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Abstract. On a Riemannian spin manifold, we give a lower bound for the
square of the eigenvalues of the Dirac operator by the smallest eigenvalue of the
conformal Laplacian (the Yamabe operator). We prove, in the limiting case,
that the eigenspinor field is a killing spinor, i.e., parallel with respect to a
natural connection. In particular, if the scalar curvature is positive, the
eigenspinor field is annihilated by harmonic forms and the metric is Einstein.

1. Introduction

In 1963 Lichnerowicz [12] proved that on a Riemannian spin manifold the square
of the Dirac operator & is given by

2 —_
P =4+ 7, (1.1)

where 4 is the positive spinor Laplacian and s the scalar curvature. This formula
implies

Theorem [12]. On a compact Riemannian spin manifold (M, g) of positive scalar
curvature,

(i) there is no non-zero harmonic spinor, and

(ii) any eigenvalue 1 of the Dirac operator satisfies

72 >4infs. 1.2)

Part (i) together with the Atiyah-Singer index theorem applied to the Dirac
operator for 4k-dimensional manifolds, gives a topological obstruction — namely
the vanishing of the A-genus of Hirzebruch — for the existence of positive scalar
curvature metrics on a compact spin manifold.

Hitchin [7] extended Lichnerowicz’ result of the vanishing of the KO-
characteristic numbers defined by Milnor [13]. By introducing the notion of
enlargeable manifolds and combining it with the spin condition, Gromov and
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Lawson [4-6] obtained beautiful results for the non-existence (and existence) of
positive scalar curvature metrics on certain compact (and non-compact) mani-
folds. It should be mentioned that in an earlier paper, Schoen and Yau [14] used
the technique of regular minimal hypersurfaces to prove that, in low dimensions,
certain manifolds do not support positive scalar curvature metrics.

2. Main Results

Theorem A. Let (M, g) be a compact Riemannian spin manifold of dimension n>3.
Any eigenvalue A of the Dirac operator 2 satisfies

n

2> 2.1
= 4(71 _ I) /’tl s ( )
where u, is the first eigenvalue of the Yamabe operator L,
n—1
=4 A 2.2
L At (2.2

where A is the positive Laplacian acting on functions and s the scalar curvature of
(M, g).

Theorem B. Let (M, g) be a compact Riemannian spin manifold of dimension n=3.
If there exists an eigenspinor field ¥, of the Dirac operator 9 for the eigenvalue 2.,

with 72 = 4(7"_17 1, then either i) or ii) holds:
i) p, =0, then there exists a function u, satisfying
-1 _n-2, _n—2,
4" A(e 2 l>+se 220
n—2

such that, with respect to the metric §=e**'g and its corresponding connection V,
14 g g p g

there exists a parallel spinor field @,. In particular, the manifold (M, §) is Ricci-flat.
ii) u,>0, then V**¥, =0, where for a real function f, a vector field X and a
spinor field ¥, the modified connection V' is defined by
w— f
Viv=V,¥+ ;X- v,
(Here, -7 denotes Clifford multiplication.) In particular, the manifold (M, g) is
Einstein.

It should be pointed out that Friedrich [2] proved that

2> n . f
Sdn—1) u >

and that equality gives an Einstein metric. One can easily see that u, = infs [see
M

Remark 5.8(b) below]. It is a well known fact [9] that the sign of y, is a conformal
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invariant. In Inequality (2.1), instead of u,, one can put the Yamabe number which
is another conformal invariant. Let § be any metric in the conformal class of g and
denote by V its Levi-Civita connection. The basic idea in the proof of Theorem A is
to write the Lichnerowicz formula for a family of modified connections ¥/, and
then to apply it to a spinor field lying in the kernel of the corresponding modified
Dirac operator.

Now, define a map

Rie' : TM® SM—SM
by

R (X@V)= Y ;- K%V, (2.3)
i=1

where (e, ..., ¢,) is an orthonormal basis of the tangent bundle TM and % is the
curvature form of a family of modified connections ¥/ and acting on the spinor
bundle 2M.

Proposition C. Let (M, g) be a Riemannian spin manifold of dimension n=3. The
manifold (M, g) is Einstein with positive scalar curvature s if and only if for some
non-trivial real function f and for any tangent vector X, the endomorphism Rick is

n
—v . . 2 —
non-invertible. In this case f A1) S.

