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Abstract. The ground state energy of an atom in the presence of an external
magnetic field B (with the electron spin-field interaction included) can be
arbitrarily negative when B is arbitrarily large. We inquire whether stability
can be restored by adding the self energy of the field, J B2. For a hydrogenic like
atom we prove that there is a critical nuclear charge, zc, such that the atom is
stable for z<zc and unstable for z>zc.

1. Introduction

The problem of the stability of an atom (i.e. the finiteness of its ground state energy)
was solved by the introduction of the Schrόdinger equation in 1926. While it is true
that Schrόdinger mechanics nicely takes care of the — ze2/r Coulomb singularity
at r = 0 (here z\e\ is the nuclear charge), a more subtle problem that has to be
considered is the interaction of the atom with an external magnetic field B(x) with
vector potential A(x) and B = curl ,4. In this paper the problem of the one-electron
atom in a magnetic field is studied; in a subsequent paper [6] some aspects of the
many-electron and many-nucleus problem will be addressed.

Units. Our unit of length will be half the Bohr radius, namely / = h2/(2me2}. The unit
of energy will be 4 Rydbergs, namely 2me4/h2 = 2mc2a2, where α is the fine
structure constant e2/(hc). The magnetic field B is in units of \e\/(l2u). The vector
potential satisfies £ = curl,4. The magnetic field energy (j B2βπ) is, in these units,

(1.1)
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The first problem to be considered is one in which the electron spin is neglected.
The Hamiltonian in this case is

H' = (p-A)2-z/\x\ (1.2)

(with p = W). H' presents no interesting problem as far as stability is concerned
because the effect of including A is α/wαys to raise the ground state energy.
(Reason: For any φ, (tp, (p — AYιp)^(\ιp\,p2\\p\). This is essentially Kato's inequal-
ity [4] (see e.g. [13]). On the other hand (ιp,\x\~1ιp) = (\ψl\x\~l\ιp\), so we can
lower the energy by replacing ψ by \ψ\ and setting ,4 = 0.)

The problem becomes interesting when the electron spin is included, and this
problem is the subject of this paper. The wave function ψ is a two-component
(complex valued) spinor:

φ(x) = (V>ι(x),V>2(*))- (1.3)

The Hamiltonian is

H = (p-A)2-σ B(x)-z/\x\ (1.4)

= lσ.(p-A)-]2-z/\x\ (1.5)

where σ1 ?σ2,σ3 are the Pauli matrices. The first term in (1.5) is the Pauli kinetic
energy and is the non-relativistic approximation to the Dirac operator.

The ground state energy E0(B, z) of H is always finite but depends on B in such
a way that E0-» — oo as B-+OO (for a constant field), roughly as — (ln£)2, see [1].
What prevents B from spontaneously growing large and driving E0 towards — oo ?
(We do not inquire into the source of this B, but simply assume that nature will
always contrive to lower the energy, if possible.) The answer, which we shall take as
a hypothesis here, is that the price to be paid is the field energy J J32/8π. Thus, we
are led to consider (in our units) H + ε f B(x)2dx and ask whether

E(B,z) = E0(B,z) + ε$B2 (1.6)

is bounded below independent of B. This problem is important in the analysis of
stability in non-relativistic quantum electrodynamics [we have omitted the term
j£2 which makes (1.6) a lower bound and which makes the magnetic field
classical]. We define

E(z) = infE(B,z). (1.7)
B

In the remainder of this introduction we shall first outline our results about
E(z), then discuss their physical interpretation and finally formulate some
preliminary mathematical facts and notation.

We show that there is a critical value of z (called zc) such that

E(z) = -co for z > zr,
(1.8)

E(z) is finite for z < zc.

The value of zc is proportional to 1/α2 (not 1/α as in the case of the Dirac equation
or the "relativistic" Schrόdinger equation [3]). Section II (in conjunction with [8])
contains the proof that zc is finite. The fact that zc φ oo is intimately connected with
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the fact that the equation

σ.(p-X)φ = 0 (1.9)

has a non-zero solution with ipeH1 and AeL6. When we first worked on this
problem we realized this connection and proved (Sect. II) that

zc = infεJ£2/(φ,|xΓV), (1.10)

where the infimum is over all solutions to (1.9). (Clearly, any solution to (1.9) has
zero kinetic energy so that if z exceeds the right side of (1.10) the total energy can be
driven to — oo by the scaling φ(x)-»/ί3/2φ(/bc), A(x)-*λA(λx). The converse is the
difficult part of Sect. II.) At first it was unknown whether or not (1.9) has a solution,
but now several have been found [8].

Section III gives a lower bound to zc (which we call z^):

zc > ZL

C = (24.0)/(8πα2) > 17,900. (1.11)

This is far better than that needed for physics. For all z < z^ we also derive a lower
bound for E(z):

E(z)^ -iZ

2-z3(32zc

L)-1(l -!V^)3/2 (1.12)

[Note that E(z) is trivially less than — ̂ z2, which is the ground state energy for
B = 0.]

The B field that causes E(z) to diverge when z > zc is highly inhomogeneous
(both in magnitude and direction) near the nucleus. In astrophysical and other
applications [9,11] one is interested in studying atoms and ions in very strong,
external magnetic fields with the property that the direction of the magnetic field is
constant over distance scales many times the scales of atomic physics, to a very
good approximation. Theoretical astrophysicists have carried out large-scale
numerical calculations of the spectra of atoms and ions in very strong magnetic
fields and have tried to correlate theoretical predictions with experimental data. As
a modest contribution to the mathematical foundations of this kind of work, we
establish stability of one-electron atoms in arbitrarily strong magnetic fields whose
direction (but not magnitude) is constant in a neighborhood of the atom. This is
done in Sect. IV, where we prove that E(z) is always finite in this case. An open
problem for further investigation is the analysis of E0(B, z) for magnetic fields that
are curl free in a neighborhood of the atom.

