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Abstract. Let Hp = — \A -f V denote a Schrodinger operator, acting in Lp(!Rv),
1 ίgp g oo. We show that σ(Hp) = σ(H2) for all pe[l,oo], for rather general
potentials K

Introduction. In [12,13], B. Simon conjectured that σ(Hp) is p-independent, where
Hp = — %Δ + V is a general Schrodinger operator in LP(1RV). Partial results on this
problem are contained in Simon [12], Sigal [10], Hempel, Voigt [5].

In the notations of Sect. 1, our main result reads as follows.

Theorem. Let V=V+ — V_, K±^0, where V+ is admissible, and K_eK v with
cv(K_) < 1. Then σ(Hp) = σ(H2) for 1 ̂  p £ oo.

In addition, ifλ is an isolated eigenvalue of finite algebraic multiplicity k ofHp,for
some pe[l, oo], then the same is true for all pe[l, oo].

The proof of this result is contained in Propositions 2.1, 3.1, and 2.2.
In Sect. 2 we prove the inclusion σ(H2) <= σ(Hp), following ideas of Simon and

Davies.
In Sect. 3 we show that the integral kernel of (H2 — z)~n, for neN,n> v/2, defines

an analytic @t(Lp(W)}-valued function on p(H2)9 which coincides with (Hp — z)~n for
z real and sufficiently negative. This implies σ(Hp) c σ(H2\ by unique continuation.

A different situation, where an integral kernel determines operators with p-
dependent spectrum, can be found in Jόrgens [6; IV, Aufg. 12.11 (b)]; note that the
kernel in Jorgens' example is the resolvent kernel of the differential operator

-—-x2-τ- on (0, oo), a t z = — 2 .
dx dx

1. Schrodinger Operators in Lp(Uv)

First we recall briefly several facts concerning the semigroup associated with the
heat equation. For brevity, we shall write Lp instead of LP((RV), in the sequel
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(analogously, Cc°° : = CC°°(IRV), etc.). For teC, Re t > 0, we define kteL1 by

For 1 ̂  p ̂  oo we define U0tp(t)e &(LP) (ίeC, Re ί > 0) by

U0tp(t)f:=kt*f(feLp)9

and further U0jp(0) = I. For 1 ̂  p < oo , t/0,p(') ^s a holomorphic semigroup of angle
π/2; let — H 0 p denote its generator. Further denote H0>00: = H0>1*.

Next we introduce the class of potentials K to be considered in this paper.
Following Voigt [14], we define classes of potentials by

£ v:={KeL l f l o c;esssup f \gv(x-y)\ \V(y)\dy < oo},
xeUv |χ-.y|^l

where gv is the usual fundamental solution of %Δ. Note that this class is slightly
larger than the class Kv in Aizenman, Simon [1], Simon [13]. For VeKv we define

cv(V): = lim(ess sup J \gv(x - y}\ \ V(y)\dy).
α|0 XeUv |x-jΊ^α

Obviously Kv c L l ι l o C f U n i f for all ve^J, K, = L l ι l o C t U n i f, and C l(K) - 0 for all Ke^ .
A potential V ̂  0 will be called admissible if β(//0,2)nδ(^) is dense in L2; cf.

Voigt [14]. In particular, V ̂  0 is admissible if FeLUoc(G), where G = 6 c [Rv is
such that PV\G is a (closed) set of Lebesgue measure zero.

Throughout this paper we shall assume

K = K + - K _ , F±^0,

K_eX v with c v(K_)< 1, K+ admissible. v ' '

In the following proposition we denote the truncation of V by

K(n): = (sgnF)(|K| Λ n) (neN).

1.1. Proposition. Lβί V satisfy (1.1), and /et 1 ̂  p < oo. Then, for t ̂  0, the /ΐmiί

exists, and (U p(t); t ̂  0) is a C0-semigroup on Lp. The F eynman-Kac formula

Up(t)f(x) = Ex\exp( - \ V(b(s))ds}f(b(t))\
( \ ° / J

holds for all feLp.
Here, Ex and fc( ) are as in Simon [13]; cf. Reed, Simon [9], Simon [11]. The

proof of this proposition can be found in Voigt [14; Proposition 5.8(a), Proposition
2.8, Remark 5.2(b), Proposition 3.2, Proposition 6.1(c)].

