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Abstract. We consider the equations which describe the motion of a viscous
compressible fluid, taking into consideration the case of inflow and/or outflow
through the boundary. By means of some a priori estimates we prove the
existence of a global (in time) solution. Moreover, as a consequence of a
stability result, we show that there exist a periodic solution and a stationary
solution.

1. Introduction

In this paper the motion of a viscous compressible fluid is considered. The motion
in a bounded domain QCIR? is described by the following equations

o[u,+u-Vu—b]=—-Vp—Au in Q,
o, +u-Vo+odivu=0 in Qn,
oc,[0,+u-V8]+6p,divu
=Qr+xA9+gz(Diuf-i—Djui)z+(v—u)(divu)2 in Qr,

i, J
U,—o=Uy, In £,
[t=0 _o (L.1)
Upp=Upe ON 2r,
0|t=0=90 in Q,
0|an=g[ag on Xr,

Q=0=0o0 in Q,

where — A= ud + vV div. (See, for instance, Serrin [23].)

*  Partially supported by G.N.A.F.A of CN.R. (Ttaly)
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The following notations are introduced: Qr=10, T[ x Q, X;=10, T[ x 09,
0< T=o00,0=0(t, x)is the density of the fluid, u = u(t, x) the velocity, b = b(t, x) the
external force field per unit mass, 0 = 6(t, x) the absolute temperature, » =r(t, x) the
heat sources per unit time per unit mass, p = p(g, 0) the pressure and ¢, = c¢,(g, 0) the
specific heat at constant volume. These last two are assumed to be known
functions of ¢ and 6. The viscosity coefficients u and v and the coefficient of heat
conductivity y are assumed to be constant and to satisfy the following thermody-
namic restrictions

pu>0, vziu, 1>0. (12)

(Actually, it is enough to assume that these coefficients are C? functions of ¢ and 6,
see Appendix in Sect. 6.)

The functions u,, g4, and 6, are the initial data of u, ¢, and 6, respectively. The
functions 1, and 0, are the boundary data for u and 0, respectively. For the sake
of simplicity, we assume that @ and 6 are defined in Q, without considering the
problem of describing precisely their space of traces.

Problem (1.1) is well posed if

where 71 is the unit outward normal vector to the boundary. If this condition is not
satisfied in some region, one needs to prescribe the value of ¢ on this part of 0Q. To
clarify the situation, define

S, (={xed]|u(t, x) n(x)<0} (1.3)
and
S,(t)={xedQ]u(t,x) - n(x)>0}. (1.4)

(However, for reasons which will be clear later, we assume that S, does not depend
on t. We remark moreover that the domain Q does not depend on £.) If S, 0, then
the density ¢ on S, has to be prescribed

0s,=0; On 10, T[x S, . (1.5)

The initial and boundary data for density and temperature are assumed to be
positive: 0o=0o(x)>0, 0,=0,(x)>0, 0,=0,(,x)>0 on R* xS, 0=0(t,x)
=60,>00n 2.

Finally, the following compatibility conditions have to be assumed

(0, - )(m:“olag > (1.6)
(7(0, : )|as2=901m> (1.7)
24(0,- )290131 > (1.8)
01,{0,-)=— diV(Qouo)m1 > (1.9)
and moreover,
Uo1sn =0, (1.10)
oo =0 (1.11)

[see (2.21) and (2.22) for the definition of ¥, and w,].
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In the last thirty years this problem has been intensively studied, firstly
investigating uniqueness (see Graffi [8], Serrin [26], Valli [29]) and later (local in
time) existence (see Nash [20], Itaya [9], Vol’pert and Hudjaev [32] for the
Cauchy problem in R3; Solonnikov [27], Tani [28], Valli [30] for the Cauchy-
Dirichlet problem in a general domain with vanishing velocity on the boundary;
Fiszdon and Zajaczkowski [4, 5] for the Cauchy-Dirichlet problem in a bounded
domain too but in the case of an inflow only, i.e., §; = 0Q; Lukaszewicz [12,13] for
the Cauchy-Dirichlet problem in a bounded domain in the case of inflow and
outflow, ie. 0Q=S,US,, or §;=0).

Recently, a global existence result has been proved by Matsumura and Nishida
in R3 [15,16]. Afterwords, Matsumura and Nishida [17, 18], Valli [31] have
shown global existence in a bounded domain Q with u,, =0, and Fiszdon and
Zajaczkowski [4, 6] in the case of an inflow only. (However, in [4, 6, 31] only the
case of a barotropic fluid (i.e., p=p(g)) is considered.)

The case of the half-space or of an exterior domain has been studied by
Matsumura and Nishida [197]. These global existence results have been obtained
under the assumptions that the data of problems are small enough. The most
complete results about qualitative properties of the solution have been proved in
[31], where it is shown, by means of a stability argument, that there exist periodic
and stationary solutions (see also Marcati and Valli [14] for the existence of
almost-periodic solutions; moreover, some partial results about stationary
solutions were proved by Matsumura and Nishida [17-19] when the external
force field b is a gradient, and by Padula [21] when the ratio v/u is large enough).

In this paper we study global existence, stability, existence of periodic and
stationary solutions for the general Egs. (1.1), (1.5), extending the results of [31] to
the non-barotropic case. Since some non-linear terms contained in (1.1); are
quadratic in Du, one needs a priori estimates more precise than those proved in
[31] in such a way that the behaviour of these nonlinear terms can be controlled
(see in particular Lemma 2.4). Moreover, we consider also the case in which there is
aninflow and/or an outflow. These cases require some new calculations also for the
local existence theorem; furthermore, we shall see later in this introduction that in
these situations some qualitative results cannot be proved.

This paper is organized in the following way. In Sect.2 we prove the local
existence of a solution for the general Cauchy-Dirichlet boundary value problem
(by assuming that the region S,, where i -7<0, is a closed surface; we need this
condition since to obtain a priori estimates for the density ¢ one has to consider
some integrals on S, in which @ - 77 appears at the denominator, see Sect. 2.B and in
particular (2.28)). We need a local existence theorem precisely in the form of
Theorem 2.5, so that we can use the a priori estimates of Sect.3 to extend the
solution up to infinity. In Sect. 2 we remark also that the uniqueness holds in a class
of functions containing the global solution to be constructed later in Sect. 3.

In Sect. 3 we prove the a priori estimates global in time, and consequently the
existence of a global solution. We need, however, that there is no inflow (ie.,
S, =0). Otherwise, our methods would give a solution satisfying

[N

0sot,x)=3¢  V(t,x)eQ,, (1.12)
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where
0= —|:2| { 0:(x)>0  (IQ|=vol(Q)). (1.13)
o

From the equation of conservation of mass one knows that

t

§29=§|Ql—f [ a-fig; (1.14)

0 o

hence, if the total outflow f [[ - ng] is finite, as we shall assume, then the integral

faa (1.15)

0 S

is finite. But our assumption #-7<0 on the closed surface S, gives
—u(t,x) -a(x)=Zay(t)>0 on S,

hence a, would be in L*(IR*). Moreover, in proving the existence of a global
solution we require the smallness of i, hence of a,; but to obtain (2.28) we use that
1/ay(t) is bounded.

In Sect. 4 we show the asymptotic equivalence of two solutions starting from
two initial data satisfying

In this case we need that there is no outflow, since some technical difficulties arise if
the total amounts of mass of the two solutions are different.

In Sect. 5 we prove the existence of a periodic and a stationary solution in the
case of the vanishing normal component of the velocity on dQ. An essential tool for
constructing these solutions is the use of the “stability” result proved in Sect. 4.

Now we want to make precise some necessary conditions for proving the
existence of periodic and stationary solutions. Suppose that#-7<00n 0Q,i-1<0
on S, #0, and that we get a T-periodic solution satisfying (1.12). Then from (1.14)
one gets

© © kT o T
+oo>—(faa=-—Y [ [aa=—= X || an
0 aQ k=1 (k—1)T o k=1 0 a2
which is obviously a contradiction. Hence there is no periodic solution satisfying
(1.12) in the case of an inflow without an outflow. The same happensif#-7=0 on
09, ii-1>0 on S,(t)+0 for some .

The existence of a periodic solution in the presence of an inflow and an outflow
at the same time is an open problem. Similar considerations hold for the stationary
case, too. In this situation, if only an inflow is present, then one gets the
contradiction

0> { a-o= | ii-g=0,
S1 02

and analogously in the case of an outflow.
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Finally, we introduce some notations. We set

m=min go(x), M= max g,(x),
0 Q

0;= min 0y(x), 0,= max 0y(x),
Fej a

and these constants will be used in proving some estimates in Sect.2. We shall
denote the usual norm in the Sobolev space H¥(2) (or any other equivalent norm)
by || - |y for s= —1; the norm in W*#(Q) by | - ||, ,; the norm in L0, T'; H*(Q)) by
[1gsrfor1<g=o00,5s2 —1,0<T=<00; the normin L0, T'; LX) by Il - ll e 1o
for1£g<00,1<k<00,0< T<00. The normin L®(0, T; X) and in C°([0, T], X)
are denoted in the same way. Moreover, it is useful to remark that for
C°([0,00]; X) we mean CH(R™;X), the space of continuous and bounded
functions from R* to X.
We introduce the space

1, (0= () W0, T; @),

and for a function u defined in Q; we set the notation
1 . 1/2
u(ly,x,0= (;k IIDﬁ_’u(t)llivim) . tef0,T].