Before proceeding to the physical interpretation, we note in passing that the
electron g factor was taken to be 2 in (1.4). If we replace the σ B term in (1.4) by

- B then two cases arise:
g<2. Here we can write the kinetic energy as i0[σ'(P~^)]2

—-2g)(p — A)2. The first term is nonnegative and the second, when combined
with — z/\x\ gives a Hamiltonian of type Hf in (1.2). This is bounded below by
—^ z2/(2 — #), and hence E(z) is always finite.

g>2. Here, E(z)= -co for all z, including z = 0. To see this, let B be a field
which is constant = £(0,0,1) over a large cube of length L, with A=^B(x2, — x l 5 0)
inside this cube. Let B drop to zero outside the cube so that / — J B2 < oo. Take ψ to
be a ground state Landau orbital (cut off in the x3 direction so that ψ e L2), i.e.

ψ(x) = (const) (1,0) exp [ - ̂ B(x\ + x|)] cos(πx3/L)
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and ψ(x) = Q for |x3|>L/2. With B fixed and with L big enough, we can have
(φ,[σ (p-4)]2φ)^i(#/2-l)£ and (ψ9σ Bιp)^B. Also I^2B2L3. The total
energy (with z = 0) is less than -^(g/2-l)B + 2B2L3ε. Now, let λ>Q and replace
ψ(x) by λ*l2ψ(λx), A(x) by /L4(/lx) and B(x) by Λ2£(/lx). The energy is then less than
—^λ2(g/2 — l)B + 2λB2L?ε. (This scaling is exact and will be employed frequently
in the sequel.) As Λ,->oo, the energy tends to — oo, so stability never holds.

Since physically g > 2 because of Quantum Electrodynamics (QED) effects, it is
clear that if we try to "improve" (1.4) by replacing σ B by %gσ - B we shall get an
inconsistent theory. The only truly consistent procedure is to include all QED
effects, and this is outside the scope of this paper.

The foregoing aside about the ^-factor leads us to the question of the physical
content of the results of this paper, (1.8)-(1 12). There are two ways to view them.
The first is to observe that (1.8) and (1.11) show that atomic physics with the
Hamiltonian (1.4) contains no seeds of instability for small z (small meaning
z< 17,900) and that perturbation theory (in B) can be safely employed for very
small B. (Of course one should also analyze the many-electron and many-nucleus
problem to be certain about this conclusion. We are unable to do this fully, but in a
subsequent paper [6] we do successfully analyze two problems: the one-electron,
many-nucleus problem and the one-nucleus, many-electron problem, i.e. the full
atom.) The fact that the theory is well behaved for small z is not entirely a trivial
matter, especially when the situation is contrasted with that for spin-spin
interactions (either electron-electron or electron-nucleus). Here, one adds a two-
body term σa σb\x\~3 — 3(σfl x)(σ& x) |x|~5, where x is the vector between
particles a and b. The |x| ~ 3 singularity is not integrable and, in particular it cannot
be controlled by the kinetic energy. Thus, a system with this interaction is always
unstable in our sense. The treatment of the interaction by perturbation theory, is
not really a consistent procedure.

Of course, it is always possible to restore stability by cutting off the Coulomb or
spin-spin interactions at the Compton wavelength of the electron, but then the
theory would depend critically on this wavelength. Stability, in the sense we use it,
implies that the Schrόdinger equation for electrons and nuclei is independent of
the electron's Compton wavelength-in conformity with what is always assumed to
be the case.

The second viewpoint is to emphasize the breakdown of (1.4) when z > zc and to
say that magnetic interactions impose an upper bound on zα2. Here we are
treading on shaky ground. If we specify ψ and ask what B minimizes (ψ, Hip)
-fε J52, we easily find that Maxwell's equation takes the form

2ε curlB(x) =j(x) = 2 Re <t/>, (p - A)ψy (x) + curl <tp, σtp> (x) . (1.13)

[Notation, (ψ, Hψ) has been used to denote the usual expectation, including
the x-integration. <φ, σφ> (x) denotes the inner product with respect to the spinor
indices only, and hence it is a function of x. (

The first term inj is the electron current (p — A is the velocity). The second term
is the "spin" current; it is conserved. The B field in (1.13) cannot be viewed as
external; it is, in fact, generated by the electron as (1.13) shows. It is this B field that
causes the breakdown when z>zc. [Technical note. In Sect. II we choose a special
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pair φ, A with σ (p — A)ψ = 0, so that the right side of (1.13) is zero. For this ψ9 the
B field we use is not exactly optimal [because (1.13) is not satisfied], but the error
becomes inconsequential when we employ the Λ-scaling ψ(x)-+λ3/2ψ(λx) and A(x)

The instability of (1.6) for z>zc might indicate a qualitative change in the
behaviour of non-relativistic quantum electrodynamics (QED), e.g. some kind of
phase transition or an intrinsic instability, as z becomes large. For a compelling
argument in this direction we would, however, have to include the term f E2 in the
Hamiltonian, quantize the electromagnetic field and properly renormalize the
theory. Our calculations can be viewed as a quasi-classical approximation to that
theory. The fact that this approximation exhibits an instability, for large z, should,
by experience, be seen as a warning that the full theory might also exhibit a drastic
change in behaviour, for large z.

Physically, our instability result for z > zc is, of course, quite irrelevant, because
zc> 17,000. Nuclei with nuclear charge above ~100 are not known to exist in
nature, and even if nuclei with z~ 10,000 existed electrons moving in their field
would be highly relativistic particles, so that our use of non-relativistic kinematics
is not justified for values of z where the instability occurs. Nevertheless, we feel that
it is an interesting mathematical problem to explore the consistency of this model
even beyond the domain, where the approximation is justified.

