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Abstract. We consider the equations which describe the motion of a viscous
compressible fluid, taking into consideration the case of inflow and/or outflow
through the boundary. By means of some a priori estimates we prove the
existence of a global (in time) solution. Moreover, as a consequence of a
stability result, we show that there exist a periodic solution and a stationary
solution.

1. Introduction

In this paper the motion of a viscous compressible fluid is considered. The motion
in a bounded domain ΩcIR3 is described by the following equations

ρ[ut + u Vu — b']= — Vp — Au in Qτ,

= 0 in g Γ ,

ρcv[θt + u - F0] + θpθ div u

in Qτ,

in Ω,

on ΣT9

in Ω,

O n Στ,

where — A = μΔ + vV div. (See, for instance, Serrin [23].)
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The following notations are introduced: β Γ = ]0, T[xO, £ T ΞΞ]0, T[xδΏ,
0 < TS oo, ρ = ρ(f, x) is the density of the fluid, u = w(£, x) the velocity, fc = b(t, x) the
external force field per unit mass, θ = θ(t, x) the absolute temperature, r = r(ί, x) the
heat sources per unit time per unit mass, p = p(ρ, θ) the pressure and cv = cy(ρ, 0) the
specific heat at constant volume. These last two are assumed to be known
functions of ρ and θ. The viscosity coefficients μ and v and the coefficient of heat
conductivity χ are assumed to be constant and to satisfy the following thermody-
namic restrictions

μ > 0 , v ^ i μ , χ > 0 . (1.2)

(Actually, it is enough to assume that these coefficients are C2 functions of ρ and θ,
see Appendix in Sect. 6.)

The functions w0, ρ0, and θ0 are the initial data of w, ρ, and 0, respectively. The
functions ύ\dΩ and θ\dΩ are the boundary data for u and θ, respectively. For the sake
of simplicity, we assume that ΰ and θ are defined in β Γ , without considering the
problem of describing precisely their space of traces.

Problem (1.1) is well posed if

where ή is the unit outward normal vector to the boundary. If this condition is not
satisfied in some region, one needs to prescribe the value of ρ on this part of dΩ. To
clarify the situation, define

Sί(t) = {xedΩ\ύ(t,x) ή(x)<0} (1.3)

and
S2(t) = {x e dΩ I ύ(t9 x) ή(x) > 0}. (1.4)

(However, for reasons which will be clear later, we assume that Sx does not depend
on t. We remark moreover that the domain Ω does not depend on t) lϊS1 + 0, then
the density ρ on Sx has to be prescribed

Q\Sl=Qi o n Ί^TlxSx. (1.5)

The initial and boundary data for density and temperature are assumed to be
positive: ρo = ρo(x)>0, θo = θo(x)>0, ρ 1 =ρ 1 ( ί ,x)>0 on R + x Sl9 θ = θ(t,x)
^ 0 ! > O on Σ^.

Finally, the following compatibility conditions have to be assumed

(1.6)

(1.7)

(1.8)

ρM(0, H - d i v ( ρ o u o ) , S l , (1.9)

and moreover,
tfo|,« = 0, (1.10)

ώoι,β = 0 (1.11)

[see (2.21) and (2.22) for the definition of vQ and ώ 0 ] .
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In the last thirty years this problem has been intensively studied, firstly
investigating uniqueness (see Graffi [8], Serrin [26], Valli [29]) and later (local in
time) existence (see Nash [20], Itaya [9], VoΓpert and Hudjaev [32] for the
Cauchy problem in R 3 ; Solonnikov [27], Tani [28], Valli [30] for the Cauchy-
Dirichlet problem in a general domain with vanishing velocity on the boundary;
Fiszdon and Zajaczkowski [4,5] for the Cauchy-Dirichlet problem in a bounded
domain too but in the case of an inflow only, i.e., Sx = dΩ; Lukaszewicz [12,13] for
the Cauchy-Dirichlet problem in a bounded domain in the case of inflow and
outflow, i.e. dΩ = S1uS2,

 o r Si=0).
Recently, a global existence result has been proved by Matsumura and Nishida

in IR3 [15,16]. Afterwords, Matsumura and Nishida [17, 18], Valli [31] have
shown global existence in a bounded domain Ω with U\dΩ = 0, and Fiszdon and
Zajaczkowski [4,6] in the case of an inflow only. (However, in [4, 6, 31] only the
case of a barotropic fluid (i.e., p — p(ρ)) is considered.)

The case of the half-space or of an exterior domain has been studied by
Matsumura and Nishida [19]. These global existence results have been obtained
under the assumptions that the data of problems are small enough. The most
complete results about qualitative properties of the solution have been proved in
[31], where it is shown, by means of a stability argument, that there exist periodic
and stationary solutions (see also Marcati and Valli [14] for the existence of
almost-periodic solutions; moreover, some partial results about stationary
solutions were proved by Matsumura and Nishida [17-19] when the external
force field b is a gradient, and by Padula [21] when the ratio v/μ is large enough).

In this paper we study global existence, stability, existence of periodic and
stationary solutions for the general Eqs. (1.1), (1.5), extending the results of [31] to
the non-barotropic case. Since some non-linear terms contained in (1.1)3 are
quadratic in Du, one needs a priori estimates more precise than those proved in
[31] in such a way that the behaviour of these nonlinear terms can be controlled
(see in particular Lemma 2.4). Moreover, we consider also the case in which there is
an inflow and/or an outflow. These cases require some new calculations also for the
local existence theorem; furthermore, we shall see later in this introduction that in
these situations some qualitative results cannot be proved.

This paper is organized in the following way. In Sect. 2 we prove the local
existence of a solution for the general Cauchy-Dirichlet boundary value problem
(by assuming that the region S l5 where ΰ ή<0, is a closed surface; we need this
condition since to obtain a priori estimates for the density ρ one has to consider
some integrals on Sί in which ΰ ή appears at the denominator, see Sect. 2.B and in
particular (2.28)). We need a local existence theorem precisely in the form of
Theorem 2.5, so that we can use the a priori estimates of Sect. 3 to extend the
solution up to infinity. In Sect. 2 we remark also that the uniqueness holds in a class
of functions containing the global solution to be constructed later in Sect. 3.