Usually we shall omit the dependence of u on ¢ and the symbol J when J=Q.
Finally, we recall that, from the classical results of Agmon et al. [ 1], the norms
ludv+vV divol, and ||vl|+ ,, k€ N, are equivalent for v, =0, since ud +vV div is
a strongly elliptic operator.
For reasons which will be clear in the sequel, we rewrite problem (1.1), (1.5)ina
new form, by the change of variables

o=0—0, (¢ defined in (1.13)),

v=u—i, (1.16)
0w=0-0,
and obtain
(6+0)v,+ Av+pVo+pVw

=—(6+0) [+ @+a) - V(o+id)—b]—Ai—p,Vd in Qp,
o+ @+a)-Vot+(o+0)divio+d)=0 in Qy,
(0 +@)c,w,— ydw+ (w+0)pydive
=—(c+9)c,[0,+ w+id) - V(w+0)]+(c+9)r
+ £ 3 [D+a)+ Do+ P+ (- [diveo + DT + 1240

—(w+0)ppdivii in Qr,
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Vpo=0 on X,

We0=0 on X,

v|,=0=vosuo—d50) in Q, w1
Op=9=wy=0,—0(0) in Q,
O=0=00=Qo—¢ in &,

05, =01=¢;—¢ on ]O,T[xS,.

2. Local Existence
A. Case Without an Inflow

The local existence of a solution can be proved by following the methods of [31,
Sect. 2] (see also [2]). At first one considers the linear problem

ov,+Av=F in Qp,

vla_Q:O on ZT, (2.1)
v(0)=v, in Q,
where
A= —pud—vV div, (2.2)

and g, F, and v, are known functions, 0 < T < 00.
In [31] it is proved that there exists a unique solution v of (2.1) under suitable
assumptions. Moreover, one gets:

Lemma 2.1. Let 0QeC? §eL*(Q;), 0<m/2<50(t,x)<2M ae. in Qp,
0(0,x)e L*(Q), 0<m=§(0,x) <M ae. in Q, Ve L*(0, T; L*(Q)), §,e L*(0, T;
L’(Q)), FeL*(0,T; H'(Q), F,eL?(0,T; L*Q) and voeHyQ), [F(0)
— Av,]1/6(0) € HY(Q). Then the solution v of (2.1) is such that ve L*(0, T ; H3(Q))
NC([0, T1; HX(Q)), v,€ L0, T; HX(Q)nC°([0, T]; H'(Q)), v,,€ L*(0, T ; L))
and
[Uﬁo; 2T+ [U]%; sr+ 0l e+ vl 2+ [ved3 0.1

F(0)— Av,||?
écl {[F]%;I;T+[F]§O;O;T+ <[Ft]g:;0;T+ % )
1

(L@, 350+ VN3, 3;7) eXp(cxlllétlHis;r)} 23)

Here and in the sequel each constant ¢, ¢;, C; will depend (at most) on Q, u, v, 3, g, m,
M, 05, 0,, and c¥, ¢ (see Lemma 2.3) and not on T. Other possible dependences
will be explicitly pointed out.
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Proof. By taking the derivative in ¢ of (2.1),, one gets for V=uv,:
oVi+AV+g,V=F, in Qr,
V=0 on 2, 2.4)
F(0)— Av,
2(0)
Multiplying by V,+¢¢AV (g, to be chosen in a suitable way) and integrating in Q,
one gets, as in the proof of Lemma 2.1 in [31]:

d
CZ’&E

V(0)= Q.

d ..
IVVI§+es T Idiv VIS + VIS +14VIS

<c[IIF.5+ !2 av- (Vt+80AV)H

ScIF N3+ 17Vl 8l s Villo + IIAVllo)]

ScIFNS+HIVVISIEN @] +EIViIE+3IAVIG. 2.5)
Hence, by Gronwall’s lemma we have:

(V1% r S c([F 13,0, + VO ) exp(elllédli3; s, o)

ie.
F(0)— Av,||? .
Ve <e (PRt |[F2 2% exp(ellafiZan) . @6)
00) It
By integrating (2.5) one gets
F(0)— Av,||?
Vi1 + [V rSc ([FJ%;O;TJr ]]—(—)—” )
000) ||
(L1181, 3, 7) exp(elll@ 3. 5. ) - 2.7)
By recalling that
V=l)t= F-:AU ,
4
one has at once
[Av]Z. 0.7 <c([F13,0, 1 +right-hand side of (2.6)), (2.8)

(40121, + Sc([F1 .2+ V- V12,0,7 +right-hand side of (2.7).  (2.9)

On the other hand

T T
[Vé-Vi0r= { ||V§‘V||3§C£ 1Vl 2@l V11
SIIValli3,s,r (right-hand side of (2.6)). (2.10)

From (2.6)—(2.10) one gets at once (2.3). [J
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Remark 2.2. Observe that, from the assumptions on @, the condition
[F(0)— Avo]/6(0)e Hy(Q)  implies  that  [F(0)— Av,]e H'*(Q).  Since
F(0)e H**(Q) (by interpolation), and v, e Hi(Q), one gets at once that these
conditions imply vy e H?(Q). M
Consider now the linear problem
¢, 00,—xdwo=G in Qr,
Wpe=0 on Xg, (2.11)

00)=w, in Q,

where ¢,, ¢, G, and w, are known functions.
By proceeding exactly as before, considering — y4 instead of 4, one gets

Lemma 2.3. Let 0Qe C?, ¢,6e L*(Q,), 0<c¥ % =(¢,0) (t,x)Z2c¢3M ae. in Qp,
(€,0) (0, x) € L*(Q),0<cim=(8,0) (0, x) S c3 M a.e. in Qp, V(¢,0) € L*(0, T; L3 (Q)),
(€,0), € L*(0,T; L¥(Q), GeL*0,T; H'(Q), G,eL*0,T; L*Q)) and [G(0)
+x40,]/(E,0) (0) € HY(RQ), wo € HY(). Then the solution w of (2.11) is such that
we*0,T; HYQ)NC([0,T]; H*Q), oeLl*0,T; HQ)NC([0,T];
H'(Q)), w,e L*(0, T; L*(Q)) and
[w]go;Z; T+ [(D]%’ 3; T+ [wt]go; 1;T+ [wt]%; 2T + [wtt]%;O; T

G(0) + xdwo||*
4{[ ]Z,I,T [ ] ;0; T [ t]Z,O,T (CUQ)(O) .

ANV @M, 57+ EQIZ; 3, 7) eXP(CdII(CE@)tlH%;3;T)}~ (2.12)

Finally, consider the linear problem

o, +i-Vot+odivi+gdivi=0 in Qr,
’ T 2.13)
d0)=0, In Q,

where @ and ¢, are known functions. One obtains

Lemma2.4. Let 0Qe C*, e LY(0, T; H3(Q)),4- 720 0n X, and 6, € H*(Q). Then
there exists a unique solution ¢ of (2.13) such that o € C°([0, T]; H*(Q)) and

[o]w;2; 7= (lo0ll 2 +cslitly; 5, 7) exples[idy; 3, 7) - (2.14)

If in addition 4 e C°([0, T1; H*(2)), then o,€ C°([0, T]; H'(Q)) and
[0 1,756l @] o, 2.7 [(lo0ll 2 +eslily, 5, ) exples[d]y,5,7)+1]. (2.15)

Moreover, if ii-i=0on Z and | 6,=0, then | 6=0 for each te[0, T].
Q Q

Proof. The existence of the solution follows from the method of characteristics. If
we define U(t, s, x) to be the solution of

% U(t,s,x)=iit, Ut,s,x)), tse[0,T],xeQ,

U(s,s,x)=x,
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the solution o is expressed by

G(ta x) = Q-+ [JO(U(O’ 5 X)) + Q-]
- exp (— 5) divia(s, U(s, t, x))ds). (2.16)

The regularity of U(t, s, x) gives a € C°([0, T]; H*(2)) (see [30, p. 207]). To prove
estimate (2.14) one multiplies Eq. (2.13), by ¢ and integrates in €. Integrating by

parts the term | ii- Voo, one has
o
1d 1, . . 1
¥ lol2< 3 !) d1v1102+é!§) |divi] o] — 5 | d-no?.
o0
By the assumption #-7=0 on 0R, the boundary term can be omitted. One
proceeds in the same way also for the first and the second derivatives, always

integrating by parts the terms | [(#- V)Vo]Ve and [ - V(D,D,0)D,D,0 (see for
o] (]
instance [31, Lemma 2.37), and one gets
1d
2 dt

From Gronwall’s lemma one obtains

T T
loll,= (IIUon +e (f) IIﬁHs) exp (C g Ilﬁlls>,

that is (2.14). The proof of (2.15) is trivial. O
Finally, if #-i=0 on X and [ ¢,=0, from Eq.(2.13), one has at once
o

loli3 sclials ol +aldivil, ol .