As remarked after (1.12), the interaction given in (1.4) lowers the energy. In
contrast to this, the Lamb shift, which is obtained from a proper QED calculation
(but only in perturbation theory), is a raising of the energy. Furthermore the Lamb
shift is of order z4α3 (apart from logarithmic corrections) which contrasts with our
lowering (1.12) which is of order z3α2. Our result is not directly comparable with
the Lamb shift since the latter requires a fully quantized theory with
renormalization.

Now we turn to the mathematical preliminaries to the rest of this paper. Some
notation will be introduced and, more importantly, a careful discussion of the class
of functions (A, B, ψ) will be given.

First, consider the B field. In order that (1.1) make sense we obviously require
£eL2(R3). [Notation. For vector fields (A or B)

\\A\\p=\\(A.A)"2\\p, (1.14)

where A = (Al,A2,A3) and A A = ̂ \At\
2. For spinors ψ

P=\\<Ψ,Ψ>l/2\\P, (1.15)

where (ψ,ψy(x) = \ψ1(x)\2 + \ψ2(x)\2= JΣKv>σι V)(X)|2l'1/2 For gradients
l « ί

|(ΣlW)1/2

2 = (ΣflM/j1 / 2 (1.16)

with d^d/dxi, i=l9 2, 3. A similar formula holds for ||Ptp||2.] The vector po-
tential, A, satisfies cuήA = B, but A is determined only up to a gauge (i.e. A-+A
-f VΦ). Gauge transformations on ψ (i.e. ψ-*eiφψ) can be nasty (eίφ can have very
bad differentiability properties). This problem is avoided by fixing a gauge, namely
the Coulomb gauge, divA = Q. Additionally, it will be convenient to have the
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formal identity (when div,4 = 0)

}\B\\2

2=ίB2=\\7A\\2

2. (i.π)
The danger is that A might conceivably have bad decay properties at infinity which
would prevent the necessary integrations by parts in (1.17). This problem is
resolved in Appendix A. Notice that if V A e L2 and if A(x)-+Q as |x|-»oo in a weak
sense, see [2], then, by the Sobolev inequality

, (1.18)

so A is automatically in L6. Theorem A.I in the appendix states that when BeL2

there is a unique A satisfying

cuήA = B, divA = Om&'9 and A EL6, (1.19)

and this A also satisfies (1.17), which implies VAeL2. Here, & denotes the usual
space of distributions. This is the A we shall use (except in Theorems 2.1 and A.2
where only the assumption A e L6 is used).

Next we turn to the spinor field ψ which obviously must be in L2. To avoid
operator domain questions we shall interpret the first term in (1.5) as a quadratic
form β = || σ (p — A)ψ \\ \. Theorem A.2 states that if σ - (p — A)ψ e L2, φ e L2, and
A E L6, then automatically Pψ e L2. This, in turn, implies that (ψ, |x| ~ 1φ) < oo by
(1.18), or by the well known uncertainty principle for the hydrogen atom,

(1-20)

Therefore, we introduce the class of function pairs

= 0, F.4eL2(R3)}. (1.21)
1 means ψeL2 and VψeL2. The set of functions / satisfying /eL6(R3),

Vfe L2(R3) is sometimes called D1' 2(R3); it is the completion of ̂ (R3), not in the
fT-norm (||/||2+ ||F/||^1/2, but in the norm ||P/||2.]

For functions in %> the following energy functional is a generalization of (ip, H\p)

+ e||5||2-z(tp,|xrV), (1-22)

and each term in (1.22) is well defined. The ground state energy is

£(z) = inf {̂  (φ, A)\(ψ9 A)ε%}. (1.23)

Theorem 2.4 states that when E(z) is finite, the infimum in (1.23) is a minimum.
Another class we shall need is

& = {ψ9A\(ψ9A)e<eaΆdσ'(p-A)ψ = 0}. (1.24)

Notice that when (ψ,A)e($9 then each term pψ and Aψ makes sense as L2

function. In Sect. II the formula

zc = 8mϊ{\\B\\2/(ψ,\x\-lψ)\(ψyA)e^} (1.25)

will be derived. Theorem 2.5 states that the infimum in (1.25) is actually a
minimum.
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II. A Basic Theorem and a Formula for zc

Heuristically, if $ (φ, A} is unbounded for a certain z, we expect φ and A to blow up
in some sense. The following theorem is essential for understanding this blowup. It
is stated in general terms, but its use for our problem will be clarified shortly; it will
yield a formula for zc.

Theorem 2.1. Let ιpn be a sequence of spinor valued functions on IR3 and An a
sequence of vector fields on IR3 satisfying (for some fixed 3<p<co)

(i) d^ \\ψn\\2 = d2 f
or some constants d2^dί>0.

(ii) ||FφJ2->co as n-κχ).

(iii) || An || p ̂  D \\ V\pn \\ S

2 for some D > 0, where s = 1 - -.

(iv) \\σ (p-An}ιpn\\2^Cn\\Vψn\\2 for some sequence {Cn}?=1 with Cn-*0 as
n-> oo . Define l/λn = \\ V\pn\\ 2 (whence λn-+Q as n-> ooj , φn(x) — λll2ιpn(λnx) and un(x)
= λnAn(λnx). Then

(a) liminf ||αj|p£c>0.
n-* oo

(b) There exists a subsequence (which we continue to denote by n) and functions
φ and α, and a sequence of points xneIR3 such that φn(x) = φn(x — xn)—^φ(x)ή=0
weakly in Ή^IR3), Sn(x) = an(x - xn)-^a(x) φ 0 weakly in ί/(R3). Moreover,

<7 (p-α)^ = 0. (2.1)

(c) // the original sequence has the property that φn does not converge weakly to
zero in /^(IR3), then the statement in part (b) holds with xn = 0.