In Sect. 3 we prove the a priori estimates global in time, and consequently the
existence of a global solution. We need, however, that there is no inflow (i.e.,
St =0). Otherwise, our methods would give a solution satisfying

V(ί,x)E(L, (1.12)
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where

β s - i - f β o ( x ) > 0 (|β| = vol(Ω)). (1.13)

From the equation of conservation of mass one knows that

Jρ = ρ |β |-} ί u ήρ; (1.14)
Ω 0 dΩ

00

hence, if the total outflow J Γ J ΰ ήρ] is finite, as we shall assume, then the integral
o |_s2 J

ϊ f t t n (1.15)
0 Si

is finite. But our assumption ΰ ή<0 on the closed surface Sί gives

— ύ(t, x) - ή(x) ̂  α o ( ί ) > 0 o n S l 9

hence α0 would be in L^R"1"). Moreover, in proving the existence of a global
solution we require the smallness of w, hence of ao; but to obtain (2.28) we use that
l/αo(ί) is bounded.

In Sect. 4 we show the asymptotic equivalence of two solutions starting from
two initial data satisfying

In this case we need that there is no outflow, since some technical difficulties arise if
the total amounts of mass of the two solutions are different.

In Sect. 5 we prove the existence of a periodic and a stationary solution in the
case of the vanishing normal component of the velocity on dΩ. An essential tool for
constructing these solutions is the use of the "stability" result proved in Sect. 4.

Now we want to make precise some necessary conditions for proving the
existence of periodic and stationary solutions. Suppose that ΰ ή ̂  0 on dΩ, ύ ή < 0
on Sx Φ0, and that we get a Γ-periodic solution satisfying (1.12). Then from (1.14)
one gets

oo oo kT oo Γ

+ o o > - H w « = - Σ ί ί ΰ ή = - Σ ί ί w n,
0 dΩ k=ί (k-ί)T dΩ k= 1 0 dΩ

which is obviously a contradiction. Hence there is no periodic solution satisfying
(1.12) in the case of an inflow without an outflow. The same happens if ΰ ή^O on
dΩ, ΰ'ή>0 on S2(O + 0 f°r some t.

The existence of a periodic solution in the presence of an inflow and an outflow
at the same time is an open problem. Similar considerations hold for the stationary
case, too. In this situation, if only an inflow is present, then one gets the
contradiction

0> J ΰ ήρ= f ύ'ήρ = O,
Si dΩ

and analogously in the case of an outflow.
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Finally, we introduce some notations. We set

m= min ρo(x), M= max ρo(x),
Ω Ω

θ3 = min θo(x), 04 = max 0o(x),

and these constants will be used in proving some estimates in Sect. 2. We shall
denote the usual norm in the Sobolev space HS(Ω) (or any other equivalent norm)
by || | |s for s^ - 1 ; the norm in WS>P(Ω) by || \\StP; the norm in L«(0, T;HS(Ω)) by
[ \;s;Tϊoτ 1 ̂ <?^oo, s^ -1, 0 < T ^ o o ; the norm in Lβ(0, T; L\Ω)) by ||| | | | β ; k ; T ,
for 1 '<; q <; oo? 1 <; fc ̂  oo, 0 < Γ<; oo. The norm in L°°(0, Γ X) and in C°([0, T], X)
are denoted in the same way. Moreover, it is useful to remark that for
C°([0, oo];X) we mean C^QS.+;X), the space of continuous and bounded
functions from 1R+ to X.

We introduce the space

Πι

k,p(Qτ)^ Π W2-'(0,Γ;ff'(Ω)),
i = k

and for a function w defined in Qτ we set the notation

/ I \l/2

Ht)\ltktJ= ^Σ Wr<t)\\2

mjή , te[0, T].

Usually we shall omit the dependence of u on t and the symbol J when J = Ω.
Finally, we recall that, from the classical results of Agmon et al. [1], the norms

\\μΔv + vV divt;||fc and |M|fc + 2 J fe G N, are equivalent for v]dΩ = 0, since μΛ + vP div is
a strongly elliptic operator.

For reasons which will be clear in the sequel, we rewrite problem (1.1), (1.5) in a
new form, by the change of variables

σ = ρ — ρ, (ρ defined in (1.13)),

VΞΞU-U, (1.16)

and obtain

(σ + ρ)vt + Av + pQVσ + pθ Vω

-b']-Aύ-pΘVΘ in Qτ,

+ ρ)div{v + u) = O in Qτ,

(σ + ρ)cvωt — χA ω + (ω + θ)pθ div v

+ J Σ IDi

~(ω + θ)pθdivΰ in
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t>l0Ω = O on Στ,

ω{dΩ = 0 on ΣT9

in Ω,

in β, ( L l 7 )

l = <ri=Qi-Q on

2. Local Existence

A Case Without an Inflow

The local existence of a solution can be proved by following the methods of [31,
Sect. 2] (see also [2]). At first one considers the linear problem

ρvt + Av = F in Qτ,

vldΩ = 0 on Στ, (2.1)

v(0) = v0 in Ω,

where

A=-μA-vVdiv, (2.2)

and ρ, F, and y0 are known functions, 0 < T ^ o o .
In [31] it is proved that there exists a unique solution v of (2.1) under suitable

assumptions. Moreover, one gets:

Lemma 2.1. Let dΩeC3, ρGL°°(Qτ), 0 < m/2 ̂  ρ(ί, x) ̂  2M a.e. in Qτ,
ρ(0,x)eL™(Ω), 0 < m ^ ρ ( 0 , x ) ^ M a.e. in β, F ρ e L ^ Γ ; L3(Ω))9 ρteL2(0,T;
L\Ω)\ FGL 2 (0,T; H^β)), FteL\0,T; L\Ω)) and voeH^), [F(0)
-Aϋ o ]/ρ(0)ei ϊJ(β). Γ/zβn ίfte soίwίzon u o/ (2.1) is swcft thatυeL2(0, T; H3(Ω))
nC°([0, T] H\Ω)\ υt e L2(0, T H2(Ω))nC°([0, T] Hι(Ω)\ υtt e L2(0, T L\Ω))
and

ρ(0)

Here and in the sequel each constant c, ci5 Cf will depend (at most) on Ω, μ, v, χ, ρ, m,
M, θ 3 , θ 4 , and cf, c | (see Lemma 2.3) and not on T. Other possible dependences
will be explicitly pointed out.
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Proof. By taking the derivative in t of (2.1)1? one gets for V=vt:

t in β Γ ,

= 0 on Γ Γ ,

, a.