Oty

fo={0o—f | ti-i(c+0)=0 foreach te[0,T]. O
2 o a0

We are now in a position to prove the local existence of a solution to problem
(1.17) (for S;=0). Take 0< T < oo and define
Ry={(,6,&)|5e C°([0, T]; HX(RQ))NL*0, T; H3(Q)),

#,e L°(0, T; HY(Q))nL*(0, T ; H¥(Q)),

e L>(0, T; H*(Q)),6,e L°(0, T; H{(Q)),

@e C[0, T1; HX(Q)NL*(0, T; H¥(Q)),

@, L0, T; H{(Q))nL*0, T; H*(Q)),

(012, 2,0+ [005,5, 7+ [81%; 1,7+ [6.13, 2,7 < B1
9(0)=uy—u(0) in Q, =0 on X,
[5]00;2;T§Blﬂ [&t]oo;l;TéBZ )

6(0)=0,—3,0< % <6(t,x)+6<2M ae. in O,

(12,2, 0+ D133, 7+ B2 1.0+ [B]5,2. 7S By,

@(0)=0,—0(0) in Q, 3=0 on X, 0< 02—3 <@t %) +0(t,x)<20, in O;},
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where B, and B, will be chosen in the sequel [see (2.17), (2.19), (2.20)]. If B, is large
enough and T is sufficiently small, it is clear that R;y#0. In fact, let v* be the
solution of

vf—dAv*=H in Q,,
v¥*=0 on X,
v*(0)=uy,—u(0) in Q,

where He L>(R*; H(Q)), H,e L*(R* ; L*(Q)) and H(0) = — A[u,—(0)] in Q (so
that v}*¥(0)=0; see Lions-Magenes [11, p.25-27] for the construction of such a
function and the estimates for the norms of H and H,), and let w* be the solution of

of—Ado*=K in Q,
0*=0 on 2,
0*(0)=60,—0(0) in Q,
where K e LA(R*; H'(Q)), K, e L* (R " ; L*(Q)), and K(0)= — A[6,—0(0)]in Q (so
that w¥(0)=0). Then one has
(%15 200+ [0%13, 3500 + [08D%1 15 0
+[0F13, 2 0 S €7 [luo —(0) (132,
and

[(D* 30;2;00+[w*]%;3;00 +[a);k go;l;oo

+ [wﬂ% 2500 =Cy 60— 67(0) I %/2 .
By taking
B, >max {c,|ug—(0)[3,; C7H00—0_(0)“§/2§ lleo—2all2}» (2.17)

one sees that (v*, g, — @, w*) satisfy all the conditions stated in the definition of Ry,
with the exception of

0<%§w*(t,x)+§(t,x)§294 in 0. (2.18)

However, we have, by interpolation,
la* +0 =00 cogr = clar* +0—001507 fle* +0—0,152: 1
é CT1/3([w?§JOO; ;T + [gt]oo; 1; T)1/3
: ([Q)*]oo;Z;T_l' [g]oo;Z;T_i_ HGOHZ)Z/3 .

Hence by choosing T small enough (say T< T, T, depending on Q, 05, 6,, 0, and
0o—0(0)| 52), we get (2.18). From now on we shall assume that T< T} and that B,
satisfies (2.17).

Consider now the map L defined in R; in this way:

L:(7,6,d)—@,0,m),
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where v, 0, and w are the solutions of (2.1), (2.13), and (2.11), respectively, with
0=d6+a,
F=(@G+o)b—u,—@ - Vya—@-Vya—@-V)o

— (@ V)il —Aa—V[p(6+¢,d+0)],
vo =ty —1i(0),

é,=c(6+0,05+0),
=—C¢(6+0)[0,+7-Va+ia-Vo+v5-V0
+i- VI — (& + O)py(6 + @, &+ 0) div(d + 1)
+ x40+ (6 +@)r + ’2—‘ % (Dy#" + Dyt + D + D ii*)*
+(v—p) (divi+ divﬁ)yz,
wo=0,—000), d=0+u, 0,=0,—0.
Notice that, from this choice of ¢,, we get

cf

]
2
=3
é')
A
t:ﬁl
1
eﬁ
x
+
ISl
e
+
N>
IA
8
o
<
':0
1l
(N3

where A; = {(g, 0)e R? |% <9= 2M,% <6= 2(94}. Hence c¥ and c% depend only

on the function ¢, and onm, M, 65, 8,. We shall prove that L has a fixed pointin Ry
for T small enough. We need at first some estimates, which can be obtained by
means of some long but straightforward calculations:

[F13,1, 7= C(By, 1,0, p) ([P35, 1, p +[013, 5,7 + 1),
[F]go;O;T—ECZ(a’ 0,p)
(0% 057+ 1+ lug— @03+ llaollT + 00— B0) |1 +c(By, B)T?),
[Ft]%;O;Té C;(By, By, i, b, p)
(013, 1,0+ b3, 00 L0153, 25+ L3, 0,7+ T)
[G]g; 1:71S Cy(By, 1, 0,p.c,) (["]% urt [g_]%;3;T+T+ T'?),
[G]go;O;Té Cs(@,0,p,c,)
([r)%0i7+ 1+ llug —a(0) |3+ 1100 — B(0) |3+ ¢(By, B)T),
[Gt]%;O;T <C¢(By, By, 1,0,p,c,)
(0150 + 03,0, + 1035, 2: 7+ 1015, 0,0 + THTH?)

In the fourth and in the sixth estimate for controlling the terms which are quadratic
in D9 and Di one uses

Ifglz=clflolfl:lghis
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consequently

[fg]ggo;Téc[g]go; 1;T[f]oo;O;T[f]2; 1;T-

In the second and in the fifth estimate one uses
t
I5()IF < c(I150) )17 +¢ g llﬁt(S)llde>, k=1,2;

and the same argument for 6 and @&. Finally, observe that the constants C; depend
on p and ¢, in terms of ||pllc2(4, and ¢, ¢ (4,) and on the norms of i and 0 which
are specified in the following Theorem 2.5.

Moreover,

Va3, s, r +IE3, 5,7 = C+(By1, BT,
N7 @B, 3,7+ G013, 3,7 = Cs(By, By, 0,¢,)T.
Finally, from (2.14) and (2.15)
(0] ;2,7 = (ool 2+ Co(By, ) TV?) exp(Co(By, 1) T'?),
[o]w;1;r=c6(lloolla+1)Cho(By, @) exp(Co(By, @)T?).
Hence, if we take
B, > max {c,[C,(i, 0, p) (1 + [|b(0) |3 + | uo—#(O0) |5 + lloo 1§
+10o=80) D) + 00131, llool2>
c4[Cs(@, 0, p, c,) (14 r(0) 1§+ lluo—@(0) |3
+ 160 —0(0)[13) + w0 0) 171}, (2.19)
By >co(laoll, +1)Cio(By,9), (2.20)

and T small enough, we get that v, o, and w satisfy the estimates required in the
definition of the set R;. We want to specify that in (2.19) v,(0) and ,0) are
calculated from the equations and depend only on the data of the problem, ic.,

0(0)= 51~ (= P Ip(Gor Oo)] — Atig} — £(0) — (o - Vitg + b(O) =0, (2.21)

1
(00> 90)20

+ 5 3 (Dudy+ D) +(v =) <divu0>2+eor(0>}

—T(0)— g - V0o =0 . (2.22)

w,(0)= { —0ope(005 0o) divvg + x40,

In the sequel we shall use frequently this short notation. One has also, by well
known interpolation results,
HO"‘O'OHCO(QT)éc[U‘“O'o] ic{;sl;T[O-—O-OJZ'o/;BZ;T
§6T1/3[01]¥;31;T(B1 +llooll)??
ScTYPB3P(B, +laoll)*>.
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Hence, if T is small enough,
m - -
Zga(t,x)+g§2M in Qr.

Finally, repeating the argument for proving (2.18), one gets that (2.18) holds also
for w.

We have shown in this way that L(R;) C Ry for T small enough, say T=T*>0.

Now one uses Schauder’s fixed point theorem. It is clear that R is convex, and
itis closed in X = C([0, T*]; HY(Q)) x C°([0, T*]; H'(Q)) x C°([0, T*]; HY(Q)).
Moreover, from Ascoli’s theorem, R« is compact in X. Hence one needs only to
prove that L is continuous in X. Suppose that (7,,d,,d,) € Ry, (¥,,6,, D))
— (0,6, ®) in X and set (v, 0,, w,) = L(5,,6,, @,), (v,0,0)=L(0, 6, d). Take the
difference between the equations for (v, g, »,) and (v, 6, ), multiply by (v,—v),
(0,—0), and (w, — ), respectively, and integrate in Q. By an energy argument and
by Gronwall’s lemma it is easily seen that (v,, 0, ®,) converge to (v, 0, ®) in
C°([0, T*]; L*(R)). Since R . is compact, (v,, 0,, ®,) converge indeed to (v, o, ) in
X. Hence Lis continuous, and consequently has a fixed point, which is the solution
of problem (1.17) in Q. (for S, =0).

We have thus proved the following theorem.

Theorem 25. Let 9QeC?  beLli (R*HYQ), bel2(R*;LA(Q),
re L, (R™; H'(Q), r.e L, (R*; LX(Q)), p=p(o,0) e C?, ¢,=c,(0,0)eC", ¢,>0
for ¢>0 and 0>0, [uy—i(0)] € H(Q), 1o € HY(Q) (see (2.21)), 0o € H*(Q), 0<m
= Q_o(x) <MinQ,[0,—0(0)] e HégQ), o€ HY(Q) (see (2.222) ,0<05=<0,(x)=0,
in Q, (a,0) e L}, (R*; H¥(Q)), (i@, 0,) € Li,.(R*; HX(Q)), (i, 0,) € L, (R "5 L2(Q)),
i-1=0 on X . Then there exists T*>0 small enough, (u,0) e L*(0, T*; H3(Q)),
(u, 0)€ L2(0, T*; H*(Q)), (u,,0,)eL?(0,T*; L*Q), 6(t,x)>0 in Qs
o€ C([0, T*]; H*(Q)), 0, € C°([0, T*]; HY(Q)), o(t, x) >0 in Q 1+, such that (u, o, 0)
is a solution of (1.17) in Q.