We denote the generator of (U p(t}\ t ̂  0) by - Hp, for 1 ̂  p < oo , and we shall
henceforth write ϋp(t) = exp(-tHp). Also, //00 = //f. More detailed information
about the operators Hp, in particular for p = 1, p = 2 can be found in Voigt [14].
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Note that H2 is the form sum of -%A and V\ cf. Voigt [14; Remark 6.2(c)]. (It
follows from Devinatz [3; Lemma 4] that F_ is H0,2-form small.)

2.

In this section we show that interpolation, duality, and p-g-smoothing lead to the
following result.

2.1. Proposition. Let V satisfy (1.1). Then p(Hp) c p(H2) far all pe[l, oo], and

(Hp — z)~ΐ\LpnL2 =(H2 — z)~ 1 |LpnL 2 (zep(Hp)).

This result was stated in Simon [12,13]. The argument given there was based on
interpolation between the resolvents (Hp — z)"1 and (Hp, — z)"1, for zep(Hp) =
p(Hp'). It is not immediate, however, that these resolvents coincide on Lpr\Lp>, as
can be seen from Jόrgens' example mentioned in the introduction. This gap in
Simon's argument was closed by E. B. Davies (private communication). Compare
also Hempel, Voigt [5; Proposition 3.1].

Proof of Proposition 2.1. (i) (due to E. B. Davies) Let l r g p < g ; g o o , t > 0. Then
e~tίίpe@(Lp,Lq); cf. Voigt [14; Proposition 6.3]. This implies

Assume additionally λeρ(Hp)r\p(Hq). Then (2.1) implies

/ rr i \ — 1 , , - f H p / y ~ t H v ( τ j 1\~1{JtΊ q — AJ e y — e μ\π. p — ΛJ

For t ~»0 we obtain

(Hp - λ)~x \LpnLq = (Hq - λΓl\LpπLq. (2.2)

(This holds also for q = oo because e~tHpf\s σίL^L^-continuous for/eL^nL^.)
(ii) Let 1 g p ̂  2, 1/p + 1/p' = 1, and let λep(Hp) (=p(Hp,)). Then (Hp, - λ)~l

I Lp n Lp/ = (Hp-λ)~1\Lpr\ Lp,, by (2.2). The Riesz-Thorin convexity
theorem implies that (Hp — λ)~l is continuous as an operator Rλ on L2.

For /eL2nLp, (2.1) implies

For ί-»0 we obtain (H2-λ) (Hp-λ)~lf = f. This implies (H2-λ)Rλ = I, and
hence λeρ(H2).

2.2. Proposition. Let V satisfy (1.1), and let 1 g p ̂  oo. Assume that λ is an isolated
point ofσ(Hp). Then λ is an eigenvalue ofHp with finite algebraic multiplicity if and
only if the same is true for H2. In this case, λ is real and a pole of first order of the
resolvents of Hp and H2, and the multiplicities of λ as an eigenvalue of Hp and H2

coincide.

Proof. Without restriction p < oo. (Duality for p = oo.) Note first that the selfadjoint
operator H2 can only have real eigenvalues which are poles of first order of the
resolvent of H2. Now the assertions follow from Proposition 2.1 and Auterhoff [2;
Theorem 1.5]; see also Hempel, Voigt [5; Theorem 1.3].
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3. σ(Hp)c:σ(H2)

In this section we shall derive properties of the integral kernel of (H2 — z)~n, for neN,
n > v/2, in order to show the following result.

3.1. Proposition. Let V satisfy (1.1). Then ρ(H2) c ρ(Hp), for all pe[l, oo].
The proof relies on the following two auxiliary results which will be proved

below.

3.2. Lemma. Let X be a Banach space, T a closed operator in X, p(T) / 0. Then p(T)
is the domain ofholomorphy of(T — z)~n, for n = 1, 2, . . . .