265

(2.4)

Multiplying by Vt + £0AV (ε0 to be chosen in a suitable way) and integrating in Ώ,
one gets, as in the proof of Lemma 2.1 in [31]:

~

Hence, by GronwalΓs lemma we have:

i.e.
F(ϋ)-Aυ0

ρ(0)

By integrating (2.5) one gets

F(0)-Avo

By recalling that

V=vt =

ρ(0)

lllAlll2;3;τ)exp(c|||ρt|||li3iΓ).

F-Aυ

Π 2 ; 0 ; Γ = ί W§ • V\\2

Q^C ] \\V ρ\\lHΩ)\\V \\2

0 0

^lll^lll!;3;τ (right-hand side of (2.6)).

From (2.6)-(2.10) one gets at once (2.3). D

(2.5)

exρ(c|||e t | | |i i 3;Γ). (2.6)

(2.7)

one has at once

[^]»;o ;r^c([F]i;O;r + right-hand s j d e of (2.6)), (2.8)

[i4»]|. 1.Γ^c([F]l. 1. τ + [Fρ F] i . 0 . Γ +right-hand side of (2.7)). (2.9)

On the other hand

(2.10)
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Remark 2.2. Observe that, from the assumptions on ρ, the condition
[F(0) - AVO]/Q(0) E HJ(β) implies that [F(0) - AυQ~\ e Hίl2(Ω). Since
F(0)eHi/2(Ω) (by interpolation), and ί;oeiίJ(Ω), one gets at once that these
conditions imply v0 E H5/2(Ω). •

Consider now the linear problem

cvρωt-χAω = G in β Γ ,

ω{δΩ = 0 on Στ, (2.11)

co(Q) = ω0 in Ω,

where cy, ρ, G, and ω 0 are known functions.
By proceeding exactly as before, considering — χΔ instead of A, one gets

Lemma 2.3. Let <3ΩeC3, CVQEL™{QT\ 0<cf y ^(c,ρ) (ί,x)^2c|M a.e. m β τ ,

(c,ρ) (0, x) e L«(Ω)9 0 < c*m £ (cvρ) (0, x) £ c%M a.e. in ΩΓ, P(c,ρ) e L2(0, Γ L3(ί2)),
(c^Q)teL2(09T; L3(ί2)), G G L 2 ( 0 , Γ ; ^(Ω)), GtGL2(0,Γ; L2(Ω)) and [G(0)
+ χAωo]/(cvρ)(0)EHl(Ω), ω0EHl(Ω). Then the solution ω of (2.11) is such that
ωeL2(0, T; #3(Ω))nC°([0, T]; H2(Ω)\ ωtEL2(ΰ, T; H2(Ω))nC°([0, T];
H\Ω))9 ωtteL2(0, T; L\Ω)) and

i; 3; T̂  + ΠK^^XIlii; 3; ̂ ) ^X^ (θ^ j | K^^)tl 111; 3; Γ ) | (2-12)

Finally, consider the linear problem

d i l = O in Q τ ,
(2.13)

σ(0) = σ0 in Ω,

where u and σ0 are known functions. One obtains

Lemma2.4. Let8ΩEC\UEL\0,T;H3(Ω)\u-ή^0onΣτ,andσoeH2(Ω). Then
there exists a unique solution σ of (2.13) such that OE C°([0, T]; H2(Ω)) and

// in addition u s C°([0, T] H\Ω)\ then σt E C°([0, Γ] H ^

Moo;l;T^^raoo;2;r[(lkθll2+^rai;3;τ)eXp(c5[tΓ|1 ;3 ; Γ)+l]. (2.15)

Moreover, if u-ή = Q on Στ and f σo = 0, ίfen J σ = 0 /or eαc/ί ίe[0, T].

Proo/. The existence of the solution follows from the method of characteristics. If
we define U(t, s, x) to be the solution of

•£ U(t, 5, x) = u(t, U(t, s, x))9 t9 s E [0, Γ], x G β,
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the solution σ is expressed by

σ(t,x)=-ρ + ίσo(U(0, t, x)) + ρ]
/ t \

• exp - J divu(s, U(s, t, x))ds . (2.16)

The regularity of U(t, s, x) gives σ e C°([0, T] H2(Ω)) (see [30, p. 207]). To prove
estimate (2.14) one multiplies Eq. (2.13)x by σ and integrates in Ω. Integrating by

parts the term J ύ Vσσ, one has
Ω

~-n\Mlu~\ divwσ2 + ρί |divfi||σ|-- J ίϊ ήσ2.
1 at In Ω I

dΩ

By the assumption ύ-ή^O on dΩ, the boundary term can be omitted. One
proceeds in the same way also for the first and the second derivatives, always
integrating by parts the terms j [(w V)Vσ~\Vσ and J ύ- V(DkDhσ)DkDhσ (see for