Remark 2.6. By looking at the proof of Theorem 2.5, it is easily seen that if (b, r)
eL”(R"; H'(Q)), (b,r) € L°(R™; LX(Q), (4,0) e L*(R*; H*Q)), (4,0,
eL*(R™; HX(Q)), (i, 0,) e L*(R™; L*(Q)) and if

luo— (O3 2+ lloollz + 10— 0O) 132 + 1601 + o IF <D,

0<A4;=sinf (oo+@)=sup (5,+0)=A4,,
o Q

0<E, < inf (wy+0(0)< sup (wo+0(0)<ZE,,
0 (9]

then_th_e time T* depends only on &, u, v, ¥, @, p, ¢,, on the norms of b, b,, r, r,, I, 1,,
i, 0, 8, 0, in the spaces considered before, and on D, A,, 4,, E;, E,. W

Remark 2.7. 1tis also possible to see that the time T* depends indeed on the norms
of b, b, 1, 1, i, i, Uy, 0, G, 0, in the spaces of functions obtained from the space
considered in Remark 2.6 by replacing L*® with %2, where #*(R*; X)is the

subspace of L% (R*; X) endowed by the norm

t+

Julme 0= sup [ ] nu(s)nﬁds].
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One has only to change the definition of R, by requiring
[6]w;2;7= By,
(612, 1,0+ 003,20+ (@12, 1,7 + (015,20 B,
(602,27 + (003,37 +[@% 2 r + [D15,3,7 < B3
[G)w;1;7 =By,

and then to choose successively the constants B;, B,, B3, B,. Observe also that if
ue #(R*;X) and u,e #*(R*;Y), (here X and Y are Hilbert spaces, with X
continuously embedded in Y), then ue C3(R*;[X, Y], ;), and the immersion is
continuous. M

Remark 2.8. One can easily see that the solution (v, g, ) to problem (1.17) is
unique, for instance, in the class of functions

inf ¢>0,0€ L*(Qr), Vo€ L*0, T; L%(Q)),
Qr

ve L(Qp), Dve L0, Ts L)AL, T: L“(2), v, L0, T: L3(@)).
inf 00,0 L(Q,), V0 e L*0, T; LY(Q)~LA0, T; L*(Q)),
Qr
0,e L*(0, T; L3(Q)),

under the assumptions pe C?, ¢, e C*, ¢,>0forgo>0and 0>0,be L*0, T; L*(Q)),
re L*(0, T; L3(£2)), 02 € C*. One obtains the same results also if y, v, and y are not
constant; it is sufficient to have p, v, and y in C*. Hence the fixed point constructed
in Theorem 2.5 is unique. The proof of this uniqueness result can be obtained by
proceeding as in [29, 31, Sect. 3], and using the estimate

[ (Vo3 +VOF|+IDv]) (jul +Iy]) (Dul +[V])

2
el Du() 1+ ellVy()11§+ ce >V et Ol Loy + 1V OF O [ ooy
+ [ DvF O ey (u@ I + I @)13) -
[Here u=uf—uf, y=0F—0%, and (uf, 0%, 0F), (uf, 0%, 0%) are two solutions of

(117] m

B. Case with an Inflow

If we don’t assume that 77 - 7= 0 on 2 1, then we need to change the proof of the local
existence theorem. In fact in this case the solution of Eq.(2.13) can be determined
only if we require in addition

os,=0; on J0,T[xS;.

Moreover, we suppose that S, is a closed surface (hence on [0, T] x S; one has

—u-A=ay>0, ay a suitable constant which for simplicity we suppose to be less
then 1).

Lemma 2.9. Let 0Q¢e C?, e L*(0, T; H3(Q)), il,e L*(0, T; H*()), 0, € H*(Q) and
0, € L*(0, T; HX(S}), (0,),€L™(0, T; H'(S,)), (61)x€ L*(0, T; L*(Sy)). Suppose
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that 1, 64, and o satisfy the compatibility conditions (2.26) and (2.27). Then there

exists a wunique solution of (2.13) satisfying o5,=0,, and such that
ce L*(0, T; HX(Q)) with

(6122, 7 (ool 3+ T P[a13, 5,7
+ ] 2 exp (il T .23
(see (2.28) for the definition of Z). If in addition iie L*(0, T; H*(RQ)), then
o, L*(0, T; H(Q)) and
[0:eos 17 S Celi#leo; 2, 7([0] 02,7+ 1) - (224

Proof. Theexistence of a solution follows from the theory of characteristics (see for
instance Judovi¢ [10]). If we divide Qr into two subsets

0, ={(t,x) € O] the characteristic passing for (t, x)
starts at t=0 on Q},

Q,={(t, x) € Q| the characteristic passing for (¢, x)
intersects X for 0=Zt* =1*(t, x) <t}

then the solution ¢ is expressed by (2.16) in Q, and by
oft, x)= =g+ [o,(t*(t, x), U(t*(t, x), £, x)) + @]

-exp[— ja divii(s, U(s, t, x))ds} (2.25)

t*(t, x)

in Q,. One can see by a direct computation that, if ¢, and o, satisfy the following
compatibility conditions:

O11t=0=00|s;» (2.26)

doy . . e

. =[~d(0) - Vo,—0,divii(0) — ¢ divii(0)]s, , (2.27)

lt=0

then o€ L*(0, T; H*(Q)) (see for instance Judovi¢ [10] for similar calculations).

For proving that (2.23) holds one proceeds as in Lemma 2.4, but now the
boundary terms arising from the integration by parts cannot be omitted. More
precisely one needs to estimate

— SS ii-i(o? +|Va)? +|D%a)?).

Hence one utilizes Eq. (2.13), restricted on S, and by proceeding as in Fiszdon and
Zajaczkowski [4-6], after some long but straightforward calculations one gets
— [ a-i(c?+|Vo|*+|D%a|?)
S1
<c(l/ag) (1+ [[dl|Zos,) (L +10413 0,5,)
S+ al+ 1al ) A+ a3+ @320 =2 (2.28)

(for any 0<¢<1/2). To obtain this estimate one uses the immersions

H' Qo H(S)o LYSy), H'P Q) LX(S)).
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Hence we have

d .
7 lolz<clilslolz +cldivil, loll,+Z.

But
clldivi|, ol ScT 2 |a|3+ T~ a3,

hence by Gronwall’s lemma

T
lol3< [||aon§+cT”2m§;3;T+c g z}

'exp(c[lﬂ1;3;T+T1/2)' O
One can observe now that if i, € L*(0, T; L*(2)), then

T
(f) Z = c(1/ag) (1 + [l 205 (1 + [SOU% |0'1|%,0,sl>

) (1 + [ﬁ]go;z;T"_ [at]go;l;T)
: [T+ C(S)Tl_ 28([11] %; 3T + [at]g, ;T + ” ﬁ(O) ” g/z)
+e(@) T2 ([#4,13; 2, 7+ [ 13, 0,0 + 3O D],
where one uses these interpolation results:
[a’]%/s; s2teTS c(e) ([Lﬂ% Wian [ﬁt]g; uTt [0 %/2) >

[ﬁt]i, 32+e1=C(E) (@132, 7+ (13, 0,0+ 1E0)]1D),
_ 4
T 14267

where c=c(e) does not depend on T (see, for instance, Secchi and Valli [22,
Corollary 3.10], where similar estimates are obtained).

Hence one can prove the existence of a local solution also in the case with an
inflow, by changing the definition of the set Ry in the sense that now one needs
€ L*(0, T; L*(Q)) (and the norm in this space is estimated by B;), and #,(0) =1,
[see (2.21)]. One can prove also in this situation that R =; in fact construct a
function v* asin Sect. A, by choosing now H insuch a way that H e L*(R*; H(Q)),
H,e LA(R*; L*(Q)) and H(0)= — A(u, —ii(0)) + 6. By choosing B, large enough,
one gets again Ry =0 for T sufficiently small.

Hence one obtains a local existence theorem under the same assumptions of
Theorem 2.5, only requiring further that ¢,eL® (R™*;H*S,)),
(o), e LE(R*; HX(S))), (61), € L (R*; L*(S,)), and that a,, 6, and i satisfy the
compatibility conditions (2.26) and (2.27).

q

3. Global Existence. The Case Without an Inflow

At first we shall obtain some a priori estimates for the solutions of the following
system of equations
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v,+Av+pVo+p,Vo=f in Qr,
v=0 on X, 3.1
v(0)=v, in Q,
where A= — jid—vVdiv and ji=u/g,v=v/9;
o,+@+u)-Vo+gdivo=h in Qr,

) (3.2)
00)=0, in Q;
w,—ydw+0,psdivv=g in Qr,
w=0 on X, (3.3)
o0)=w, in Q,
where
6,= inf >0,
2o
_= L
X— Q—cv(éa 91)’
_ pg(é’gl) - pﬂ(é791) - p2
= >0, = — , = — S
=g =g 0 PT e
and consequently p,/p; =c,(@,0,)>0, and
f=r+2473, (3.4)
where
v (. Pplo+d,0+0) a_ (. Pelc+g,0+0) -
fi= (pl s ) re e (pm T P+,
*=—(v+a)- Vo+i)+ 2 Avo+b—ii,— L Atl;
- ] Yo+g
h=—odivo—(o+¢)divi; (3.5)
g=g'+g°+g°, (3.6)
where

gi= [9 Po(@,0,) a)+f7pg(a+g',w+6:)}
' 0c0,0,)  o+0 coc+d,0+0)

. = X
dive [X (0+é)cv(0+é,w+g):| Ao,

2 x 5 0+0po+d,0+0)
(0 +09)c,(c+0,w+0) 6+0 c(c+d,0+0)

il

g divii,
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1
(640)c,(6+a,w+0)

. {g Zk [D,(v+ @)+ Dy(v+ )" 1* + (v—p) [div(v + a)]z}

g*=—0,—w+i) - V(o+0)+

r
+ T
c(o+0,w+0)

We shall assume that - 7>0 on X, that is we don’t consider the case of an inflow.
Moreover, we assume that 0Q e C3, and that

0/4<ao(t,x)+0=<3g, 0,/4Zw(t,x)+0(t,x) <36, 3.7

in 0y, 0<TZ 0. (Here 0,= sup 9).