3.3. Proposition. Let V satisfy (1.1), and let neN, n> v/2.
(a) Then (H2 — z)~n is an integral operator, for zep(H2).
(b) Let G(n\x,y,z) denote the integral kernel of (H2-z)~n. Then, for any

K c c p(H2)
1 there exist constants C, η > 0 such that

\G(n\x,y;z)\ ^ Ce^-^

Proof of Proposition 3.1. By duality, it is sufficient to consider the case 1 ̂  p ̂  2. Fix
neN, n> v/2, and let G(n\x,y;z) be as in Proposition 3.3.

First we show that G(π) ( , z) defines an analytic &(LP)- valued function G(

p

n)(z) on
p(H2). To prove this, we remark that for any φ, ψeC™, the mapping

p(H2) BZ H> f j G<">(x, y, z)φ(y)$(x)dxdy

is holomorphic. Furthermore, for any K c <= p(H2), there exists a constant C such
that

by the estimates in Proposition 3.3(b) and Young's inequality (cf. Reed, Simon
[9; p. 32]).

Next, the fact that e tίίp coincides with e tίl2 on LpnL2 implies that G(p\z)
coincides with (Hp — z)~n for z real and sufficiently negative.

It follows by unique continuation that the domain ofholomorphy of (Hp — z)~"
contains p(H2). Hence, ρ(Hp) => p(H2), by Lemma 3.2 above.

Let us now prove the auxiliary results.

Proof of Lemma 3.2. Clearly, (T - z)~" is holomorphic on p(T). Let spr(A) denote the
spectral radius of an operator A^^(X}. From the well-known facts (cf. Kato
[7; p. 27, p. 37])

spr((Γ - 0" ') ̂  dist(ζ, σ(Γ)Γ 1

it is clear that ||(T- ζ)-"|| ^ dist(C,σ(T)Γ" (ζεp(T)).
For several reasons, we include a proof of Proposition 3.3 (instead of simply

referring to Simon [13; Theorem B.7.1 (c')]): The estimate given in [13; loc. cit] is

K c c p(H2) means: K compact and K < p(H2)
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not uniform for zeK c c p(H2) (although one might be willing to believe that it
must be true). Also, the proof of the (essential) Lemma B.7.1 1 in [13] is very sketchy,
and it is our aim to give a complete proof of reasonable length. Finally, our proof will
show that it is advantageous to consider (H p — z) ~ ", n > v/2, neN, instead of arguing
with (Hp — z)'1 directly (which would be possible, but involve more estimates, like
[13; Theorem B.7.2 (1), (2), (4)]).

Since we shall have to consider e tHp as an operator from LptoLq,q^ p, we shall
frequently drop the subscript p and simply write H = — \Δ -f V9 in the sequel. The
proof will involve several steps, following rather closely the outline given in [13;
proof of Lemma B.7.11]. For the remainder of this section, the assumptions of
Proposition 3.3 are always assumed to hold.

3.4 Lemma. Let 1 ̂ p^q-^co, ε0 > 0. Then there exist constants C = C(p, q, ε0),
A = A(p, q, ε0), such that for εe(Rv, |ε| 5̂  ε0, £ > 0, we have

where γ. — (v/2)(p~l — q~l\

Proof (compare Simon [13; Lemma B.6.1]). Let εeίRv, |ε| :gε0. Clearly,

Kfc, y; t): = (2πtΓv/2eε (χ-y) exp ( -

is the kernel of ee' V/2) Ve>x. By Young's inequality (cf. Reed, Simon [9; p. 32]), it is
enough to estimate ||Kε(0, ;OL for s\ = (l+q~l -p"1)'1. Now,

|| Kε(0, •; t) ||s ̂  crMn-'~

and the term in square brackets can be estimated by

J e**JWdη 4- j e-(*l^\2 dη ̂  c'?l2e4s&ίt -h c".

3.5.Proposition (compare [13; Eq. (Bll)]). For all l ^ p : g g < Ξ o o there exist
constants C = C(p, q\ A = A(p, q) such that for all t > 0 we have

where γ = (v/2)(p~ί — q'1).

Proof. This follows from Devinatz [3; Lemma 2] combined with duality and
interpolation as described in Voigt [14; proof of Proposition 6.3]. Under the slightly
stronger assumption cv(V) = 0 a simpler proof can be found in Simon [13; loc.
cit.].