Ω Ω

instance [31, Lemma 2.3]), and one gets

2 at

From GronwalΓs lemma one obtains

Vol| 2 + 4 ||fi||3) exp (c J ]|w||

that is (2.14). The proof of (2.15) is trivial. D

Finally, if ύ-ή = 0 on Στ and J σo = 0, from Eq. (2.13)! one has at once
Ω

t

J σ= J σ o - J j u-n(σ + ρ) = 0 for each ίe [0 ,T] . D
Ω Ω 0 dΩ

We are now in a position to prove the local existence of a solution to problem
(1.17) (for S1 =0). Take 0<T<oo and define

Rτ^ {(v, σ, ώ) I v e C°([0, T] tf 2(£>))nL2(0, Γ;

v.eL^φ, T\H\Ω))r\L2φ, T;H2(Ω)),

σeL°°(0, T;H2(Ω)), σt eL°°(0, T; 1

ώ 6 C°([0, T] H2(ί2))nL2(0, T; H

#(0) = κ0 — w(0) in ί2, tJ=O on Στ,

^ ( ί ) + ^2M a.e. in Qτ,

in Ω, ώ = 0 on Σ τ , 0< y ^ώ(ί,x) + 0(ί,x)^204 in
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where Bx and B2 will be chosen in the sequel [see (2.17), (2.19), (2.20)]. If B1 is large
enough and T is sufficiently small, it is clear that RΓΦ0. In fact, let v* be the
solution of

v*-Δv* = H in β^,

v* = 0 on !„,

v*(0) = uo-ΰ(ΰ) in Ω,

where H e L2(R+ H\Ω)\ Ht e L2(R+ L\Ω)) and H(0) = - J [w0 -w(0)] in β (so
that ι;f*(0) = 0; see Lions-Magenes [11, p. 25-27] for the construction of such a
function and the estimates for the norms of H and Ht), and let ω* be the solution of

ω*-Δω* = K in β^,

ω* = 0 on Σ^,

ω*(0) = θo-θ(0) in β,

where K e L2(R+ H\Ω)\ Kt ε L2(1R+ L2(Ω)), and K(0) - - A [θ0 - 9"(0)] in Ω (so
that ω?(0) = 0). Then one has

and

By taking

J51>max{c7 | |uo-M(O)|||/2;c7 | |0o-9"(O)|||/2;||eo-βll2}, (2.17)

one sees that (v*, ρ0 — ρ, ω*) satisfy all the conditions stated in the definition of Rτ,
with the exception of

0 < y S ω*(ί, x) + ΰ(t, x) S 2Θ4 in Qτ. (2.18)

However, we have, by interpolation,

Hence by choosing T small enough (say T^Tί9 Tx depending on Ω, θ3, θ4, θ, and
II θo - θ(0) || 5 / 2), we get (2.18). From now on we shall assume that T^TX and that B x

satisfies (2.17).
Consider now the map L defined in Rτ in this way:

L:(£, σ, ώ)-*(v, σ, ω),
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where v, σ, and ω are the solutions of (2.1), (2.13), and (2.11), respectively, with

ύt-(ύ' V)ύ-(v- V)ύ-(ΰ V)v

-(v V)v]-Aΰ-V[j>(σ + ρ,

G= -cΌ(σ + ρ)[ΰt + v- Vώ + ύ- Vώ + v Vθ

+ ΰ - Vff] - (ώ + θ)pθ(σ + ρ, ώ + θ) div{

+ χA θ + (σ + ρ)r + J- Σ (Dk& + D^ + D /

+ (v — μ) (div v + div ι7)2,

ωo = θo-θ(0), u = v + ύ, σo = ρo-δ.

Notice that, from this choice of cv9 we get

cf= min cΌScv = cΌ(

where Aγ = < (ρ, 0) e R 2 | ̂  ^ ρ ̂  2M, y ^ 0 ̂  2Θ4 i. Hence cf and cf depend only

on the function cv and on m, M, 03, θ4. We shall prove that L has a fixed point in # τ

for T small enough. We need at first some estimates, which can be obtained by
means of some long but straightforward calculations:

;O;Γ^C5(fi, 9,p,CΌ)

In the fourth and in the sixth estimate for controlling the terms which are quadratic
in Dv and Dΰ one uses
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consequently

In the second and in the fifth estimate one uses

\\ϋ(t)\\2

kSc(\\v(O)\\2

k+t ί \\vt(s)\\lds)9 k = l , 2 ;
o /

and the same argument for σ and ώ. Finally, observe that the constants Ci depend
on p and cv in terms of ||p||C2(y l l ) and ||cv||c:i<vll>, and on the norms of ΰ and θ which
are specified in the following Theorem 2.5.

Moreover,

Finally, from (2.14) and (2.15)

Hence, if we take

+ \\uo-ΰ(0)\\t

, (2.19)

l 9 u ) , (2.20)

and T small enough, we get that v, σ, and ω satisfy the estimates required in the
definition of the set JRT. We want to specify that in (2.19) ι?t(0) and ωt(0) are
calculated from the equations and depend only on the data of the problem, i.e.,

Vt(0) = 1 {- V[_p(ρ0,0O)] - Au0} - 0,(0) - (u0 V)u0 + h(0) = v0, (2.21)

cv(Qo> θo)Qo

ϊ Σ (Dku
i

0 + Diu
k

0)
2+(v-μ)(divu0)

2 + ρ0r(0)\

(2.22)

In the sequel we shall use frequently this short notation. One has also, by well
known interpolation results,

II σ - σ01| CO(QT) S c[σ - σ0] J/fj. τ [σ - σo]^f2. Γ

^ ^ + llσolL)2'3

||σo||2)2 / 3.
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Hence, if T is small enough,

~ ^σ(t,x) + ̂ 2 M in Qτ.

Finally, repeating the argument for proving (2.18), one gets that (2.18) holds also
for ω.