From the conditions c,e C?, ¢,>0 for ¢>0 and 6>0, we obtain thus
0<c¥<c(0+3,w+0)<ck [where cf and ¢ are defined as in Sect. 2, and the set
A, is constructed by means of the constants appearing in (3.7)]. Finally, from now
on in this section each constant will depend (at most) on Q, u, v, x, 9, 81, 6,, 1, P2»
p3, ¢, ¢¥ and on the norms of p in C%(4,) and of ¢, in C*(A,).

We remark again that in this section we shall indicate any equivalent norm in
H*(Q) with the same symbol |- ||, (s= —1).

Lemma 3.1. Let v, 0, w be a sufficiently smooth solution of (3.1)—<(3.3), and ¢; be a
sufficiently small parameter, then

d
77 ol +llodif + ol + ol + g+ lol5)

1o+ [2+ o2+ o3+ Il + o2
<eylol2 4 (o) Y, (38)
where
Y= 1S 12 12+ g2+ g3+ hE o+
153+ 102 + 10, ol loddo+ 121012
Aol + li i .
0 S,

Proof. Multiply (3.1) by v, (3.2) by (p,/@)0, and (3.3) by (p,/p;0,)w, integrate over Q
and add these expressions. Taking into account that

f pVe-v=— | padive, [ p,Vo-v=- | p,odivy,
Q Q Q Q

and that
P1 = - D1 — 2
— = [ [(v+d)-Volo=— L w+a)-V(e?)
) 20 0
. _ c _
< %5 ldiv(v+@)le® e o3+ — llolg+clillslal},
Q @ &1
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at last one gets

d
i (o3 + w3+ lalid)+ o1+l ScX; +elvl3+ellolF,

(3.9
where
2 2 1 2 1 4 s 2
Xi=f1Z1+ 19121+ o [Ihll5 + . lallo+llalisllols-
1 1
Similarly to (3.9) one has
d
' (o + o3+ oD + ol + lleo 17
ScX,+ellvli+elals, (3.10)

where
Xa=UAIE + a2+ o Il - o+ o i3lo13
+lalsliols+ 1l ol ol
The only difference in obtaining (3.10) is the way of estimating the non-linear term
(p1/@) ?[z % [(v+4)-Va]o, (see, for instance [31, Lemma 4.2]).
Using the Stokes’ problem
—jgdv+p Vo= —v,—p,Vo+iVdivo+f in Q.

divo=divo in Q,

U|59=0 on aQ, (3.11)
one has (see for instance, [3, 7])
t 2
o2+ o)} Sc(lvliz+ ol + I divollF+ [ £ 18) +c¢ (f)sf u-n o, (312

where the last term in the right-hand side appears in the case of outflow only.
Indeed, for i - 17,0 = 0 one has that f6=0,50 |c]|2<c||Vo) 2. In the case of outflow
o

t
(3.2) implies [ o= — [ | @-ii(c+9), so
o 0S>
t 2
[o §§a-al.
0 S,

Q

leligsclval§+c || of* sclValg+c

Directly from (3.2), one gets
lo 1} < c(idivol + [[R13 + [ol3llal3 + l@l3al3) - (3.13)
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Using the interpolation inequality

clldivol} 83l|l7|l3+—||v||1, 0<ey<I, (3.14)
&3

in (3.12) and (3.13), from (3.9), (3.10) (3.12), and (3.13) one gets

d
7 (— lollg+ v Ilo+ - Ilwlko+llwzllo o ilGlI%+|th|I%>
lvlz,1+|lwlil+llwtllf+IIGI\fHIGlef

<Xy +es([vl3+llollF), (3.15)
where
X3=(1/e)X (+ X+ I 13+ 1813+ (lol5+ 1a13) loll3

t 2

§faa .

0 S>

+

For obtaining (3.15) one has chosen ¢, small enough and ¢, =¢3.

Multiplying (3.1) and (3.3) by Av and — Aw, respectively, differentiating (3.1)
and (3.3) with respect to ¢, multiplying by Av, and — dw,, respectively, adding these
results and integrating over £, one gets

d . .
7 (IDoll§ + Idivol|§ + IV ll§ + [ Do g + I dive, |5 + |V e, 1)

+lolZ + ol + vl + o3
scXyte(lolt+ ol + vl + o)t + loli+lolD), (3.16)

where
Xa=[115+1g15+ 1115+ 1913 -

By adding now (3.16) and (3.15), and choosing ¢; small enough, one obtains
(3.8. O

Introduce now a partition of unity {2, {&i}). Let @ be one of the @’s, and &(x)
the function relative to Q. For subdomains @ such that @n0Q =@ new coordmates
y=T(x) such that {y*=0} = T(Qn 0Q) are introduced. For simplicity set y*=1*
(x=1,2), y* =n. Moreover, define f(y)= f(T (), 2= T(@nQ),i=ié,V=y.V,
where V=V, and set A=diam @. Later on the dependence of the constants on A will
be explicitly pointed out.

Equations (3.1), (3.2) have now the following form

O+ Ab+p,VE+p,Vi=f+k, (3.17)
G, 4+i-Ve+gdivi=h+k,, (3.18)

where k, and k, are defined in (3.20)—(3.23), and for simplicity we write u=v+1. By
taking the gradient of (3.18) multiplied by (i +v)/¢ and adding the result to (3.17)
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one has
gty o =g . o ~
wa Vé,+pVé=pA5—Vdivd)—d,—p,Vd
— f‘% v-ve)+ f+ P ik, (3.19)
A+
where k, = Vky+ky, ki=kiy +k;p, i=1,2, and

<

kyy=p(V=0)6+p,(V —=V)d—i(d — D5 —w(V div—Vdiv)i,  (3.20)
ki, EP10A'VAE+P2(?)I§£—/1(2VkﬁﬁkE+ 548

—W(divoVE+ VE+ 0 VVE), (3.21)

k,, = o(div—div)d, (3.22)

ky,=6aVE+goVE. (3.23)

For interior subdomains &, the transformation T is the identity, V V., f=f

and k;; =0,i=1,2.

Lemma 3.2. For a sufficiently smooth solution of (3.1)~(3.3) and by taking the
parameter A small enough, one has

d .
¥ (o3 + ID*a|1§) + [D?v, 13+ [ID?||§ + | D* divo|3

<)/l +c() (0, + ol + o]} + e Y, (3.24)

where

LI +1R1Z+dA0lZ+ a3 o)z + ol + lals) o],
and v, means that we consider the tangential derivative of v.

Proof. Differentiating (3.17), (3.18) twice with respect to 7, multiplying by v,t,
(p1/0)6., respectively, integrating over @ and summing we get, by assuming
A=diam{ small enough and 0<eg, <1:

d . . ~ . o
E (“Utt“(z)+ ”JrrH(2))+ “vytr”g)-i" ”leU"H(Z)

~ 1. -
écj'(“oyr“% + 8_ ”Dtyy“5)+84”0-tt“% +C()‘)X5 ’ (325)
4

where

1 l
Xs=lo|i+ — lol3+lol3+I1T+ — [r13
84 84

1
e (el +lalD ez + vl + lalls) ol
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Differentiating the third component of (3.19) with respect to 7, multiplying by &,.

and integrating over £, we have

d . - " - "
g 10nelld +160el15 S €llyeell5 + AL Gyell + 1Byyell6) + (A Xos

where
Xe=v)1+Xs.
Equation (3.17) can be written in the form
(A+V)Wdivi= — @45 —Vdive) +p, V6 +p,V & +5,— f —k, .
Differentiating the third component of (3.27) with respect to t one has

Idiv |3

S c(IByecl§ + 116 l13) + A6 lI + 1,13 + (D)X g -

From (3.26) and (3.28) one obtains

1613+ 16,3+ v

S clByeelld + AU Gy 13+ 118y 13) + () X6 -

Consider now the following Stokes’ problem

—JAG+p,Vé=—b,—p, V& +iVdivi+ f+k, in Q,
divi=divé in Q,
Blpp=0 on Q.
Differentiating (3.30) with respect to T one gets
18,13+ 16,13 S cllVdiv 15+ cA(|6, 15+ 15,y 15) + (D) X s .

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

From the normal derivatives of the third components of (3.19) and (3.27) we obtain

d . . .
i |G unlls + | Gaallg + v, 13

S CllBynell3 + AN By 1§+ 16y 1) + () X6 -

(3.32)

Atlast from (3.25),(3.29), (3.31), and (3.32), for sufficiently small ¢, and for 1 < &2, we

get

d . . . . o -
7 UBlG+16,,10) 4 18,15+ 1 diva, 15+ 116,y 16

<A/ 2d,, I3+ (DX

(3.33)
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Going back to old coordinates in a subdomain near the boundary, summing over
all neighbourhoods, the above inequality implies (3.24). O

From Lemmas 3.1 and 3.2 we have
Lemma 3.3. The following estimate holds
d
7 (ol + o3+l + lod i+ a3+ lol5+ lv.l3)

+ol3+ o3+ o3+ o3 +lol,  + [dive]3
<[e(es +1/ A ol3 +c( )Y, (3.34)
where ;=Y +Y,.
We shall obtain now the estimates which are crucial to conclude our argument.
These estimates give a control of d (Ilv]l2 + |wl|3) in terms of ||v,||% and ||w, |2 (plus

some lower order terms), and from (3.34) the final a priori estimate will follow.