In Sect. 3 we prove Proposition C and deduce that the existence of a non-trivial
v/ -parallel spinor field (what is called a Killing spinor in physics) implies that the

e n
metric is Einstein and f*= in=1) .
n.——.

In Sect. 4 we give the relation between the Dirac operators associated with two
conformally related metrics [7], and in Sect. 5 we give the proof of Theorem A.

In Sect. 6 we study the limiting case of Inequality (2.1). We start by proving
Theorem B, according to which Killing spinors are characterized as the eigen-
spinor fields associated with the limiting eigenvalues of the Dirac operator. Then
we give some geometric consequences. In particular, we prove that in the limiting
case, cigenspinor fields are killed by harmonic forms and even-dimensional
manifolds are Finstein non-Kédhler. Finally, we give some rigidity results in
dimensions 4 and 6.

3. Spinor Characterization of Riemannian Positive Einstein Spin Manifolds

For an introduction to Clifford algebras and spin geometry we refer to [1, 11]. We
start this section by the following computational lemma.

Lemma 3.1. Let o be an exterior k-form and ¥ any non-trivial complex spinor. Then,
the inner product

Lo _1
@ V. {purely imaginary for k or 2mod(4),

real for k=3 or 4 mod(4).
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Proof. Take o to be of the form a=e;-e,...e, where (e, e,,...,e,) is an
orthonormal basis. Then,

(e, ey P, V)=(—=DXP,ey...e5-¢,- P)
K- 1)
=(=D"=1) 2 (P,e;-e;..., )
k(e + 1)
=(—1) 2 (e;-e,...e.- 7, ¥). O

We consider a real function f on a Riemannian spin manifold (M,g) of
dimension n=3. We then define a family of modified connections ¥/ by setting

f

V=V + X (3.2)

for any vector field X and any spinor field ¥, where ¥ denotes the Levi-Civita
spinor connection and - ” is the Clifford multiplication.

A direct computation using the definition of '/ and the compatibility of the
covariant derivative with the Clifford multiplication, gives for any tangent vector
X and any spinor ¥ the relation

2(n 1)

%wf(X@)‘I’)———Rl o(X) P+ 2x-y— -gradf-x-av—X(f)av,

(3.3)

where %’ is the zero-order operator defined by (2.3), Ric is the Ricci tensor viewed
as a map of the tangent bundle and X(f) is the Lie derivative of the function f in
the direction of X.

3.4. Proof of Proposition C. If for all vectors X one can find a non-zero spinor ¥
such that

R (XRYP)=0,
then by taking X =gradf in Eq. (3.3) we get

(2(" D 2 gradf— —Rlc(grad f)) - "—;1 lgrad f|>% . (3.5)

Now, taking the inner product of this equation with ¥ and using Lemma 3.1 we get
lgrad f1>=0.

The function f is then constant and Eq. (3.3) — applied, for each tangent vector X,
to the appropriate spinor ¥ — implies that

—1
Ric(X)=411—;2— 12X,

n
-1~

hence g is an Einstein metric and %=
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Corollary 3.6. If ¥ is a non-trivial spinor field with V¥ =0, then f is constant and

the manifold is Einstein with 2= 4(nn—_1)s. In particular, if V¥ =0, then the

manifold is Ricci-flat.

Remark 3.7. On a compact 4-dimensional manifold the existence of a non-trivial
parallel spinor field implies that [8] the manifold is either the flat torus or a K3
surface.

4. Dirac Operators of Conformally Related Metrics

In this section we consider a conformal change of the Riemannian metric. Using
the relation between the Levi-Civita connections on the tangent bundle corre-
sponding to two conformally related metrics, we relate the two canonical spinor
connections acting on two isometric spinor bundles. This enables us to compare
the Dirac operators.

4.1. Isometry of the Spinor Bundles
Associated with Two Conformally Related Metrics

Let (M, g) be a Riemannian spin manifold of dimension n= 3. Consider a metric g
pointwise conformal to g, i.e., § = e**g for some real function u on M. We denote by
SO,M (respectively SO,M) the bundle of g-orthonormal (respectively
g-orthonormal) frames. Locally, to a sectione= (X, ..., X,,) of SO, M corresponds
a section é=(e "X, ...,e "X,) of SO, M. This isometry will be denoted by G,

Let y be a spin structure on (M, g). We denote by Spin, M the Spin,-principal
bundle associated with it which is fiberwise a non-trivial double covering of SO, M.
Thanks to the isomorphism G, one can define a spin structure 7 on (M, §) in such a
way that the diagram

Spin, M G, Spin, M

SO,M -2 SO,M

commutes.