Proof. Clearly by (i) and the definition of φn we have that φn is uniformly bounded
in tf^IR3). By (iii) £_1

'-** = D9 (2.2)

so απ is uniformly bounded in Z/(IR3). By (iv) ||σ (p — ocn)φn\\2 ̂  Cn->0 as n->oo. By
the triangle inequality and Holder's inequality with q = 2p/(p — 2) we have

caik (p-^j|2^||^j|2-i|αAll2^ι-II^JIpll^JI,. (2.3)
Note that ||(σ p)^||2 = \\VΦ\\2 and that l l(σ α)^||2 = ||α^||2. The latter uses the
trivial identity (σ α)2 = α2. The former uses the same identity in Fourier space
(σ .p)2=p2^ and this is justified since φeH1. Also note that 2<q<6. Inequality
(2.3) will be used in two ways. Since φn is uniformly bounded in H1 we have, by
Sobolev's inequality, that \\φn\\q^dφ and hence \\<xn\\p<£(l — CJ/dq9 which proves
(a). On the other hand using (2.2) together with (2.3) we find \\φn\\q^ (1 - CΠ)/D, and
hence liminf||^J^l/D>0. Since \\φn\\2^d2 and ||^n||6^j6, Lemma 2.1 and
Lemma 2.2 below prove the existence of a sequence xn e R3 and a subsequence φn

such that φn-^φ^Q weakly in f/^lR3). By passing, if necessary, to a further
subsequence we can assume that αn^α weakly in i/(R3). Next we show that
Φn&rΓ^φu componentwise weakly in L2(IR3). To show that fn-^f in L2(R3), it
suffices to prove that fn—*f in L2(K) for every compact KcR3. By the Rellich-
Kondrachov theorem, φn-^φ strongly in Lq(K) (since 2<q<6), whence φna—^φa
in L2(K). Thus, we have proved that gn = β ' ( p — ^n)Φn~^σ'(p — ^)Φ = 9 weakly in
L2(1R3; C2). But we already noted that HgJ^-^O, which implies (by the weak lower
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semicontinuity of the norm) that g = Q. Obviously, αφO because otherwise we
should have (σ-p)φ = 0 with <^ΦO, which is impossible [recall that \\(o-p)φ\\2

= II VΦ\\ 2\- This proves (b).
To prove (c) we note a trivial generalization of the Banach-Alaoglu theorem:

Since φn-^Q we can find a subsequence such that φn—^Φ and φ φ 0. The rest of the
proof is the same as in (b), except that Lemma 2.2 is not needed. D

Lemma 2.1. Let gbea measurable function on a measure space such that for p<q<r
fixed and for some Cp, Cq, Cr all >0,

(i) \\g\\p

P^Cp9

(ϋ) 11011^ Cr,
(iii) \\g\\feCq>0.
Then f(ε) = meas {x\ \g(x)\ ^ ε} > C for some fixed ε, C > 0 depending on p, q, r,

Cp, Cq, Cr, but not on g.

Proof. From the fact that /(ε) is monotone non-increasing and that

$gp=p J f(ε)εp-ldε, we have C>pίεp~if(ε)dε^Rpf(R) or
o o

Cp, alloO. (2.4)

Similarly,

/(ε)^ε~rC,, al lε>0. (2.5)

Define S and T by

From (2.4)

qίf(s)e*-ldε£qCp

!ίe*-*-idε=$Cq. (2.6)
o o

Similarly, from (2.5)

(2.7)
T

(2.6) and (2.7) imply that S< T and that

But I^f(S)\Tq — Sq\ since / is monotone nonincreasing. This proves the lemma
(with ε = S) since S and T are explicitly given independent of /. D

Lemma 2.2 [5]. Let 1 <p< coand let {fn}™= i, be a uniformly bounded sequence of
functions in P^1'p(Rd) with the property that the Lebesgue measure of
{x\ \fn(x)\ > ε} > C for some fixed constants C and ε > 0. Then there exists a sequence
of translations "{τjn°°= 1 of Rd, τny =y -f xn, Fn(y) =fn(τny) =fn(y + xn), such that, for
some subsequence, Fn—^F weakly in Wl'p and FΦO.
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Remark. The proof in [5] was given for real valued functions. It is easy to see that
the lemma holds for complex valued functions by considering separately real and
imaginary parts. The same argument then carries over to complex spinors. We
recall that Wl'p consists of all functions in U whose first derivatives are in ZΛ Note
that Wl>2 = Hl.

Let us now apply Theorem 2.1 to the proof of formula (1.10) for zc. Suppose
that z is such that E = — oo . This means there exists a sequence of pairs (ψn9 A^) e Ή
such that as n— »oo,

£n = ̂ (φΛ^J=lk (p-^>J|i-z(vBJxrV«) + fiί^x (2.8)

tends to — oo. We verify the assumptions of Theorem 2.1 for the sequence (ψn, An).
(The usage oίφn9 αn as in Theorem 2.1 will be continued.) (i) is trivial since ||ιpκ|| 2 = 1.

Observe that — z(ψn9 IxΓVn) is the only negative term in (2.8) and hence
(VΊijWVn)-*0 0 as n->oo. (ii) follows from the inequality (v>n?M~V«)

We can choose En < 0 (all n) and we find

\\σ(p-An)ψn\\22 + ̂ B^z(Ψn,\X\-1ψn)^z\\Fψn\\2. (2.9)

(iv) holds with CΛ = zll2\\rψn\\ϊίl2.
From (2.9) we also obtain ||βJl^(z/ε)||FφJ2. On the other hand, Sobolev's

inequality gives

Thus, (iii) holds with p = 6 and s=^.
The conclusions (a) and (b) of Theorem 2.1 thus hold for the sequence (ψn9 An).