3.6.Lemma (compare [13; Lemma B.6.2(b)]). Let l<c<cv(V)~1, l/c+l/c' = l.
Then, for any ,

cV) π l / c ιι pc'& xMj2)Δ -c'ε x u l / c '
II ^ ^ ^ \\p,q=\\v l i p , q I I t & & \\p,q

Proof. Let εeίRv and write w(x) = eε'x. Also, let /zeCc°°, g\=w~lh. Factorizing
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|0| = |h|1 / c |w~ c 'h | 1 / c /, it follows by Holder's inequality in function space that

\(e~tHg)(x}\ ^ [(β-ί

Now, multiplying by |w(x)|, taking qth powers and integrating, we obtain

^

which implies

^
3.7. Proposition (compare [13; Theorem B.6.3]). Let I ^p-^q^ao, α > y =
(v/2)(p~ 1 — q~ 1), and ε0 > 0. Then, for z real and sufficiently negative, there exists a
constant C such that

\\<fx(H-z)-e-*'x\\ptq£C (εeR v, |ε |gε 0).

Proof. For φεC?9 we have (with w: = eε'x)

and hence

|| w(H - zΓ «w- V ||, g c. J || we
0

g cβ f II e-
0

(by Lemma 3.6)

^ cα J [ctr Vιί]1/c[c2r V2ί]1/c'Λα~ ldt
o

(by Proposition 3.5 and Lemma 3.4)

provided A -h z < 0.

3.8. Proposition. For any X c c p(H2), ί/i^r^ ^xisί ε0 = ε0(^0 > 0 βn^ a constant
C = C(K,ε0) such thai K c p(eε'xH2e~ε χ) for |ε| ̂  ε0,

. As H^2 contains the form domain of H2, the operators 3y are |H2 |
1/2-

bounded and hence H2-bounded with relative bound zero (j = 1, . . . ,v). This implies

for all εe[Rv. Now the identity
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implies the desired conclusion.
We can now finally proceed to the proof of Proposition 3.3.

Proof of Proposition 33. Fix rceN, n > v/2, and choose w real and so negative that, by
Proposition 3.7,

{{e^H-^Γ^e-^^^+^e^H-^Γ^e-^^^^C (3.1)

for all |ε ^ 1, with some constant C.
Now let K cr <= p(H 2) and zeK. Taking nth powers of the resolvent equation

we obtain

(H2-zΓn = (H2-wΓn Σ (n\z-w)>(H2-zΓJ. (3.2)
J = ° \ J /

To prove Proposition 3.3, it is clearly enough to show that, for any 0 ̂  j ^ «, the
operator

(H2 - wΓn(H2 - zΓj = (H2 - wΓ"/2(#2 - zΓj(H 2 - wΓ"/2 (3.3)

is an integral operator with kernel Gnj{x, y9 z) satisfying

\Gnj{x,y;z)\ ^ Cuje-dχ-* (zGK,x,ye^\ (3.4)

with some positive constants Cnj9 αnj .
So let 0 ̂ 7 ̂  n. By Proposition 3.8, there exists β0 > 0 such that

||^(H2-z)-^—||^C (|ε|^ε0,zeK). (3.5)

By (3.3) we have

eε \H2-wΓ^H2-zΓje-ε'x = (eε'x(H2-wΓn/2e~ε°x)^

-(eε'x(H2-\vΓn/2e~ε'x\

and hence it follows from (3.1), (3.5), that

Now it follows from a classical theorem of Dunford and Pettis ([4; Theorem 2.2.5, p.
348]; see also Simon [13; Cor. A. 1.2]), that the operator eε'x(H2-w)~n

(H2 — z)~je~ε'x is an integral operator, and its kernel Gnjt£ (x,y;z) satisfies the
estimate

| |Gn j, ε(v ;^lloo^C'" (M^ε^zeK). (3.6)

In particular, the above statements apply to ε = 0, and we see that (H2 - w)~n x
(H2 — z)~j is an integral operator with L^-kernel GM/( , ;^); clearly,

Therefore (3.6) implies

e«*χ-y[\Gnj(x9y9z)\£CM (zeK).
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