To an irreducible representation X, of Spin, one associates two isometric
spinor bundles M and XM by taking the vector bundles associated with the
isomorphic Spin,-principal bundles, Spin,M and Spin; M.

For any section ¥ of XM, we write ¥ = G,?. Clifford multiplicationin XM is
given, for a vector field X and a spinor field ¥, by

X-9=X-V.
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4.2. Comparison of the Spinor Connections

Proposition 4.2.1. The Levi-Civita spinor connections V and V acting respectively on
the sections of ZM and XM, arerelated, for any vector field X and any spinor field
¥, by

VyP=V,P~%X - -gradu- ¥ —3XWw)?, 4.22)

where X(u) is the Lie derivative of the function u in the direction of X.

Proof. Let ¢=(X4,...,X,) be a local g-orthonormal tangent frame field and
denote by w and @, the connection forms corresponding to g and g. For all indices
i,j and k in {1,...,n}, we have

@; (X)) = 0;(X ) + X (1) ;— X (u)dy; . (4.2.3)

Locally, the choice of & in Spin, M of image ¢ in SO, M determines a local frame
field (o4, ...,0y) of XM, where N =22 such that for all indices i,j and k in
{1,...,n} and A in {1, ..., N}, the spinor covariant derivative of ¢ , is given [11] by

VXkO-A :% z wl}(Xk)Xl . X] N GA . (4.2.4)
i<j
With respect to g, we get
Vx54=3 2 (i X) + X()dy;— X (w)d) X ;- X 04
i<j
:VXkO-A—l_%‘ZkXi(u)Xi'Xk'O-A_%kz.Xj(u)Xk'Xj'o-Aa
i< <j

hence,

Vi Ga=Vy,0,~3X, gradu-o,—3X,(wo,. O

4.3. Comparison of the Dirac Operators

Proposition 4.3.1. Let (M, g) be an n-dimensional Riemannian spin manifold. The
Dirac operators & and 9, respectively associated with the metrics g and § = e**g and
acting respectively on the sections of the spinor bundles XM and M, satisfy

n—1 n+1

Q(e‘ 2 “!F)ze' gy (43.2)
for any spinor field ¥ of £ M.

Proof. Take e=(X,,...,X,) to be a local section of SO,M and
gE=(e "Xy,...,e” "X )its image in SO, M under G,. Locally, the Dirac operator 9
is given by

g‘f’:e‘“( S”+zl;l—gradu~ Y’) 4.3.3)
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On the other hand, for any real function f, one has
DfO)=fPDY +e “gradf - ¥,

n—1

which, with Eq. (4.3.3) and for f=e 2 , gives Eq. (4.32). O

Remark. 1t is a classical result [7] that the dimension of the space of harmonic
spinors is a conformal invariant. Indeed, by Eq. (4.3.2), if 2% =0, then & =0

n—1

. U
where @=e 2 ¥, and conversely.

5. Proof of the Basic Inequality (Theorem A)

It is clear that Inequality (2.1) is only of interest for the eigenvalues of & with the
smallest absolute value, and on a Riemannian manifold for which u, is non-
negative. This condition turns out to be equivalent to the existence of a
conformally equivalent metric with non-negative scalar curvature [10].

We first prove that for any positive function A,

n n—1
2= inf{ 4 ——h"1! 1

=4n—1) 11‘&( n—2 Ah“)’ 6D
then we take h=h, to be an eigenfunction for the first eigenvalue of the Yamabe
operator y; (it is known that the eigenspace of u, is 1-dimensional and contains
functions which do not change sign) so we get

n
A2z .
= 4(""‘ 1) Hl
For n=3, it is convenient to write the conformal change
4
e*=h""2 for a positive function h. (5.2)

4
Itis well known that the scalar curvature §( =s,) of the metric § = e?g ( =h2 g) is
related to the scalar curvature s of the metric g by

nt2 —1
sy b2 =4""_ Ah+sh,
n—2
or equivalently
4 n—1
Shhn_2=4—*:*2'h_lAh+S. (53)

Now, let us consider the family of connections V/ defined by (3.2). The
associated family of Dirac operators %/ acting on a spinor field ¥, is given by

Ty = 2X; V{¥=(2—-f)¥.
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Taking the square of this operator, one gets
(D—f)PY=2*F—-2fP¥ —gradf - P+ V.