It is easily seen that conclusion (c) also holds, for suppose φn— ̂ 0 weakly in
fί^R3, (C2). This would imply that bn = (φn9 |x| ~ V«)-*0 as n^ oo. [To prove this, let
BR be the ball of radius .R centered at 0 and χR its characteristic function. Note that,
by Rellich-Kondrachov, φn ->0 strongly in L4(BR). Then, writing bn = b* + b~ , with
b~ =(φn,\x\~1χRφn), we have that b~-»0. However b* ^R~l since ||^π||2
let R^> oo .] The energy can be written [using λn of Theorem 2.1, βn(x) =
as

£» = ̂ π^J = ̂ "1R"Ίk (p-α^J|i + ε||j8π | |i-z6 l i}. (2.11)

If bn-+Q then, since En<0, jδn~>0 strongly in ίλ By (2.10), απ-^0 strongly in L6,
which contradicts conclusion (a) of Theorem 2.1.

In the foregoing we did not actually use the fact that £„-» — oo, but only
the facts that En<0 and that the Coulomb energy diverges. The foregoing
analysis was actually the proof of the following

Theorem 2.2. Let (ψn9 An) e # be a sequence satisfying

E<0 and

Then conclusions (a) and (c) of Theorem 2.1 hold for this sequence. Moreover, for the
subsequence given by Theorem 2.1 (c),
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Remark. For any minimizing sequence (for any z) we can always assume En<0,
since one can always take the pair ψ = ground state hydrogenic function and ,4 ΞΞ 0.

Let us define

f = infε||B||i/(φ,|xΓ1φ). (2-12)

Note that the set 3F (defined in Sect. I) is not empty (see [8]).

Theorem 2.3.
(2.13)

Proof. Assume that £„-> — oo . We shall show that z ̂  z, which implies zc ̂  z . By the
remark above (and passing to a subsequence), we can assume that

^,-^Φθ weakly in /^(R3),

βn-^β weakly in L2(R3) .

From this, | |j8| |2^liminf||j8J|2 and ||^||2gliminf||^||2 = l. By (2.11)

Since φ might not be normalized, define φ = φl\\φ\\2- Then

since (φ, α) e 2F .
On the other hand, if zc > z, then there exists (ψ, A)£^ such that the ratio on

the right side of (2.12) is less than Z Ξ Ξ Z +^(zc — z). Define ιpn(x) = n3/2ψ(nx), An(x)
= nA(nx). Then for the z just defined

which tends to — GO as n-»oo. This is a contradiction since z<zc. D

Remark. We have repeatedly used the facts that z<zc => £>-oo and
z>zc => E= -co. For the case z = zc we do not know whether E is finite or
£= — oo. This is an open question.

Two natural questions arise. Is there a minimizing (^4, φ) e # for <? when z < zc?
Is there a minimizing (4, φ) e 2F for the ratio in (2.12) defining zc = z? The answer to
both questions is yes.

Theorem 2.4. When z<zc there exists a pair (ψ,A)e^ such that

) = E = inf {δ(\p', Af) \ (ψ\ A'} e %} .

Theorem 2.5. There exists (ψ.Afe^^^ip^A^e^lσ^p-A^ip^Q} such that
by (2.12)).

Proof of Theorem 2.4. Let (ψn9 Aπ) e ̂  be a minimizing sequence. By Theorem 2.2,
bn = (ψn, |x| ~ lψn) is a bounded sequence (since z < zc). From (2.8) we see that || Bn || 2
and \\(r-(p — An)ipn\\2 are also bounded sequences (since En<0). Now,
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However ||(σ A>J|2= \\AnΨn\\2£ IIΛUIvJέ'ΊvUi'2- By the Sobolev in-
equality (2.10) applied to An and ψn, (and with ||t/jJ2 = l),

This implies that ||PΊpJ|2 is also bounded and hence that ιpn is bounded in H1.
By passing to a subsequence we have

ΨrΓ^Ψ weakly in H1 ,

An—^A weakly in L6 ,

Bn-*B weakly in L2, (2.15)

= 0 and

The proof of the last statement is as in Theorem 2.2. Furthermore, \pnAn-^ψA in L2

(as in the proof of Theorem 2.1). By lower semicontinuity of the norms we obtain
E^.$(ψ,A). If we knew that |M|2 = 1 [and hence that (φ,^4)e^] we would be
done. However, | |tp||2^l by lower semicontinuity. Suppose that 7= ||tp||2

 1>1.
Define ψ = γψ. Then

The term in { } must be negative [since δ(ψ,A)<^E<0]. Therefore, E^
, A)^E. Hence γ = l and the proof is complete. D

Proof of Theorem 2.5. Let (ψn, An) e 2F be a minimizing sequence. By scaling

), An(x)->λAn(λx) ,

we can assume that ||BJ2 = 1. Also ||tpJ2 = l and \\7ιpn\\2^S~3 [by (2.14) and
σ (p — An)ψn = Q']. Thus ψn is bounded in H1. Again, (2.15) holds for some
subsequence. By lower semicontinuity, || B \\ 2 ̂  || Bn \\ 2 and y = || φ || 2

 x ̂  1 . Note that
by the last line of (2.15). Replacing ψ by ψ = γψ we have that

î
If we can show that σ (p — A)ψ — 0, we can conclude from this that y = 1 and that
(ψ,A) is a minimizing pair. However, Vψn-^V\p and An\pn-^A\p weakly in L2, so
0 = σ (p — A^ψn-^σ (p — A)ψ weakly in L2. But the weak limit of 0 can only be
0. D

III. A Lower Bound for zc

In the previous section zc was shown to be finite (since 3F is not empty) and a
formula for zc was given. While we are unable to evaluate that formula, we shall
show here that zc is not too small. The methods of this section are completely
different from those of the previous section.
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Let (ιp, A) € # be given and let

T(ψ,A)=\\(p-A)ψ\\2, (3-1)

}2dx, (3.2)

. (3.3)

(3.4)

Lemma 3.1.