Lemma 3.4. For each 0<gs<1 the following estimate holds

—(HAvllo+|IAw|!o)+uIIVAvllo+XIIVAwII ses(fvl3+ol?)

+C[g(Ilvt||§+||wt||§)+||G||§+l|vl|§+|lw||§+||f|l%+glli]. (3.39)

Proof. Writing (3.1) in the form v, + Av=f*=f —p1Vo—p,Vw, and then apply-
ing the operator A4 to it, multiplying the result by Av and integrating over Q we get

o
3 S IAl3= ] A= Aot ) Ao

[4
{f)[,uV( Av+ f*)-VAv+vdiv(— Av+ f*)div Av]

— [ﬂ ; (—Zv+f*)Zv+ﬁdiv(—Zv+f*)ﬁ~Zv]‘
Ele] n

Therefore, by using that v,= — Av+ f* and the immersion H"*(Q) ¢, L'(dQ), one
gets

1§ |:ﬁi(—Zv+f*)Zv+\7div(—Zv+f*)ﬁ-Zv]
on on

=c | Po)lAvi=cliv 2 llols-
o0
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Hence

d - R P
7 I Av]IS + Al Avll§ + ¥l div Av||§

sc(lvdlz lolls +17*19)

1
<es|v3+c <8— loeli3 + lloll3 + lleol3 + llfll%>. (3.36)
5

Repeating the above considerations for (3.3) written in the form w,— jdw=g*
=g—0,p;divy, one has

d _
i 14wl + 7V Aoll§ < (o, llols +1g*1)

1
§65|1w|I§+C(8— llwtll§+livll§+llglif>- (3.37)
5

Equations (3.36) and (3.37) imply (3.35). O
Finally, from Lemmas 3.3 and 3.4, for sufficiently small &5, 4, and &5, we have

Lemma 3.5. The following estimate holds
d
7 (05,1 + ol + o3+ lollg)+ oI5 2+l 2 +1o3 1 ScYy,  (3.38)

where

Yo=If1o+9130+ 1013+ 1R15+ ol + o+ vlslal3+lvlZlol3
2

t
+lalls(lol3+ o9+ lal3lel3 + @l ol lollo+ ‘(5)35 -l
2

Differentiate now (3.2) with respect to x and with respect to ¢. Next multiply by
Vo, Integrating over Q we get

1d c
2 Vo3 <esllonll+ o (PAESRIAR)
+c(llvlls+ lalls) ol +clllodz + 10 ol 2ol (3:39)

having integrated by parts the term [ [(v+i)- V]V, Vo, Moreover, the cubic
Q

terms in (3.38) and (3.39) can be estimated in this way
(olls+ vl Aellz + ol D)+l s + 1@l L) del3+ o))

<e,(bl2, +1ol2. )+ f— (of4 , +1il4 ).

Hence from (3.38) and (3.39), by taking ¢, and &, small enough, we have at least the
fundamental a priori estimate:

Lemma 3.6. The following estimate holds

d .
T (1vl3,1 +lo 1 +1ol3,0 + 103 s + |0l , +lo3 1 S &0, (3.40)
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where
Ys=If 0+1913, 0+ R+ 013103+ ol3, + 15,2 +
Define now
e =31 + 1@, +1o(®)3,; »
O()=v(1)3,, + 0@, 2 +10(®)]3,1 5
and

PlElg_OII%,l >

Py=lil} o +10—0,13 2+ a5+ 10,15 +1613 o+ 1713 o -

One observes at once that

D()26,0(1), 1.

t
§ [ a-a .
0 S,

283

2

(3.41)
(3.42)

(3.43)

(3.44)

Let us estimate the nonlinear terms contained in Y;. After some long but

straightforward calculations we have

Lemma 3.7. Let pe C?, c,e C', ¢,>0 for ¢>0, 6>0, and (3.7) be satisfied. For

simplicity one assumes that P,<1. Then the following estimates hold

Iflf0Sclo® +9*+ 9@ +P,),
k3,1 S c(@® + @+ Py),
g1, 0 c[@?+9* + (@ +P)@+P,],
o3l +1al3,, +1d13, 2 S c(@® + Py).
By choosing P,(t) so small that
GoCP(1)<Lt foreach reR™,

we obtain from (3.40) that
0= —0[1)2—¢,(p+ 9]+ é,(P+ P3),

t 2
where P,(t)= <j § ﬂﬂ) and é,=1.

0 S>
From the above estimates one can obtain the following

(3.45)

(3.46)

(3.47)

Lemma 3.8. Let i Ay =0. Let 0Q€ C? and let v, o, and w be solutions of
(3.1)-(3.3) in Qr belonging to the classes of functions obtained in Lemma 3.6.

Suppose that (3.7), (3.46) hold in Q1 and that

y
(p(o)é '2?3 ’ye]oﬁ%]a
1
93
16c2 "

P,(H)+Pi(H) < for each te[0,T].

(3.48)

(3.49)
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Then one has

p(H< -, Vie[0,T]. (3.50)
2¢,

The terms v0), w,(0), 6,0), which appear in ¢(0), have to be calculated from the
Egs. (3.1)-(3.3) evaluated at t=0.

Proof. Define t*=inf{te [0, T]|@(t)>7y/2¢,}. Then @(t*)=y/2¢,, and conseq-
uently from (3.47), ¢(t*) <0, a contradiction. Hence o(t)<y/2¢,Vte[0,T]. O

On the other hand, from Sobolev’s embedding theorem H?*(Q)c, C°(Q), one
sees that there exists a constant ¢; small enough such that, if ¢(t) <é,, then

0250(t,x)+0<33, 0,250t x)+0(t,x)<30, in Q. (3.51)
Finally, we have

Lemma 3.9. There exists a constant ¢, such that, if (3.51) holds and ( for simplicity)
P,(t)<1, then

lo@13+ lo@)13 = alo() +@*(6) + P(1)]. (3.52)
Proof. By using (3.1), (3.3) one has
o3 = cllAv@®)I} S cLo®) + @* () + P2()]
@3 =cl o) < clo®) + () + Py(t)
+o@3 lo@)121.

By using the first one in the second and then adding the two estimates thus
obtained, we get (3.52). O

Now we are in a position to prove the global existence of a solution. In fact
choose

@(0)< min(1/2¢4, é3)=¢5 (3.53)
[see (3.41)], and

A

P,(t)+ Py() < %% ¢s foreach teR” (3.54)
1

[see (3.43) and (3.47)]. Then we have that (3.51) holds for oy(x)+¢ and
wo(x)+0(0,x). Moreover, from Lemma 3.9 we get that |lv,]3+]|w,ll3
<é,[¢é5+ ¢+ 11=¢é4. Hence from the local existence theorem we can construct a
solution for ¢ € [0, T*], which satisfies (3.7) in Q1+; T* depends only on the data of
the problem and on és, és. From Lemma 3.8 one gets

(P(t) éés ] Vt € [07 T*]

and can start again from T*, finding a solution in [T*,2T*] and so on.
In this way we have proved that a global solution does exist, and satisfies (3.51)
and (3.52) for each te R™. Therefore, we have proved
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Theorem 3.10. Let i - 715020 and
1. 0QeC3, peC?, p(@,0,)>0,

c,€Clc,>0 for ¢>0 and 60>0;

2 e 113 L (Q.)NITE (Q.0);

3. 0ell3 (Q )N} (Q.); 01_1nf9>0

4. uy—i(0) e HY(Q), v, Hy(Q), goeHz(Q) 0,—0(0)e HY(Q), o€ HH Q) (see
(2.21) and (2.22) for the definition of ¥, and @) ;

5.1, bells (Qy);

6. in the case of an outflow: | (j ﬁr’z) < 0.
A

Let (3.53), (3.54) be satisfied (i.e., let ug, i, 0o—@, 0o—0,, 0—06,, b, r, and

§ (f ii- ﬁ) be small enough in suitable norms). Then there exist
0 \s,

@,0)e L*(R"; HQ)),  (u,0) e CxR™; HY(Q)NLi (R*; HX(Q)),
ee CRR™; H*(Q), e CyRY; HY(Q),

inf 6>0, infe>0,

Q@ QOO
such that (u, 9, 0) is a solution of (1.1)in Q..
Remark 3.11. An analogous result can be obtained also if we merely suppose that
(@,0)e X (R*; HX(Q), (@,0)e SR HA(Q), (4,0,)eSRT; LAHQ)),
(b,r) e AR ; HY(Q)), (b,, 1) € F*(R*; L*(Q)) and that the norms of i@, §—0,, b,
and r in these spaces are small enough (and of course that ¢(0) and sup P,(¢) are

IR+

sufficiently small). One gets again the a priori estimates on ¢(t) (see for instance the

proof of Proposition 2.2 in [14]), and consequently on [[v(t)| 5/, and [|a(t)| s/, asin
Lemma 3.9 (one needs to use now that

]|f9”1/2§0||f|[1 gl Ilfg|(1/2§cllf,|1/2 lgll2)-

Hence the only difference is that in this situation we obtain
(u,0)e CRR*; H*(Q)NLi, (R HY(Q). M

4. Stability. The Case Without Qutflow

In this section we follows the methods of [31]. Suppose that i-7<0 on X, and
that we have two solutions (v;, g;, @,), i=1,2, of (1.17) in @, corresponding to two
different initial data satisfying [ o= f o) =0. Suppose that both these initial
data satisfy

(0)<min (-031 @3) =R, ye]0.1/2] @4.1)

1

[see (3.41)], and ,
P(t)=P,(1) + P5(t) < - 2—2 R, VieR* 4.2)
1
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[see (3.43)and (3.47)]. When @-7i=0o0n X ,ie., S; =0, from Lemma 3.8 we know
that the corresponding solutions satisfy

for each teR*. If S, +0, assume that (4.3) is satisfied. From (3.47) we easily get
(again for S, =0)

t t A
%gcbi(s)dng-kél ([)P(s)dng <1+%t), i=1,2. 4.4

If S, +0, assume that (4.4) holds (see, however, Theorem 4.3). By choosing y small
enough, we can make R as small as we need. From now on we shall assume that
R=1.

