
(called EL) when z < z^. Both zf and EL are independent of N. The bound on zc is

zc>z^-i + (0.158)oΓ12/7. (1.10)

Note the exponent 12/7. Is it possible that this can be replaced by 2, as in the one-
electron case? We do not know. While our bound on zc utilizes the electronic
Coulomb repulsion in (1.5), we conjecture that the repulsion is not really necessary.
This is an interesting open problem.

(B) One electron and an arbitrary number, K, of nuclei. In Sect. Ill we find, as
in case (A), z^<zc<zc (with z^ and zc independent of K and proportional to α~2)
such that E is finite for z<zc. We also derive a lower bound EL<E when z<zf.
However, an important new feature enters here: These results also require that

α<αc (1.11)

for some αc (which is shown to satisfy 0.32<αc<6.7). In other words, two
conditions are required for stability,

zV small (all j ) and α small. (1.12)

This situation is reminiscent of the relativistic stability problem [2-4], except that
there the requirement is zjα small and α small. It is interesting to note that there are
other indications [5, 6] that the stability of field theory requires a bound on the
coupling constant (apart from a bound on z). We shall also prove that the
requirement (1.11) for stability is real; it is not an artifact of our proof.

(C) Many electrons and many nuclei. We are unable to solve this problem, but
the goal would be to prove that E is finite provided zjα2 is small (allj) and α is small,
and that E is then bounded below by -(const) (N + K).

II. Basic Strategy

The following sections are full of technical details, but the common strategy
(similar to that used in [1]) is simple. Let us outline it here. Note that the following
steps can be carried out even for the full problem, (C), to give an N and K
dependent bound on zc. It is only in cases A and B that we can eliminate this
dependence.

The quantities τ(φ,4) and T(ψ,A) were defined in (1.6), (1.7); the following
quantity Q is also needed. Let ρ(x) be the one-particle density associated with ψ:

ί?v(*)= Σ Σ ί\ψ(X9s,9...9sN)\2d3N'3Xs. (2.1)
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(Xj means all N variables except Xj.) Of course, for fermions we do not have to sum
onj. Merely take; = 1 and then multiply by N. The general expression (2.1) is used
because much of the following holds for any statistics (i.e. without symmetry). Then
define Q by

= (l/4ε)ί ρψ(x)2dx = (\/4ε) ||ρj2. (2.2)

Another important quantity is the quantum ground state energy when the σ B
and the εjβ 2 terms are eliminated:

Eq(z) = inf { T(ψ9 A) - W(ψ, R9 z) \ (φ, A) ε V, all R} . (2.3)

Of course Eq < 0. It is well known that E9 is always finite and that the Lieb-Thirring
[7] proof of stability carries through for this case [8].

Given φ, A, and R, consider the following scaling (with λ>0):

A(x)-+λA(λX),
(2.4)

R-*(l/λ)R.

The various quantities scale as

W(ψ9R9z)^λW(ψ9R9z)9

T(ψ9 A)^λ2T(ιp, A), τ(φ, A)->λ2τ(ψ, A) 9 (2.5)

If we define

W(ψ,z)=supW(ψ,R,z), (2.6)
R

then W scales as

W(ψ9z)^λW(ψ9z). (2.7)

Note that

(2.8)
E(z)=inϊτ(ιp,A)-W(ψ,z).

From (2.5)-(2.7) we deduce (as in the case of the one-electron atom) that

4|E«(z)|T(φ, A) ̂  W(ψ9 z)2 ^ W(ψ9 R, z)2 . (2.9)

The strategy has 7 steps.

Step 1. In [1, Lemma 3.1] a bound for τ in terms T and Q was derived (which
trivially extends to JV-particles). There are two cases (depending on φ and A).
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Casel. T(ιp,A)^2Q(ψ). Then

(2.10)

Case 2. T(ψ, A) ̂  2Q(ψ). Then

(2.11)

As will be seen, Case 1 is relevant for determining EL while Case 2 is relevant for
determining zc.

Step 2. (This step is trivial for K = 1 .) Pick some z0 = (zj, . . . , zξ) and consider the
rectangle z-<z0 (which means O^z^z^, all j). For each fixed φ and R, the
minimum of W(ψ, R, z) in this rectangle occurs at one of the 2K vertices. This is
proved in [2] Lemma 2.3 et. seq. From this it follows that W(ψ,z), — Eq(z) and
— E(z) are monotone nondecreasing functions of z (with the above order relation).
Hence if stability holds for z = (z9 ... ,z) then it holds when all z ̂ z.