By Lichnerowicz’ formula (1.1) and a straightforward computation using the
definitions of ¥/ and the corresponding Laplacian 47, we get

-1 -1
(@ — PP =ATP+ G— + an2> - n7(2f9¥’+gradf~ ¥).  (54)
We now consider a conformal change of metric, § = e?"g, and we take ¥ such that
2¥ =4Y. By Eq. (4.3.2) we get
DD=)e "D, (5.5)
where
n—1

u

P=¢ 2 Y.

Equation (5.4) written with respect to the metric g and applied to @ gives, after
taking the g-global inner product on (M, g), the equation

6@ ~178. B0, | a8 P+ [ (54712 g
M M m\4 n
—n—;l § §f 2P +e “gradf- @,P)y;. (5.6)
M

We choose f=Ae™* so that 2@ = f®. The left-hand side of Eq. (5.6) is then zero
and by Lemma 3.1 the function g(gradf- &,®) is purely imaginary, hence

0= [ g’®, 7By, + | (5= "L 12) 4@.8y,, with f=ie*. (57)
M Mm\4 n g

Since the first term in (5.7) is non-negative, the second term must be non-positive. A
necessary condition then is that, for any function u

25 M e 2
A 2401 1Iréf(se ),

which combines with (5.2) and (5.3) to give the desired result. O

Remark 5.8. (a) In fact, one can prove that indeed,

4, = sup inf<4z;;h‘1zlh+s>. (5.9)

h>0 M

To see this, take i, >0 to be an eigenfunction for u; of the Yamabe operator (2.2)
and consider for all functions >0, the number

. n—-1. _, n—1,_,
1A1}f{<4;_—2h Ah+s>—<4n_2h1 Ah1+s>}.
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To prove that this number is non-positive, it is sufficient to prove that the integral
of (h~'Ah—hy ' Ah,) with respect to some positive measure v is non-positive. We
take v=hjv,, so that

nfd(h‘ldh—hl‘lzlhl) hiv,= — j h2d(hyh~1)|v,<0.

(b) Taking h to be a constant in (5.9), one gets mf s< iy, unless s is a constant in
which case one has equality.

6. The Limiting Case of the Inequality

In this section we will be concerned with the properties of compact Riemannian
spin manifolds of dimension n= 3, which admit ¥, such that 2¥,=4,¥,, with
n

2
j‘1 4(n ) T M-

6.1. Proof of Theorem B

Consider Eq. (5.7) for the metric §=e**'g, where u, is the function corresponding
to a positive eigenfunction h; associated with the first eigenvalue p, for the

Yamabe operator (2.2). Since A3 = 2
hence (n—1)

P&, =0 with fi=le ™. (6.1.1)

———— iy, the second term in (5.7) vanishes,

Now two cases can occur:

(i) If uy =0(4, =0), then ¥®, =0. By Corollary 3.6, the manifold (M, § = e**1g)
is Ricci-flat.

(i) If u; >0(4, #0), again by Corollary 3.6, Eq. (6.1) implies that u; must be
constant. Using Eq. (4.2.2) we get

vhy =0,
hence by Corollary 3.6, the manifold (M, g) is Einstein. [J
Proposition 6.2. Let (M, g) be a compact Riemannian spin manifold of dimension

n>3. Let ¥, be an eigenspinor field associated with A, such that 2} = " — iy,
then two cases can occur: An—1)

(i) p;=0, then with respect to the metric g=e*"'g, the space of harmonic
spinors is stable under Clifford multiplication by harmonic forms.

(ii) u,>0, then any harmonic form kills the eigenspinor ¥,.