Set now g=v, —v,, =0,—0,, f=w,—w,. We want to prove that all the
solutions of (1.17) are asymptotically equivalent. More precisely, we shall prove

that
la@® 13+ In@II5+18DO13
<c(llgO1I5 +InO) 15+ 1 50) 13 exp(—e2) 4.5)
¢>0, teR*. Now we write the equations for g, , and f.
4+ Aq+p, Vn+pVB=fi—f, in Q..
q=0 on X, (4.6)
4O =go=tf)—of) in Q;
n+odivg=h,—h,— (@, +a)y-Vy—qVe, in Q.,
n=0 on 1]0,c0[ xS, 4.7
n0)=no=0f’ -0’ in Q;
Be—7AB+6:1p3divg=g,—g, in Q,,
f=0 on X, 4.8)

BOI=po=0f) —af) in Q.

where
|, POt G0+
fi 2-[1’1 P n
N [pg(aﬁé, w0, +0) pg(al+é,w1+6):| Ve
o,+0 o,+0 2
2 g2 |, _PlOtE0 40|
== [Pz cito b
n Po(o,+ 0, w,+0) _Po(0'1+é,w1+9):| P(w,+0)
O'2+Q- O-l_l_Q' 2 ’

ff—fP=—+0)-Vg—q-V(v,+1)
0y n n

- Agq+ ~ — Avy+ ——————
6210 1 (0,400,401 (0,40 (0, +0)

+ Aii, (4.9)
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and
hy—hy=—ndivo, —0,divg—yndivi. (4.10)
We can write also
hi—h,—(,+u)-Vn—q-Vo,=—div[o,q+ (v, +a)n]. (4.11)

At last we have

Po(0,01) (0, 4+py(o,+3,0,+0) ] ..
si-ai= [0 e~ A o e
I:((Uz + g)Pa(O'z +0, w, +€—)
(0, +0)cy(02+0, 0, +0)
(o + Dpo(a, +, 0, +9_)] dive
(01 +0)cy(oy+0, 0w, +0) z

— X
B [X“ (6, +0)c(0,+0. w2+<7)] af

1 1
— ~ - —— — ~ — — | Aw,,
t [(0'1+Q)Cv(61+95601+9) (o2+g>cv(oz+g,w2+e>] !

g§~g§=x[ 1 — - ! _]Aﬁ
(6,+0)c(0;+0, 0, +0)  (0,+0)c,(0,+0, w,+0)

_ [(U)1 +0)py(o; + 0, 0, +€)
(6, +0)c,(01+0, 0, +0)

(0, + g)Po(O'z +0, 0, + g)] divi,

B (0,4 0)c,(0,+0, 0w, +0)
1
(0'1 + é)cv(cl + Q_9 (,01 + 0_)

gi—g2=—q V(o1 +0) (v +@)-V+
- {é} (Dig*+ Dy’ D0, + 5 + 20 + Dy{v +v, + 20)]

+(v—pwdivgdiv(v, +v, + 2&)}

1 1
+ _ _ S _ _ _
[(01 +@)e(o;+0, 0, +0)  (0,+0)c,(0,+0, wz“‘g)]

: {g 2, [Di(v; + )"+ Dy, + 1)1+ (v— ) [div(v, + 11)]2}

1 1
_ —|. 4.12
o [c,,(ol 150,10 ofos¥0, 0, +0>] *12)
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From (4.6)—(4.8), by proceeding as in Lemma 3.1 (see also Lemma 5.1 in [31]), we
have for each O0<e<1,

1d 1p, d
3 g5 a3+ 52 2 Wi+ 522 2181

+ 5 1Pal+ldivaly+ 722 7B
§C<”f1-fz”%-1+”g1 goll2 1+ = lhl“‘hz”o) +ellnll3

c c _
+o Rlgli+ — (losl3+ 1al3) Inlis (4.13)

Moreover, after some straightforward calculations, one gets

Lemma 4.1. Let §,=|0—0,|3<1 (for simplicity), S,= [d|2+ |all3+110—0,|3
+ 7|12, pe C?, ¢, € C* and (3.7) be satisfied. Then the following estimates are valid

Ifi=foll2 SeR+S) (Inli§ + 1818) +cRlql1?

+e(llvI3+52) Unlig+ 11413, (4.14)
lhy —hy 3= cRlqlt+c(lvy 13+ S2)lInlg (4.15)

lgi —g212 1 S c(R+S)BIT +lqlD)
+e(llog 13+ R+S82) (Inllg + 1415+ 1B1I3) - (4.16)

Using (4.14)-(4.16) in (4.13) one obtains

1d 1p, d
33 i 5 2 il 22 gl

+ 5 1Pali+odivald+ e 713
— C
<c(R+S) (Inl3-+ 181+ lalD) +elnl3+ * Rlgl}

+ 5 o3+ ) i3+ gl
el 13+52) (nli3+ 1913+ 113) - @17

Now we want to estimate ||7]|3. We can repeat essentially the considerations of
[31]. Let z be the solution of the Stokes’ problem
Az—Vr=0 in Q.,

divz=n¢ in Q, (4.18)

z=0 on 2X2_,
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-

which exists since | n= [ no— [ | [ni-i+(c,+@)q-7]=0 for each teR*,
Q Q 0 002
because i-7i=0 on 0Q2\S, and =0 on S,. Therefore, we have
lzI2<clnlg (4.19)

Multiplying (4.6), by z and integrating over €, from (4.19) one has
pilinlig= §2 4+ Aq+p.VB—(fi— /)] 2
< !, a4 z+c(lAgl -+ VB -y + 1L fi=f2l - D linllo

= {5) g z+c(lqlli +1BIG+ 1 fi— 12 0+ ?21 Il (4.20)
On the other hand

d
ﬁqt-Z—quﬁ—gq-zt-

By taking the time derivative of (4.18) we see that z, is the solution of
Az,—Vmr,=0 in Q,,
divz,=n, in Q,
z,z=0 on 2X_,

and from (4.11)
n=—divWw,

where
W=(o,+0)q+ @, +i)y. 4.21)
Let (77, 2) be a solution of the Stokes’ problem
AV —VP=q in Q,,
divy'=0 in Q,
¥v'=0 on X2,

which satisfies
171+ V2l =cldllo .- (4.22)

Hence, by recalling again that W - 71,0 =0 since #-i=0 on d\S; and n=0o0n S,
one gets

Vqz,=§ UV —=VP)z,= [V Az, +Pdivz,
Q 2 2
={¥ Vn—|2divw=[Vr®?.w,
2 2 Q
and estimating W,

|§2 q-z{=clqli+c(R+5,) [nl3- (4.23)
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Multiplying (4.20) by 8, 0< <1, and recalling the estimate for | f; — f,[|% ,, we
obtain

52 i3~ £ -2
§65(I|qlll+Ilﬂllo)+c5(R+§z+l|v1|l§)(|l'1||3+IIQII?)HIﬁH%)- (4.24)
By choosing ¢=4p,/4, from (4.17) and (4.24) we have

1d

1 py
27 lqlig+ ¥

@ 2 | S0 A 112
i I3 52 2 VB3 5 17 ai3-+ lcival:

b 713+ B Inig=0 5 ] a-2
P3Yy

éC(R+§1)(IInII%+IIquf+llﬂHf)+%R||q||f+c5(llqllf+llﬁll%)
¢ <5+ %) Sz +llvs 13+ o 13) Anlig + 13+ 1813) - (4.25)

Now we integrate (4.25) with respect to t. Since [because of (4.19)]
0 |?(? q-2| <&6(lqll5+1nl3),

we get

1 = 2 lﬂ = 2,
(2 c15> lqlc+ (2 3 C15> nllo+ 301 “ﬁ“o

t t v t
[ I7ai2+7 § Idivalz+ <22 ] 1vp1z+8 2L § 112
0 0 2ps0, o 4 %

+

NS T~

= &xo13+ 1403+ 1 6ol
+ER+8) | (nlE+17p13+17al?)