A) > T(w A} > ίf > = (3 5)
' A } = T(Ψ'A} )Γι if (15)

Proof. Let 0 ̂  t ̂  1 and observe that

T(ψ,A)^t\\σ (p

Expanding the first term on the right we get

. (3.6)

Note that in obtaining this result we performed a partial integration in the second
term which is easily justified. Minimizing the second and the third term with
respect to B(B(x) — (ί/2ε) <ιp, σφ>(x)) we find for these two terms the lower bound

(3.7)
We have used the identity

<t^σφ> <φ,σφ> = <φ,v;>2, all x . (3.8)

The sum of the first term in (3.6) together with (3.7) has its maximum as a function
of t at tQ = X(ψ9A). If ί0^ 1 we find

and if ί0 > 1 we set t — 1 and get

T(ψ,A)^T(ψ,A)-Q(ιp). D

Lemma 3.1 provides us with two alternatives.

Alternative 7. X(ψ,A)^l. In this case T(ψ,A)^.%T(ψ9A), and thus

/(^A)^T(ιp,A)-z(ιp,\x\-1ιp)^-iz2. (3.9)

Here we have used the diamagnetic inequality [4]

T(ψ9A)^T(\ψ\9ΰ)=\\rφ\\l9 with ^(x)2-<φ,tp>(x), (3.10)

together with the well-known hydrogenic ground state energy. We shall return to
this alternative later.

Alternative 2. X(ψ, A)<1. Then

ί>, A) ̂  ®(ψ9 A) = iT(ψ, A)2/Q(ιp) - z(ψ9 \x\ ~ V) . (3.1 1)
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The two terms in &(ψ, A) scale (with x) in the same way, and hence the infimum of
2 is either 0 or — oo. Let us define

zc==sup{z|inf^(ι/;,,4) = 0}. (3.12)

Clearly

zc£zc. (3.13)

Another expression for zc [which uses the common x-scaling of the terms in 2
and (3.10)] is

Φ 2

Here φ is an ordinary real valued function in fί1(]R3).
As an aside, it is worth mentioning that the fact that zc^zc [given by (3.14)] -

but not Lemma 3.1 - can be derived directly from the formula (2.12). If
σ ' ( p — A)ψ = Q, then ΰ = ̂ \σ •(p — A)ιp\2=l\(p — A)ιp\2—\B' (ψ,σψy. (A justified
integration by parts was used in the last term.) Using the Schwarz inequality on the
last term, and (3.8), we have

T(ψ9A)^ ||JB||2QO/01/2(4β)1/2. (3.15)

Equation (3.14) then follows from (3.15), (3.10) and formula (2.12).
Our next goal is to find a lower bound to the right side of (3.14), which we shall

call ZC

L:

ZC^ZC^ZG. (3.16)

(Of course one can try to compute the infimum in (3.14) directly - which leads to an
interesting differential equation.) First note that

which is the uncertainty principle and follows from the hydrogen ground state by
scaling in x. Hence

c = c - φ 2 4 2 '

The minimization problem in (3.18) is equivalent to the following. Let e<0 be
the ground state energy of — A — V(x). In [7] it is proved that

Lί>3 is obtained by solving an ordinary differential equation [7] and is found
numerically (to 3 significant figures) to be

Lί 3-0.0135. (3.20)

By choosing V(x) = Cφ(x)2 one deduces from (3.19), that \\Vφ\\l
^C\\φ\\^ — C4(Lϊί3)

2\\φ\\l when ||^||2 = 1 Optimizing with respect to C and
inserting the result in (3.18) gives

£ = ε(3/4)3/2{2Z4 3} '
1 £ (24.0)e. (3.21)
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This lower bound to zc is surprisingly accurate. Inserting the function ^(x)
= exp( — |x|) in (3.14) yields

(25.1)ε. (3.22)

Recalling that ε = {%πa2}~1 = 1412, we have that

ZC^ZC

L^ 17,900. (3.23)

In [8] a solution to σ - (p — A)ψ = 0 is found which, when inserted into (2.12), yields

zc ̂  9π3ε - (279)ε - 208,000 . (3.24)

So far we have shown that if z = zc then alternative 2 above is irrelevant, for
otherwise we should conclude that E ̂  0, which is false. Our next goal is to find a
lower bound for E, and we shall do so under the slightly stronger condition that
z^z^. To this end, we need only consider (φ9A)e^ such that X(ψ,A)^l. By
Lemma 3.1, a lower bound, E, for E is given by

EZE=M{T(ψ9A)-Q(ψ)-z(ψ9\x\-lψ)} (3.25)

under the conditions (φ,A)e^ and T(ψ,A)^2Q(ψ).
The problem posed by (3.25) is too difficult (in particular it is not clear that

A = 0 is an optimal choice). Therefore we seek a lower bound to the right side of
(3.25) as follows. Recall that T(ψ,A) satisfies (for ||φ||2 = l)

3, (3.26)

which follows from (3.18) and (3.10),

, (3.27)

(3.28)
Define τ(ψ) by

τ(ψ) = max {right sides of (3.26), (3.27), (3.28)}.

Then, if we define EL by

EL = mϊ{τ(ψ)-Q(ιp)-z(ψ, \x\~ V)} (3.29)
ψ

(with || ψ || 2 = 1), we have that

EL^E^E. (3.30)

The problem posed by (3.29) is, in fact, algebraic. It is solved in Appendix B with
the result that for all z ̂  z^

EL= -i(t)3(^)2[3y-2 + 2(l-y)3/2]> (3.31)

where y=%z/z%.
When the right side of (3.31) is Taylor expanded for small z, the leading two

terms are



The One-Electron Atom 265

On the other hand using Taylor's theorem with remainder and taking the
maximum of d^EL/dz3 in the interval [0, z], we can derive a lower bound to (3.31)
for all z^Zc, which agrees with (3.32) to the first two orders:

iz2-(32zc

L)-1z3(l-y)-3/2. (3.33)

A crude upper bound for E can be obtained with the trial function

(3.34)
-zr/2(-y,x,0).

(This choice does not satisfy div,4 = 0, but that does not matter.) A computation
with this (ψ, A) gives

3α2 + 243-8z4α4. (3.35)

Remark. We do not know whether E diverges as z->zc. Of course, E is an upper
semicontinuous, monotone decreasing function of z, so E(zc) = lim E(z).