We have shown in this way that L(RT) C Rτ for T small enough, say T= T* > 0.
Now one uses Schauder's fixed point theorem. It is clear that Rτ* is convex, and

it is closed in X = C°([0, T*] H\Ω)) x C°([0, T*] Hι(Ω)) x C°([0, Γ*] ff^Ω)).
Moreover, from Ascoli's theorem, .RΓ* is compact in X . Hence one needs only to
prove that L is continuous in X . Suppose that (vn9σn9ώn)eRτ*, (vn,σn,ώn)
->(#, σ, ώ) in X and set (vn, σn, ωn) = L(#n, σn, cδπ), (ϋ, σ, ω) = L(v, σ, ώ). Take the
difference between the equations for (vn, σn, ωn) and (v, σ, ω), multiply by (υn — v),
(σn — σ), and (ωn — ω), respectively, and integrate in Ω. By an energy argument and
by GronwalΓs lemma it is easily seen that (υn, σn, ωn) converge to (v, σ, ω) in
C°([0, T1*] L2(Ω)). Since Rτ* is compact, (ϋn, σn, ωn) converge indeed to (v, σ, ω) in
X . Hence L is continuous, and consequently has a fixed point, which is the solution
of problem (1.17) in Qτ* (for Sί=Φ).

We have thus proved the following theorem.

Theorem 2.5. Let dΩeC3, beLfoc(R+ H\Ω)l bteLfoc(R+ L2(Ω)\
reLlM+',H\Ω)l rtGLlc(K+;L2(Ω% p = p(ρ,θ)eC\ cv = cv(ρ,θ)eC\ cv>0
forρ>0 and (9>0, [wo-jϊ(O)] εHj(Ω), ί 0 e H j ( O ) fsee (2.21)j, ρ 0 ef/2(Ω), 0 < m
^ ρ_0(x) ̂ M m Ω, [0O - 0(0)] ε iϊ£(Ω), ώ 0 e fίJ(Ω) fsee (2.22);, 0 < θ3 ^ θ o

inΩ, (ΰ,θ)eLlc(R+;H3(Ω)l (ύt,θt)eLlc(K+;H2(Ω)), (ύtt,θtt)eLlc(R+;
ΰ ή^O on !„. Then there exists T*>0 small enough, (w,θ)eL2(0, Γ*; H3(Ω)\
(WίΛ)GL2(0,T*; H\Ω)\ (utt,θtt)eL2φ,T*; L\Ω)\ θ(t9x)>0 in ρτ*,
ρ G C°([0, T*] H2(Ω)), ρf ε C°([0, T*] f f 1 ^ ) ) , Q& x)>0in Qτ*, such that (u, ρ, 0)
is α solution of (1.17) m βΓ*.

1| χ301| ? -+- Π c o o |( ? ̂  Z ^ ,

^ sup (
Ω Ω

0 < Eι S inf (ω 0 + 5(0)) ̂  sup (ω 0 + 5(0)) ̂  £ 2 ,

then the time T* depends only on Ω, μ, v, χ, ρ, p, cy, on the norms of b9 bt, r, rί? w, z7ί?

Mff5 θ, θt, θtt in the spaces considered before, and on D, Au A2, Eu E2. •

Remark 2.7. It is also possible to see that the time T* depends indeed on the norms
of fo, bv r, rf, z7, ύt, ΰtv 0, θ ί? 9"ίt in the spaces of functions obtained from the space
considered in Remark2.6 by replacing L00 with if2, where 5^2(1R+;X) is the
subspace of L2

OC(IR+;X) endowed by the norm

Γί+i Ί

; * ) = S U P ί IIΦ) IIids .
ίeIR+ L t J
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One has only to change the definition of Rτ by requiring

and then to choose successively the constants Bu B2, B3, B4. Observe also that if
X) and uteίf2(R+\ 7), (here X and 7 are Hubert spaces, with X

continuously embedded in 7), then u e C#(]R+; [X, 7]1 / 2), and the immersion is
continuous. •

Remark 2.8. One can easily see that the solution (υ,ρ,θ) to problem (1.17) is
unique, for instance, in the class of functions

inf ρ > 0, ρ e L°°(βΓ), Vρ e L4(0, T L6(Ω)),

t? e L°°(βτ), Dυ e L4(0, T L6(Ω))nL2(0, T L°°(Ω)), vt e L2(0, T L\Ω)),

inf 0> 0, θ e L°°(βτ), Γθ e L4(0, T L6(Ω))nL2(0, T; L°°(Ω)),

^ 2 ( 0 3 ( ) )

under the assumptions p e C2, cυ e C1, cv > 0 for ρ > 0 and 0 > 0, b e L2(0, T
r 6 L2(0, T; L3(Ω)), δΩeC1. One obtains the same results also if μ, v, and χ are not
constant; it is sufficient to have μ, v, and χ in C1. Hence the fixed point constructed
in Theorem 2.5 is unique. The proof of this uniqueness result can be obtained by
proceeding as in [29, 31, Sect. 3], and using the estimate

+ \\Dv*1(t)\\Un))(\\u(t)\\2o+\\y(t)\\2

o).

[Here u = u% — u\, γ = θf — θ%, and («*,£*, 0*), (wf^f^l) a r e t w o solutions of
(1.17).] •

B. Case with an Inflow

If we don't assume that u ή §: 0 on Στ, then we need to change the proof of the local
existence theorem. In fact in this case the solution of Eq. (2.13) can be determined
only if we require in addition

σιSί = σx on ^TlxS,.

Moreover, we suppose that Sί is a closed surface (hence on [0, T] x Sί one has
— M ή ^ α o > 0 , a0 a suitable constant which for simplicity we suppose to be less
then 1).