- t

+ 32 Ri 1Vqll§+¢,0 (ft) (Va5 +1vBI3)
( )£ o3+l Anld+1ql5+ 1813 (4.26)
Assuming that
5 < min {% 422_1, Z’:—Z 4;35?52’ 1}, 4.27)

and

T . Jopy  Ip2 op }
< 428
Sl+R=mm{8'Z’ 8,920, 85,01 19 (428)
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[see (4.1) and Lemma 4.1], we have

g3+ i3+ 1813+ (ft) (IVqlig+ Idival§+ 1V BIS + Inli5)

=&3(190l13+ 1m0l + 18o13)

t
+C3 g oy 3+l I3+S5) (gli§+ In 3+ 1813 - (4.29)

Putting

(&)= g2+ [n(O15+ I BOIT+ f (IVqli3+ Idivglig+ 1V BIZ+ In113)
0 (4.30)
and

{O= oI5+ oy )3 +550), (4.31)

(4.29) can be written as

P <6, [w(0)+ j z(s>w(s>ds]; (4.32)

hence by Gronwall’s lemma one has
t
(1) = ¢3p(0) exp [53 (f) C(S)dS]
A t
<Ep(0) exp [853R <1 + %2— t) 4 S'z]. (4.33)
0

By (4.2) we have that

O
gl
A
o
&

Introducing
g4(t, x)=exp(at)g(t, x),  #(t, x) = expla)n(t, x),
Bt x) = exp(at) B(z, x),

and repeating the considerations from [31] we get, for a sufficiently small o,
la@® 115+ In(O13+ 1 BO115
t
+ (f) exp[—2o(t = )](IVq(s)II5 + IV SIS+ 1n(s)[15)ds

< cexp(cR) (llgoll5 + 11013+ [1Bo13) exp[ — (20—, R)t] (4.35)

for each te R ™.

(4.34)

Hence we have proved:

Theorem 4.2. Let the assumptions 1-5 of Theorem 3.10 be satisfied, and ii - 715 =0.
Assume also that (4.1) and (4.2) are satisfied for y small enough in such a way that
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(4.28) holds and
20—, R>0 (4.36)

(see (4.35)). Let (uf, oF, 0F) be the solutions of (1.1) in Q, corresponding to the
initial data (u, o, 0V), satisfying f oW =gvol(Q), i=1,2. Then the difference

(g,n, B) between (uf, 0%, 6%) and (u3, gz‘, 0%) satisfies (4.35) and tends to zero as
t—00.

Theorem 4.3. Let (uf, 0%, 0%) and (u}, 0%, 6%) be two solutions of (1.1), (1.5) such
that f ot = f ot =g vol(Q) and

-+l O—FE 1070 TSN, WieR*, i=12
§ (ut()~ A3+ 1076~ IS N+ Not, VieR* . (438)

Suppose that
10()—0,12<N,, VieR*, (0,=inff), (4.39)
DISS

é(”a(s)”%‘i"”a(s)ﬂg"i"”6—(3)_61"§+“r(s)|lf)d5§N5+N6t’ VieR™ (4.40)

and that i- Ay £0. If Ny, N3, Ny, and N4 are small enough, then the difference
(9,7, B) between (uf, 0%, 0F) and (u%, %, 0%) goes to zero in L*(Q) exponentially as
[—00.

Remark 4.4. Conditions (4.39) and (4.40) are satisfied if i7, , and r are as in Remark
31, =

5. Periodic and Stationary Solutions. The Case Without Inflow and Outflow

Itis well known that from the global existence theorem and from stability it follows
that there exists a T-periodic solution under the action of T-periodic external
forces (and heat sources) and boundary data (see, for instance, Serrin [24, 257).

Let us explain briefly this argument: one constructs a global solution U* by
starting from some initial data, and then considers U,(x)=U*(nT,x). By the
stability result, and using the periodicity of the data, one gets that U,—»U,,
strongly in L*(Q2) (and, by compactness, in some stronger topology). Finally, one
proves that the solution having U, as initial data is a T-periodic solution.

We are now in a position to apply this method for showing the existence of a T-
periodic solution (u, g, §) of (1.1);—(1.1)5, (1.1)5, (1.1), with j o=gvol(Q), ¢ a given
positive constant. We have only to verify that:

(i) given b, r, i, 0 satisfying (4.2), @i - =0 on 0L, it is possible to find initial data
(vg, 09, wg) Which satisfy the assumption 4 of Theorem 3.10 (in particular the
compatibility conditions) and such that (4.1) is satisfied; (ii) the limit of (v*(nT),
o*(nT), w*(nT)), say (U, 04, O ), satisfies the assumption 4 of Theorem 3.10 and
4.1).
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To verify (i), one can proceed in several ways. For instance, extend @ and fin
[ — T, oo[ by periodicity, and choose an extension b and 7of b and rin [ — T, oo, so
that

b(—T)= = V[p(a, 0(0))]+ A1(0) +1,(0)+1(0) - Vii(0) in Q, (5.1)

| =

7(—T)= ~ B(0)pe(@, 0(0)) divir(0) — % 46(0)

| —

— 5= 3 (D) + Di(0))?
0ik

_ é (v— ) (divI0)* + (2. B0))
[(?,(0)—%—11(0) VO_(O)] in Q. (5.2)

One can proceed in such a way that the function 2,(¢) [defined as in (3.43)] satisfies
P,()+P,(H)<ER, Vte[—-T, of. (5.3)

Choose now as initial data in t, = — T the functions v, =0, 6, =0, @, =0. By (5.1),
(5.2) we obtain ¢(—T)=0. Hence by applying Theorem 3.10 we get a global

. ~ . . . 8¢
solution (v, o, ®) (for band #!)in [ — T, oo[, which satisfies ¢(t) < % ¢sR=R,,and
2

we apply the argument described before to this solution[we can suppose of course
that R is so small that R, <min(1/2¢,, é;), and moreover that R, satisfies (4.28)
and (4.36)].

To verify (ii), one has only to look at the compatibility conditions. By a
compactness argument one knows that (v*(nT), a*(nT), w*(nT)) converges to (v,
0., 0,) In a strong topology; hence, it is easily seen that

1
0 +@
—14(0) = (v, +1#(0)) - Vv, +1#(0)) + b(0) = () »

and analogously for w¥(n,T). Consequently (5,,), € H5(Q), (00,,)0 € Ho(Q) and (ii)
is satisfied.

One can prove also that there exists a stationary solution. In fact, by assuming
that b, r, 4, and 8 do not depend to ¢, we know now that for each T >0 there exists a
solution which is T-periodic. By the stability result, the periodic solutions
corresponding to a rational period are always the same, hence there exists a
solution which is constant for ¢ € Q. By a continuity argument this solution does
not depend on t € IR (see [31, Sects. 6 and 7] for similar results for the barotropic
case). We have obtained in this way

vF(n, T) 1. {=VIp(05+0, ., +0(0))] — Av,, — Ai(0)}

Theorem5.1. Let the assumptions 1-5 of Theorem 3.10 be satisfied, and i -7y  =0.
Assume also that (4.2) is satisfied for y so small that (4.28) and (4.36) hold. If b, r, i,
and 0 are periodic of period T >0, then there exists a T-periodic solution (u, g, 0) of
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(1.1),~(1.1)3, (1.1)s, (1.1), such that § g@=@ vol(Q). If b, r, i, and 0 are independent
Q

of t, then there exists a stationary solution (u,,0) of (1.1);—(1.1)3, (1.1)s, (1.1),
such that | ¢=@vol(Q). Moreover, these solutions are asymptotically stable and
Q

unique among all other solutions (u, @, 0) which satisfy (4.37) for N, small enough,
and such that | @=gvol(Q).
(2]

Remark 5.2. One can also obtain some results about almost-periodicity by
following the methods utilized in [14] for the barotropic case. B

6. Appendix

In this section we want to remark that all the results proved in this paper hold also
when the coefficients y, v, and y are not constant, but depend in a suitable way on g
and 6. More precisely, we suppose that ue C?,ve C2, ye C* and that u>0,v=ipu
and y>0 for ¢>0 and 6>0.

The proofs of the theorems require some modifications that we want to
underline. First of all, the second order operators in (1.1), and (1.1); are now

— Au=Dy(uDu + uVu') + V(v — p) divu] 6.1)
and
div(yV6). (6.2)
Hence in Sect. 2 we are led to consider the operators
Agv=—Di(uoDw + poV'v') = V[(vo— po) divo], (6.3)
and
—div(y, Vw), (6.4)

where uo = (@0, 00) vo = (20, 00); 20 = 1(20s 0o)-
The bilinear form associated to A, is no more coercive in Hy(R), but it is easily
verified that

(400, D+ 460, 0) 2 B 100l

for each 1€ € with ReA>(c,/i3}) |V ol o) = Ao- (Here i, = m!_gn Hos €y =C,(2)).

Remark that g,e HX(Q), 0,e H*(Q), 0<m=go(x)EM, 0<0;=04(x)<0,,
hence 1, < +00 and i, >0.

Moreover, following the usual regularization procedure, one gets the a priori
estimates,

Iolig+ 2 <1+ [Dpoll§ + IDvo D) (1 4ovllE + [0]3),  k=0,1,  (6.5)

where a is a suitable positive integer, and ¢ depends on Q and in an increasing way
on 1/, fi, = max pu, and 7, = max v,. An analogous result holds also for w.
a o

The proof of Lemmas 2.1 and 2.3 must be changed somewhere, since now ||v||2
appears on the right-hand side of (6.5), and D,(u,Vv’) gives some additional terms
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when it is integrated by parts. Moreover, on the right-hand side of (2.1); we have
now also

Agd—{—DyAD#+ AV #)— V[~ ) dive]},

where g= G+, d+0), ¥=v(6+3,d+0) [and something of this kind on the
right-hand side of (2.3),, too].

However, having taken into account these modifications, the local existence
theorem still holds under the same assumptions.

With regard to the global a priori estimates and to the asymptotic stability, we
have only to remark that in (3.1),, (3.3), (4.6),, and (4.8); we set now

/TE . #(Q-iel) A . V(Q_a—el) Vd.iV,
0 Q
and
X-E X(és 01) )
Q—Cu(g—a 01)

The additional expressions which appear on the right-hand side of (3.1),, (3.3);,
(4.6),, and (4.8), can be estimated in the same way as in the previous situation, and
consequently all the results exposed in this paper are still valid.
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