Step 3 (Definition of zj. Define

δ(ψ, A, _z) = i T(ψ, A)2IQ(ψ) - W(ψ, z) . (2.12)

The two terms of (2.12) scale the same way [see (2.5) and (2.7)], so that the infimum
of δ(ψ, A, z) (over ψ and A) is either zero or — oo. We define [with z = (z, . . . , z)]

zc = sup{z\δ(ψ,A,z)^Q for all (ιp,A)e%}. (2.13)

Step 4. Suppose that z j<zc for all j and let (\p,A)E^ be given. If case 1, (2.10),
holds then

by scaling. If case 2 holds then δ(ψ,A,z}^0. In either case E(z) is finite and thus

zc£zc. (2.15)

Step 5. We want to find a lower bound (which we call z^) to zc. A lower bound on
T(ψ9 A) is needed and this is provided by the Lieb-Thirring estimate [9]

(2.16)

for a universal constant G= 1.28, explicated in (3.8). This leads to the bound

). (2.17)

Combining this with the bound (2.9) [and the trivial fact that we need only
consider W(ψ, z)^0] we see that δ(ιp,A, z)^0 if

|E«(z)|^(G/8α2)2. (2.18)

By (2.13)

zc ̂  Z^EE sup {z I \E\z)\ ^ (G/8α2)2} , (2.19)

[z means (z, ...,z)]. The monotonicity given in Step 2 has been used.



276 E. H. Lieb and M. Loss

Step 6 (Bound on the energy) . Suppose that zj ^ zf for all j. Let (φ, A) e ̂  be given.
Case 2 is irrelevant since δ(φ,A,z)^ by definition. Therefore a lower bound,
EL(z), to £(z) can be obtained by the following minimization problem:

(2.20)

under the conditions

T^2β, Γ^(Gβ/α2)2/3, Γ^ Py2/4|£«(z)| . (2.21)

This algebraic problem is solved in Appendix B of [1] and the result is

(2.22)

/2}, (2.23)

y = 6\Eq(z)\ίl2a2/G. (2.24)

Equation (2.22) gives EL as the exact Eq times a correction factor, /, which
depends on y, where γ is proportional to \Eq\ 1/2. Two things should be noted : By the
definition (2.19),

7^3/4, (2.25)

when zj <z^ (allj) Second, the function / is monotone increasing in y on [0, 1].

Step 7. To utilize (2.19) and (2.22) we require a bound on E\z). Let

(2.26)

be any lower bound to Eq. Inserting Eq

L(z) in (2.19) will give a lower bound to
£^zc. Inserting Eq

L(z) in (2.24) and then inserting this y in (2.23) and (2.22) will
(assuming that y ̂  1) give a lower bound to EL. In cases A and B we can get an
effective Eq

L(z) which is independent of TV and K. The former uses the Lieb-Thirring
technique [7] together with a novel bound on the Coulomb energy. This is done in
Sect. III. Case B is controlled by relating it to a relativistic problem solved in [2]
this is done in Sect. IV.

Remark. In case B we deal with only one electron. Given this restriction on JV,
(2.16) holds with a larger value of G, namely G — 3.83. This larger G can be used in
Steps 5-7.

III. The Many-Electron Atom

Our first task is to prove the kinetic energy estimate (2.16). Consider the single-
particle Schrόdinger operator h = (p — A)2 — F(x), where F(x)^0 and consider
also the JV-particle operator H=Σ hj. The q spin state fermionic ground state

j
energy of H, £, satisfies E ̂  q Σ eh where the et are the negative eigenvalues of h.

i

(q = 2 in our case.) We have that
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where e1 is the ground state energy. In [1,(3.19)] we quoted a result of [9] that

, (3-2)

where L\/2^ = 0.0135 to three significant figures.
In [9] it is also shown that

. (3.3)
i

Strictly speaking, (3.3) was shown only for A = 0 in [9] and it is not known whether
the (unknown) sharp constant L in (3.3) occurs for A = 0. However, as pointed out
in [8, 11], the L actually obtained in [9] holds for all A. The L obtained by using
the method of [12] also holds for all A (see [11] for a discussion of the Ito-Nelson
integral). The latter method gives a better value for L and the numerical
computation is most clearly explained in [10, Eqs. (46)-(51)]. In the notation of
[10], we take α = 0.61 exactly and 6 = 3.6807. Then (3.3) holds with