Lemma 2.9. Let dΩ eC\ue L2(0, Γ; H3(Ω)), ut e L2(0, Γ; H\Ω)\ σ0 e fί2(Ω) and
L^T H1^)), (σ^eL^T L^SJ). Suppose
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that «, σ0, and σ1 satisfy the compatibility conditions (2.26) and (2.27). Then there
exists a unique solution of (2.13) satisfying σ\Sί = σu and such that
σeLx(O,T;H2(Ω))with

0

2(

(2.23)

(see (2.28) for the definition of Z). If in addition weL°°(0, T;H2(Ω)\ then

(2.24)

Proof The existence of a solution follows from the theory of characteristics (see for
instance Judovic [10]). If we divide Qτ into two subsets

Qx = {(£,x) E Qτ\ the characteristic passing for (t, x)
starts at t — 0 on Ω],

Q2 = {(ί5 x)e Qτ\ the characteristic passing for (ί,x)
intersects Στ for 0 ^ t* = ί*(ί, x) ^ ί} ,

then the solution σ is expressed by (2.16) in Qγ and by

Γ ι Ί
• exp - ί divw(s, (7(5, ί, x))ds (2.25)

L «*(*.*) J
in Q 2 One can see by a direct computation that, if σ 0 and σλ satisfy the following
compatibility conditions:

σ i | ί = o : :=CΓo|s1? (2.26)

^1 = [-fi(0). F σ o - σ o d i v β ( 0 ) - ρ d i v β ( 0 ) ] | S ι , (2.27)
C l | ί = 0

then σ e L ^ O , T;H2(Ω)) (see for instance Judovic [10] for similar calculations).
For proving that (2.23) holds one proceeds as in Lemma 2.4, but now the

boundary terms arising from the integration by parts cannot be omitted. More
precisely one needs to estimate

- J ύ.ή(σl + \Vσ\2 + \D2σ\2).
Si

Hence one utilizes Eq. (2.13)x restricted on S l 5 and by proceeding as in Fiszdon and
Zajaczkowski [4-6], after some long but straightforward calculations one gets

- J ύ.ή(σ2

Si

• (i + ιiδiιl+n<y ? χ i + ιifi|ii/2+β+ iifi,iii/2+e)=z (2.28)

(for any 0 < ε < 1/2). To obtain this estimate one uses the immersions
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Hence we have

But

hence by GronwalΓs lemma

). D

One can observe now that if utt e L2(0, T; L2(Ω)), then

ί sup |σ 1 | i ,O p S
CO7"]

[ T + c{έ)T'- 2ε([w] l;3;T+ [SJ i . 2. τ + || δ(0) ||

where one uses these interpolation results:

Oli/ε; 5/2+ε; r ^ c(e) ([«]|. 3. Γ + K]f. 2. τ

where c = c(ε) does not depend on T (see, for instance, Secchi and Valli [22,
Corollary 3.10], where similar estimates are obtained).

Hence one can prove the existence of a local solution also in the case with an
inflow, by changing the definition of the set Rτ in the sense that now one needs
vtt e L2(0, Γ; L2(Ω)) (and the norm in this space is estimated by 2^), and vt(0) = v0

[see (2.21)]. One can prove also in this situation that Rτ + Φ; in fact construct a
function υ* as in Sect. A, by choosing now H in such a way that H e L2(R+ HX(Ω))9

HtGL2(R+;L2(Ω)) and H(0)= -A(uo-u(0)) + vo. By choosing Bί large enough,
one gets again KΓ + 0 for T sufficiently small.

Hence one obtains a local existence theorem under the same assumptions of
Theorem 2.5, only requiring further that σίeLgc(R+;H2(S1)),
(σΛ E L£C(R+; H\S})), (σX e L£C(R+; L 2 ^ ) ) , and that σ l5 σ0, and fi satisfy the
compatibility conditions (2.26) and (2.27).

3. Global Existence. The Case Without an Inflow

At first we shall obtain some a priori estimates for the solutions of the following
system of equations
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ω = f in Qτ,

v = 0 on Στ, (3.1)

v(0) = v0 in Ω,

where Z = — μΔ— vFdiv and fi = μ/ρ,v = v/ρ;

= h in β τ ,
(3.2)

σ(0) = σ0 in Ω

ί χ 1 p 3 ? = gf in Q Γ ,

ω = 0 on 2"τ, (3.3)

ω(0) = ω 0 in Ω,

where

θ x = inf

and consequently Vilv?, — cv(Q

/ = /l+/2+/3, (3.4)

where

V σ + £ / V σ + e /

3 _ - σ ~ 1
σ + ρ r σ + ρ

/IΞ — σdivi; — (σH-ρ)divw; (3.5)

1 i 2 i 3 /o /C\

gfΞ f̂ -\-g -\-g , w ")

where

pΘ{ρ,θ\) ω + θ

. 2 -
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We shall assume that u ή^: 0 on ΣT9 that is we don't consider the case of an inflow.
Moreover, we assume that dΩe C3, and that

ρ/4^σ(ί,x) + ρ^3ρ, ΘJ4£ω(t9x) + ff(t9x)£3θ2 (3.7)

in Qτ, 0<T^oo. /Here Θ2= sup θ).
V Σ~ )

From the conditions cveCί, cv>0 for ρ>0 and β>0, we obtain thus
0 < c? ̂  cy(σ + ρ, ω + 9) ̂  cf [where cf and c | are defined as in Sect. 2, and the set
Λ1 is constructed by means of the constants appearing in (3.7)]. Finally, from now
on in this section each constant will depend (at most) on Ω, μ, v, χ, ρ, θί9 θ2, pi9 p2,
p3, cj, c | and on the norms of p in C 2 ^ ) and of cy in C 1 ^ ) .

We remark again that in this section we shall indicate any equivalent norm in
HS(Ω) with the same symbol || ||s (s^ -1).

Lemma 3.1. Let v, σ,ωbe a sufficiently smooth solution o/(3.1)-(3.3), and ε3 be a
sufficiently small parameter, then

~
\\ωt\\\+ |

1+ 1
(3.8)

where

Ikllί
||σf||0+ ||̂ |l

f

Proof Multiply (3.1) by υ9 (3.2) by {pjρ)σ, and (3.3) by (p2

and add these expressions. Taking into account that
? integrate over Ω

ί p1Vσ-v= — J p^divv, J p2Vω-v= — f p2ωdivϋ,
Ω Ω Ω Ω

and that

- ~ ί = - ^ J F(σ2)
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at last one gets

j t

where

Similarly to (3.9) one has

where

2-^~ \Ul+ - \\σ\\t+\\ύh\\σ\\l.