IV. A Single Electron Atom in a Magnetic Field of Constant Direction

In the previous two sections we considered a single electron atom in an arbitrary
magnetic field and showed that zc is finite (but huge) and estimated the shift in the
ground state energy for z < z^. The magnetic field that causes the energy to diverge
when z > zc has to be highly contorted (which is consistent with the example given
in [8]). If, on the other hand, certain constraints are placed on B near the nucleus,
the divergence will not occur and zc will be infinite.

In this section we display one such condition-namely that B has a constant
direction (but not necessarily constant magnitude) near the nucleus. This is one
possible version of the external field problem and is relevant for astrophysics. We
shall content ourselves with showing merely that zc is infinite and will not bother to
try to find a good estimate on the energy; in fact we shall obtain
E^ — (const) (1 +z4) for all z. The crucial point, of course, is that the bound is
independent of B (but it does depend on the size of the region in which the direction
of B is constant).

It should be noted that something a bit stronger is actually proved in the
following. Namely for any B the energy will be bounded below if we replace the
troublesome term σ B by σ3B3. Such a replacement is physically meaningful only
whenB1=B2 = 0.

Let R be a fixed radius and assume that inside the ball KR of radius R centered
at the origin (which is also the location of the nucleus)

β(x) = (0,0, &(*))• (4-1)

(The choice of the 3 direction is arbitrary.) b(x) can be anything inside KR and B(x)
can also be anything outside of KR.

Let ψ(x) be given on R3, and we want to localize it inside and outside KR.
Define ηί3η2 both C°° such that ^/1(x)=l for xεKR/2 andη1(x) = Qϊor xφKR and
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rlι(x)2 + rl2(x)2 — 1 Also define ψi(x) = ηi(x)ψ(x)9 i=l,2. Thus ψ2 = ψ2 + ψ2. It is
easy to see that

lk (p-4)φJ|+||σ (p-4)^ (4.2)

where f=(Vηl)
2Λ-(Vr\2)

2. (The cross terms cancel.) We can easily choose ηt such
that f(x)-^dR~2 for some constant, d. Hence we get for (ψ9A)e(£9

(4.3)

Here we used the fact that (ψ2,\x\~ίψ2)^2/R, since ψ2(χ) = Q for |x|<jR/2 and

From now on we drop the subscript 1 and denote ψί by ψ (with
Define

l l 2 = r±(v), (4.5)
where pL = (pί9 p2), etc. [The inequality (3.10) holds in any dimensions.] Since B(x)
is given by (4.1) on the set where φ(x)Φθ, we have

3φ>, (4.6)

which can be rewritten as

(4.7)

where

V±(ψ,A)=\\σ±.(p±-AJψ\\l. (4.8)

Consider £', which is defined to be the infimum over (ψ, A) e Ή of

δ'(ψ9 A) = Γ3(φ) + U±(ψ9 A) + ε\\b\\l-z(ψ9 \x\R V) , (4.9)

where Ixlί^M"1 if M^-R and zero otherwise. Here b is defined to be the
3-component of B = curl ̂ 4, even if B does not point in the 3-direction (note that
II B II 2 ̂  I I b II 2, and that (4.6)-{4.8) is still true, namely U± = Tλ-l Kφ, σ3φ». It is
obvious that

E^E'-d/R2-2z/R. (4.10)

To analyze E' we observe that each of the four terms in (4.9) involves a
3-dimensional integral, and J d3x = J dx3 j dx±. Think of ψ9 A, B, \X\R 1 as functions
of x± parameterized by x3. Then

g'(ψ,A) = T3(Ψ)+Sdx3ί"(ψ,A)9 (4.11)

r(v,^) = ίdx1|σ1.(p1-^1)φl2 + βίdx1&
2-z J dx^^vX^ί + xi)'172,

D(X3)

(4.12)
where D(x3) is the domain in x± given by

x2. (4.13)

To analyze (4.12) we utilize the t trick of Sect. III. For each value of x3, let ί(x3)
be chosen to satisfy 0^f(x 3)fg 1. Replace \σ (Pι-^ι)v^l2 in (4.12) by ί(x3) times
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this quantity and use (3.10) to obtain the lower bound on this first term:

i(x3)Ti(v) - ί(x3) ί \b\ <¥>, Ψ>dxλ .

[Here T± means idxjXPiM)2.] We used |<φ?

Now minimize with respect to b and then maximize with respect to φc3), as in
Sect. III. For the first two terms on the right side of (4.12) we obtain the bound

(4.14)

The last term in (4.12) can be bounded below as —zJ_LW(x3), and

^%ι<'ί^-*-{rnWI*3l) £ EI«. (4 i5>
To bound (4.14) below, the Sobolev inequality in 1R2 is used:

T^S(JJ2/g(x3)
2, (4.16)

where
0(x3)

2 = f<fc i<V,V>.

(The constant S can be found in [7].)
Substituting (4.14H4.17) in (4.12),

-4}-zJ_L^(x3). (4.18)

Since Jι = Jι(x3) is unknown, we simply minimize (4.18) with respect to Jλ and

ε,#(x3)VS2ε} . (4.19)

According to (4.11), (4.19) must be integrated over x3. Since we do not know
which term in the max{ , } in (4.19) holds for any given x3, we shall simply take the
sum of the two. The first yields

-εz2 J dx3W(x^2=-4πεz2R. (4.20)

To control the second possibility we invoke the Γ3(γ?) term in (4.11). An
application of the Schwarz inequality [12] gives

)/dx3)
2=\\gf\\2 . (4.21)

It is also a fact that for all x3 and g e L2(R1)

g(x3)
4£\\g\mgV2^T3(ψ). (4.22)

00 00

This follows from g(x)2 = 2 J gg' and g(x)2 = - 2 J gg'. Hence g(x)2 ^ J \gg'\.