(3.4)

to 5 figures. Thus,

(3.5)

Now take V(x) = cρψ(x), where ρψ is given by (2.1). Then

Γ(φ,A)-cίρJ = (φ,Hφ)^-9Σkil. (3.6)
i

Using (3.5) and (3.6), with c~3 = 4qLί^3L±ί3$ ρ2, we obtain

T(tp,^)^|(4^,3Liί3)-1/3{ίρJ}2/^(4.02){ίρ

2}2/3, (3.7)

for q = 2. Thus, (2.16) holds [recalling (2.2)] with

G = 8.07/2π=1.28. (3.8)

Our second task is to find a lower bound for Eq(z\ given by (2.3). Again we use
an inequality derived in [7, 9], but with a better constant derived in [10, Eq. (52)] :

^ (2.7709) fe v,(x)5 / 3dx. (3.9)

The second term in 7, (1.5), is absent since there is only one nucleus, located at
R = 0. The third term contributes the following to W:

W3(ψ,z) = z$ρψ(x)\x\-1dx. (3.10)

The first term in V (call its contribution W^ requires some elaboration. For
and

(3.11)

if \xfe

-0 if | x |<JR.
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Using (3.11) and the positivity of \ψ\2 and \xί — x j" 1 , we have, for any O^σ^ 1,

ΓΓ N Ί2 jv •) \

M Σ /(*,-) -Σ/(*;)2 φ
U_i=l J i = l J /

/]2-Jρv/
2}, (3.13)

since <(Σ/m<Σ/>2

Combining (3.9), (3.10), (3.13),

T(ψ, A) - W(ψ, z) = δ*(ψ, A) ̂  £R,σ(ρφ, z)

= (2.7709) ίρ^-zJ^lxr +

-iMev/
2. (3.14)

Therefore,
E«(z) ̂  sup sup inf<ίκ σ(ρ, z) . (3.15)

O ^ σ ^ l K > 0 ρ

We could, of course, impose the extra condition J ρ = N in (3.15) but, as we desire
an ^-independent bound for Eq, we forego this.

First minimize (3.14) with respect to ρ(x) for |x| ̂  R. Only the first two terms are
relevant in this region. Define Γ - (5/3) (2.7709). Then Γρ2/3(x) = z/\x\. The first two
terms contribute (for |x|<K)

Next we consider the contributions for |x|>jR. Here we merely omit the ρ5/3

term and we use R|x| ~ 2 ̂  |x| ~ 1 in the last term. Let 7= J ρ(x) |x| ~ 1 dx. Then
\χ\>R

the sum of the last three terms is not less than the minimum (with respect to 7) of
— (z + ̂ σ)7+^JRσ72. This minimum is

σ)2/Rσ. (3.17)

The maximum of this with respect to σ e [0, 1] is

-M(z)/Λ, (3.18)

M(z) = z if z^l/4,

= (z + i)2 if z^l/4. (3 19)

Adding (3.16) and (3.18) and then maximizing with respect to R>0 gives

= -(1.9062)z5/3M(z)1/3 . (3.20)

As we shall be primarily interested in z>l/4, the little exercise with σ is
academic; it was done merely to demonstrate a z2 (instead of z5/3) bound when
z^l/4.

With these results we can now bound zc, see (2.19) and EL, see (2.22). Since zc will
be large, let us use the bound z5/3M(z)1/3 ̂  (z + £)7/3 for all z > 0. Then, from (2.19)

ZC^ZC^ZC

L^ -i +(0.158)α~12/7^720. (3.21)
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This bound (720) is about 25 times smaller than the z% obtained in [1] for the one-
electron atom. It is about 290 times less than the upper bound on zc obtained in
[13], see also [1, (3.24)]. This upper bound (zc^ 208,000) also holds, of course, for
the full problem with K nuclei and N electrons.