(3.9)

(3.10)

ί + \\9t\\1-ί+ l~JK\\l+ ^\\σt\\t+\\σt\\l\\σ\\\

+ N I 3 I H I 0 + K i l l MI2 Kilo •

The only difference in obtaining (3.10) is the way of estimating the non-linear term

(Pi/ίί) ί τ~ ί(v + ϋ) • Vσlσ, (see, for instance [31, Lemma 4.21).
a ot

Using the Stokes' problem

= — υt—
in Ω.

in Ω,

t;,βo = 0 on 3 0 ,

one has (see for instance, [3, 7])

ί ί ύ n
0 S2

(3.11)

, (3.12)

where the last term in the right-hand side appears in the case of outflow only.

Indeed, for ΰ ή{dΩ = 0 one has that j σ = 0, so ||σ||§ ̂  c\\ VG\\Q. In the case of outflow
Ω

t

(3.2) implies J σ— — \ \ w n(σ + ρ), so
Ω o s2

«•«
0 S 2

Directly from (3.2)x one gets

(3.13)
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Using the interpolation inequality

c| |div»| | i£e 3 | | t ; | | l+-| |» | | f, 0 < 8 3 < l , (3.14)

in (3.12) and (3.13), from (3.9), (3.10), (3.12), and (3.13) one gets

IW§ + lkllS + - IMI§+||ωt||g+ - ||σ||g+|k t\ε3 ε 3 ε3

+ 83(||i;||l + ||σ||§), (3.15)

where

0 S2

For obtaining (3.15) one has chosen ε2 small enough and zx—z%.
Multiplying (3.1) and (3.3) by Av and — Δω, respectively, differentiating (3.1)

and (3.3) with respect to ί, multiplying by Άvt and — Aωt, respectively, adding these
results and integrating over Ω, one gets

| | ; + | | σ t | | f + | | i ; | | ϊ + \\vt\\2i + \\ω\\j+\\ωt\\i), (3.16)

where

By adding now (3.16) and (3.15), and choosing ε3 small enough, one obtains
(3.8). G

Introduce now a partition of unity ({ΩJ, {̂ }) Let Ω be one of the Ωf's, and ξ(x)
the function relative to Ω. For subdomains Ω such that ΩndΩ + 0 new coordinates
y = T(x) such that {y3 = 0} = T(Ωn dΩ) are introduced. For simplicity set / = τα

(α= 1,2), y3 = n. Moreover, define f{y) = f{T~\y)\Ω=T{Ωr\Ω\ύ=ύtV = yxV,
where V = Vy, and set λ = diamΩ. Later on the dependence of the constants on λ will
be explicitly pointed out.

Equations (3.1), (3.2) have now the following form

(3.17)

(3.18)

where kx and k2 are defined in (3.20)-(3.23), and for simplicity we write u = v + ΰ. By
taking the gradient of (3.18) multiplied by (μ+v)/ρ and adding the result to (3.17)
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one has

fi-\- v
V

{ ) f (3.19)
Q Q

ΰ ~f" v
where fc4 = — — Vk2 + ku ki = kn + ki2, i= 1,2, and

iv-Pdΐv)i; ? (3.20)

(3.21)

(3.22)

(3.23)

For interior subdomains Ω, the transformation Γ is the identity, V=Vy=Vx, f = f
and /ca = 0, i = 1,2.

Lemma 3.2. For α sufficiently smooth solution of (3.1)—(3.3) and by taking the
parameter λ small enough, one has

j t ( | | i U § + \\D2σ\\l)+ \\D\\\l+ \\ΐ>2c\\l+ U£>2div»||§

| (3.24)

w/iere

ι;τ means that we consider the tangential derivative of v.

Proof. Differentiating (3.17), (3.18) twice with respect to τ, multiplying by vττ,
(Pι/θ)σττ9 respectively, integrating over Ω and summing we get, by assuming
λ = diamΩ small enough and 0 < ε4 < 1:

(3.25)

where

1 2

5 _ σ ! ^ i; 2

1

ε 4
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Differentiating the third component of (3.19) with respect to τ, multiplying by σnτ

and integrating over Ω, we have

ft J y (3.26)

where

Equation (3.17) can be written in the form

(μ + v)Vdivv= -μ(Av—Vdrvv) + p1Vσ + p2Vώ + vt-f-k1. (3.27)

Differentiating the third component of (3.27) with respect to τ one has

(3.28)

From (3.26) and (3.28) one obtains

^ (3.29)

Consider now the following Stokes' problem

— μAv + p1Vσ= —vt — p2Vώ + vVdivϋ+f + k1 in Ω,

div ί; = di v i; in Ω, (3.30)

ΰ\dΩ — 0 o n BΩ.

Differentiating (3.30) with respect to τ one gets

H§)H-cr(̂ )J%Γ6 . (3.31)

From the normal derivatives of the third components of (3.19) and (3.27) we obtain

^ll^llg+llσ^llg+lldiv^JIg

^cll^Hg + adl^llg+llσ^llgJ + cWXβ. (3.32)

At last from (3.25), (3.29), (3.31), and (3.32), for sufficiently small ε4 and for λ <; εj, we
get

(3.33)
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Going back to old coordinates in a subdomain near the boundary, summing over
all neighbourhoods, the above inequality implies (3.24). D

From Lemmas 3.1 and 3.2 we have

Lemma 3.3. The following estimate holds

IMI2 + I

]/ 3)Y39 (3.34)

where Y3 = Y1 + Y2.

We shall obtain now the estimates which are crucial to conclude our argument.

These estimates give a control of — (|| υ \\ \ + || ω \\ j) in terms of || vt \\ \ and || ωt\\ \ (plus
at

some lower order terms), and from (3.34) the final a priori estimate will follow.