We recall also that \\g\\2

2 = $ (ψ>ιpyd*x = 1. Inserting (4.20)-(4.22) in (4.11), we

obtain the following lower bound for the second possibility in (4.19).

T3(φ) {1 -iΛ-V1 1 W2} = T3(φ) {1 -πRz2/S2s} . (4.23)

While the value of T3(φ) is unknown, the term (4.23) can be eliminated by the
following trick. Call #0 the original radius inside of which (4.1) holds. A fortiori,
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(4.1) holds for any R<R0. If { } in (4.23) is nonnegative, use R0. Otherwise, use

n _ c2 ί ?/__2K — o 8/nz .

Then (4.23) ̂  0 and can be ignored.
Combining all the terms we obtain

E ̂  - d/R2 - 2z/R - 4πεz2R (4.24)
with

R = mm{R0,S
2ε/πz2}. (4.25)

Appendix A

In the following, 2$' is the space of distributions.

Theorem A.I. Let B e L2(R3) be a given vector field and let divB = 0 in 3)''. Define
the vector field

A(x)=^S\x-y\-3(x-y)xB(y)dy. (A.I)

Then:
(a) ^4eL6(R3) and curl A = B, άivA = 0 in Q)f.
(b) The distribution dtAj is an L2-function and we have the formula

(c) The A(x) given by (A.I) is the only vector field having the three properties in
(a) above.

Proof. Let us write A = T(B). The kernel in (A.I) is bounded by \x — y\~2 and
|x|~2 eL3/2. Let V be a vector field in ί/(R3) with 1 <p<3. By the weak Young
inequality, T(V)eU where l/3 + l/r=l/p, and \\T(V)\\r^Cp\\V\\p for a suitable
constant Cp. By Fubini's theorem

(W,T(V)) = (T(W),V) (A.2)

when WεU and FeLp, with q = r\ l/q = 4/3-l/p. In (A.2), (W9U) means

Now we apply (A.2) to V=B and W= Vf with /e C?(R3),

T(WO= - ̂  curl {[xΓ1 * Γ/} = - -̂ curl grad^Γ1 */} = 0.

(The first equality, namely exchanging integration and differentiation, follows by
dominated convergence.) Then (Vf, A) = 0 for all /e CQ, and hence div^4 = 0 in Q)f.
A second application of (A.2) is to V=B and W=curlG, with GeQ?.

.
4π 4π

Then (W,A) = (-G-7g,B) = (-G,B)-(yg,B). We claim that (Fgf,B) = 0,
which will imply that curlyl^β in ®x. While ^e C°° it does not generally have
compact support; otherwise we would have (Vg, B) = 0 since div£ = 0 in $)'.
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However B e L2, and therefore (Vg, B) = lim (V(gfR), £), where fR(x) =f(Rx) and
κ-+o

/(x) is a C^ function satisfying /(χ)=l for |x|<l, /(x) = 0 for |x|>2. Since
(F(g/fl),jB) = 0, we have the desired result, and (a) is proved.

To prove (b) we define Tj(B) = idjT(B) = iT(djE) for B smooth and of compact
support. It is a standard result about the Riesz transform that 7}(J3) has a bounded
extension to L2(R3), see [10], so we can assume merely that B E L2. Furthermore 7}
is selfadjoint. Now for any vector field V in L2(R3) we have

Σ (Γ/B), Tj(V» = Σ(B, 7}2(F)) = (B, V) . (A.3)
j j

Indeed, when V is smooth and of compact support X T?(V) (x)
1 - 1 j

= F(x)+ -— Fdiv{|x| *F}(x). Using the previous approximation argument
4π

(namely g-*gfR) and the fact that div# = 0 in 2' gives (A.3). Since 7} is bounded,
(A.3) is true for all FeL2(R3). Hence, by setting V=B, (b) is also proven.

To prove (c), suppose there were another A with the properties in (a) and let
α = A — A. Then α E L6, curlα = 0, diva — 0 in ̂ '. Letjε(x) be a CQ approximation to
the identity and α ε=j ε*α. It is easy to see that αεeC°°, divαε = 0, curlαε = 0 and
αε(x)^0 as |x|->oo. From this, Aaε= —curl curl αε + graddivαε = 0. So each
component of αε is harmonic, but since αε -^0 at oo, aε must be zero for all β > 0. But
as £->0, αε^α (in L6 and in 2\ so α = 0. D

Theorem A.2. For any ^eL6(IR3) and φeL2(R3),
φefΓ1^3).

Proof. Observe that by assumption

, and Aψ

by Holder's inequality (A e L6, ψ e L2). Since (σ p) ~ 1 = σ p|p| ~ 2, we find

Again, by the weak Young inequality, φ = v1 4- v2, v x eL3, v2 eL6 which implies
(since ip 6 L2) φ e L2nL3. Hence ylφ E L2 (again by Holder's inequality) and thus

Appendix B: Proof of Eq. (3.31)

Given φ, define

As φ ranges over all functions satisfying ||φ||2 = l, Q(ψ) and S(ψ) independently
take on all values between 0 and oo. Therefore we are entitled to think of S and β
simply as an unknown pair of positive numbers.

According to (3.29), then, we have to minimize e = τ — Q-zS under the
conditions τ^2Q, τ^S2, τ^KQ2/3 with K3/2 = 4z^. There are two cases:

case (a): 2β1/3^K or β^2(zc

L)2,
case(b):2β1 / 3<K.
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If case (a) holds, we set τ = 2Q, S2 = 2g, and then τ — Q — zS ̂  0, since z ̂  zf and
β^2(z^)2. If case (b) holds then, similarly,

Change the variable to Q = 2(z^)2x3. Then EL is the minimum of

-2(zc

L)2[x3-2x2+fyx]

subject to O^x^ 1 and y =fz/z^f. The minimum occurs at

and yields (3.31) for the lower bound.
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