The lower bound (2.22) on the energy is

(3.22)

and, using (3.20),

^ (0.000345) (z + i)7/6. (3.23)

As an illustration, take z= 100. By (2.23) the fractional change in the energy,
/(y)- 1, is less than 0.013, which is about

IV. The One-Electron Molecule

Our first task is to find a lower bound to Eq in (2.3) with

K
nx Ό 7\— _ y 7J\ Y _ D I - l _ι_ y 7 ί 7 j \ Ό __ D I - l (Δ, λ\Λ5 4Λ? 4ί)— / . ^ |-v j fv j l T^ /_, 2 Z l/v^ — iVjl . ^*τ.ly

7=1 i<7

Since N= 1, we can use the diamagnetic inequality (see [1]): T(ψ,A)^.T(\ψ\,Q)
= T(ψ)= \\F\ip\ ||2, and hence can assume that ψ is real and positive and
A = ΰ. Define

F(x, g) = - (2/π) Σ |x - Rj\ ~1 + (12/π) Σ 1̂  - ̂ 1"' (4.2)
J = l ί<J

It is proved in [2, Proposition 2.2] that for all ψeL2,( — A)ΐ/4ψ e L2 and all £,

We also have the fact (Schwarz inequality) that

^(φ, ( —zl)1/2φ)2, (4.4)

when ψ 2 =
Given z, define

Z-max(z1,...,zx) and Z = (Z,...,Z). (4.5)

As shown in Step 2,

Eq(z)^Eq(Z). (4.6)

Suppose that Z^6. Then

(πZ/2) V(x9 R) ̂  V(x9 R, Z). (4.7)
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Combining (4.3), (4.4), (4.7) and with t = (\p9(-Δ)1/2ψ)

E\z) ̂  inf {ί2 - (πZ/2) t}=- (πZ/4)2 . (4.8)

[Note: When K=l, the exact result is -(Z/2)2.]
By monotonicity (4.6), when Z < 6

Eq(Z) ^ Eq(6) ^ - (3π/2)2. (4.9)

Combining (4.6), (4.8), (4.9) we obtain for all z

Turning now to (2.19) and using (4.10) we have that
r

π ,, ,
' ^ SUp <Z (4.11)

As remarked at the end of Sect. II, since N = 1 we are entitled to replace L± 3 by
ίi 3 in (3.7), (3.8), and (2.16). Thus,

G = 3.83, (4.12)
in our case.

Suppose that

α2^α2ΞΞG/(12π) = 0.102. (4.13)

Then, from (4. 11)

>l 1,400. (4.14)

(This number, 11,400, compares favorably with 17,900 obtained in [1] for K= 1.)
In the opposite case [(4.13) is violated], the set of z's in (4.13) is empty and our
method gives no bound at all on E(z) for zφO. Thus, our method requires two
conditions for stability

(i) αV^ 0.609 for all 7, (4.15)

(ii) α^αc = (0.102)1/2 = 0.319. (4.16)

One can question whether the condition (4.16) on α is an artifact of our method
or whether there really is an αc (which will, of course, be greater than 0.319 - but
finite). The second alternative is correct as we now prove.

Lemma. Suppose that

α>6.67, (4.17)

then for every z = (z, . . . , z) with z > 0 there is a K such that E(z) = — oo .

Remark. The right side of (4.17) is not the best bound that can be obtained by the
following method.

Proof. In [1] we showed that E= — oo when K= 1 if

ΓV}~ 1 =^ 5 (4-18)



Stability: Many-Electron Atom and One-Electron Molecule 281

where (ψ, A) runs over ̂  = {(ψ, A)E^\σ - (p — A)ιp = 0}. 3F is not empty [13]. By
taking a particular example, one finds P^9π2/8 = 1 1.10. Therefore, if α2 >P, we
can take K = 1 and achieve instability for all z ̂  1 . Using the above bound, this is
also achieved for z^ 1 if α>3.34.

Next, to investigate z< 1, take any (ψ, ̂ 4)eJ^, whence

$ ρψ(x) V(x9 R, z) dx , (4.19)

with ρψ(x) = <φ, φ> (x). We want to show that for suitable α and K, δ is negative
for some R. [If it is negative then, by the scaling (2.4), δ can be made arbitrarily
negative.] To show this, it suffices to average δ with some probability density
F(R\...,RK\ \FdκR=l, and to show that <<f>- \δFdκR<Q. Take
F = ρψ(R1)...ρψ(Rκ). The result is

, (4.20)

(4.21)

Choose K to be the smallest integer closest to \ + 1/z. Then zK = (z/2) + 1 + μ
with |μ|^iz and zK[2-z(K-l)] = [l + (z/2)]2-μ2^l+z> 1. Therefore, if

α2>(4πΓMnfj£2//(ρ), (4.22)

instability occurs for all 0 < z < 1 .
For the particular example in [13] quoted above, one has

and one computes

Therefore, if α > 3 2~ 1/2π = 6.67, instability also occurs for all z < 1. D
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