2“1

Proof. Let B be a homogenous k-form and ¥ a spinor field, then
96-¥)= ZXi' Vx,(ﬁ‘ ¥)= ZXi' Vx,ﬂ' ¥+ in'ﬁ' inq/

hence
DB-P)=(d+)B)- P+ X;-B-Vy .7, (6.2.1)

where d is the exterior differential and § its adjoint.
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Case (i) p; =0. We co_nlsider Eg. (6.2.1) for the metric §=e?**'g and apply it to the
spinor field &, =¢ 2 ¥, and use Theorem Bi) in order to conclude (i).
Case (ii) u; >0. Then by Theorem Bii), for any vector field X, one has

A
VXT1=—71X-‘P1.

By a direct check one sees that for homogenous k-form S,
X B Xi=(=D""(n—2k)p,

hence Eq. (6.2.1) applied to ¥, gives

D(B- ¥ )=(@d+3))- ¥, +(~ 1P, (1— %)ﬁ 2

If B is harmonic, then the spinor field - ¥, if non-zero would be an eigenspinor

field for the eigenvalue (—1)¥4, (1 - %> which, for 1, 40, has absolute value less
than A;. Thus §-¥,=0. O n

Remark. If f is a harmonic 1-form, then - ¥, =0 implies that $=0, i.e., the first
Betti number is zero (this is a known result since the manifold is Einstein with
positive scalar curvature).

Proposition 6.3. Let f be a non-trivial real function on an even-dimensional spin
manifold. If there exists a non-trivial V/-parallel spinor field ¥, then the manifold is
Einstein non-Kdhler.

Proof. By Corollary 3.6, V/¥=0 implies that the manifold is Einstein and

f*= Z(nn—l)s’ hence ¥ is an eigenspinor field of the Dirac operator for the

. . n
eigenvalue A,, with A2 = pTE— Uy

Suppose that the manifold is Kéhler and denote by € its Kéhler form. Since Q
is harmonic, by Proposition 6.2(ii), we get Q- ¥ =0. It is a direct check that

Q-Q.W=(9A9).W~g—w.
Since Q- Q- Y =(QAQ)-¥=0 and ¥ =£0, there is a contradiction. [

On an even-dimensional spin manifold the spectrum of the Dirac operator is
‘'symmetric about 0. In fact, in these dimensions, any spinor field ¥ splits as the sum
of a positive spinor ¥* and a negative spinor ¥ . So, if Q¥ =AY, then
P=¥* ¥~ is such that ¥ = — AV,

Theorem 6.4. Let (M, g) be a compact Riemannian spin manifold of dimension 4. If

there exists an eigenspinor field ¥, for A, with A} = % >0, then the manifold (M, g)
is isometric to (S*, can).

This theorem has been proved by Friedrich [3] using a different method.
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Proof. By Theorem B(ii) we have that the Ricci tensor field is given by Ric= zld.

We write ¥, = ¥{ + ¥ and consider ¥, =¥ — ¥ . The function f=(¥,, ¥,)
=|P>—|¥[|* satisfies

Af=<f

(the straightforward proof relies on the fact that P*1¥, =V 4§, =0).

Now, the Obata-Lichnerowicz theorem says that if on an n-dimensional
compact Riemannian manifold there exists a non-zero function f and a positive
constant ¢ such that,

Ric=cld and Af= %cf,

then the manifold is isometric to (S, can).
In order to apply this theorem we need only to prove that the function
f=(¥,,¥,) does not vanish identically. One can see this as follows: using V*1¥,

~

=V -4y =0, for any vector field X, one has
X(f)=A Re(X-¥{,¥]).
Let us consider now the R-linear injective map
TM—-X"M, X-X-V;, (6.4.1)

where X~ M is the space of negative spinors. In a 4-dimensional spin manifold, one
has
dimp 2~ M =dimy TM =4,

hence TM is isomorphic to 2~ M and there exists X 0 such that

X-¥{,70)+0,
which implies that f=£0. [

Proposition 6.5. Let (M, g) be a 6-dimensional compact Riemannian spin manifold. If
the eigenspinor space of A, with i} =<5u, >0, is 2-dimensional, then (M, g) is
isometric to (S, can).

Proof. As in Theorem 6.4 it is sufficient to prove that the function
f=|¥{1>—|¥{|?is not identically zero, where ¥, is such that ¥, =1, ¥, with
23 =151,>0. For a 6-dimensional manifold, we have dimy2~ M =4. If for all
vectors X, the spinor X - ¥{ lies in a 2-dimensional complex space there will be a
contradiction with the fact that the map (6.4.1) is injective, so f£0. [
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