Lemma 3.4. For each 0 < ε 5 < 1 the following estimate holds

Proof Writing (3.1) in the form t;ί + ̂ ι; = /* = / - p 1 P σ - p 2 F ω , and then apply-
ing the operator A to it, multiplying the result by Av and integrating over Ω we get

~\\Av\\l= ϊΩA(

- f \ fi^-(-Av + f*)Av + vdiv(-Av + f*)n-Av
δΩ\_ on J

Therefore, by using that vt= — Av+f* and the immersion //1'1(Ω)c>L1(5Ω), one
gets

Γ d - r -
μ — ( — Av +f *)Av + v div(

dΩ L ^ n

~ dΩ ~~
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Hence

\\A\

(3.36)

Repeating the above considerations for (3.3) written in the form ωt — χΔω =
= gf-θ1p3divί;, one has

) (3.37)

Equations (3.36) and (3.37) imply (3.35). D
Finally, from Lemmas 3.3 and 3.4, for sufficiently small ε5, λ, and ε3, we have

Lemma 3.5. The following estimate holds

^(Wi.i + N i . 1 + ||σ|||+||(7t||g) + |ι;|lf2 + |ω|l,2 + |σ |I, 1 ^cΓ 4 s (3.38)

where

Mo+ IM1+ lkllo+ IMI3NI2 + IMIiHl

3(lklli+lk t | |^)+||«| |2

2 | |σ| | i+| |ti t | |1 | |σ| |2 | |σ t | |0+
2

ΰ'ή ,
0 S2

Differentiate now (3.2) with respect to x and with respect to t. Next multiply by
Vσt. Integrating over Ω we get

~||Fσ t | |§^ε6 | |σ,||?+-(||»( | | |+||Λ t | |?)
z at ε6

| 2 + | | ΰ f | | 2 ) | | ( 7 | | 2 | | σ j | 1 , (3.39)

having integrated by parts the term J [(I; + M) V~\Vσt- Vσv Moreover, the cubic
Ω

terms in (3.38) and (3.39) can be estimated in this way

(IN3 + bίll2)(lklli+lkt

^ 7 ( W i 2 H 2 , l ) + ( K
ε7

Hence from (3.38) and (3.39), by taking ε6 and ε7 small enough, we have at least the
fundamental a priori estimate:

Lemma 3.6. The following estimate holds

^ 2 + H l ? 1 ^ c 0 y 5 , (3.40)
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where

Define now

and

= IKOII.i + l*»(0li.i + KOIl.i.

2 + \ω(t)\l 2 + \σ{t)\\Λ ,

ί ί ύ-n
0 S 2

283

(3-41)

(3.42)

, , 4 3 ,

One observes at once that

Φ ( ί ) £ c > ( ί ) , c 2 ^ l . (3.44)

Let us estimate the nonlinear terms contained in Y5. After some long but
straightforward calculations we have

Lemma 3.7. LetpeC2, cveC\ cv>0 for ρ > 0 , 0>O, and (3.7) be satisfied. For
simplicity one assumes that P 2 = 1 Then the following estimates hold

\g\2

u o ̂  c\φ2

By choosing Px(ί) so small that

CQCP^SJ for each ί e R + ,

we obtain from (3.40) that

(3.46)

(3.47)

(t \

where P 3 (ί)Ξ ί ί M ή a n d c ^ l .
\o s2 /

From the above estimates one can obtain the following

Lemma 3.8. Let ΰ fi\Σoo ^ 0. Let dΩ e C 3 and let v, σ, and ω be solutions of
(3.1)—(3.3) in Qτ belonging to the classes of functions obtained in Lemma 3.6.
Suppose that (3.7), (3.46) hold in Qτ and that

(3.48)

for each ί e [ 0 , T ] . (3.49)
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Then one has

φ{i)ύ^r, Vίe[0,T]. (3.50)

The terms vt(0), ωt(0), σt(0), which appear in φ(0), have to be calculated from the
Eqs. (3.1)-(3.3) evaluated at t = 0.

Proof. Define ί* = inf{ίe[0, T']\φ(t)>y/2c1}. Then φ(t*) = γ/2cl9 and conseq-
uently from (3.47), φt{t*) < 0, a contradiction. Hence φ(f) ̂  y/2c1 Vί G [0, T]. D

On the other hand, from Sobolev's embedding theorem H2(Ω) c> C°(Ω), one
sees that there exists a constant c3 small enough such that, if φ(ί)^c 3, then

in Ω. (3.51)

Finally, we have

Lemma 3.9. There exists a constant c4 such that, if (3.51) holds and (for simplicity)
P 2 ( ί )^ l , then

ή-]. (3.52)

Proof By using (3.1), (3.3) one has

|| ω{t) \\Uc \\Δω(i) \\ \ ̂  c[_φ{t) + φ\t) + P2{t)

By using the first one in the second and then adding the two estimates thus
obtained, we get (3.52). D

Now we are in a position to prove the global existence of a solution. In fact
choose

? c 3 ) ^ c 5 (3.53)

[see (3.41)], and

ί ) < - τ c 5 for each teR+ (3.54)
o C^

[see (3.43) and (3.47)]. Then we have that (3.51) holds for σo(x) + ρ and
ωo(x)-\-θ(0,x). Moreover, from Lemma 3.9 we get that ||ϋoll§+ llωoll3
^ ί 4[c 5 + c% + 1] = c6. Hence from the local existence theorem we can construct a
solution for t e [0, T*], which satisfies (3.7) in Qτ*; T* depends only on the data of
the problem and on c5, c6. From Lemma 3.8 one gets

φ(t)£cS9 We[0,T*]

and can start again from T*, finding a solution in [T*,2T*] and so on.
In this way we have proved that a global solution does exist, and satisfies (3.51)

and (3.52) for each ί e R + . Therefore, we have proved
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Theorem 3.10. Let ύ-ή\dΩ}t0 and
1. dΩeC\peC2, pβ(e,θ1)>0,

cveC1,cv>0 for ρ>0 and θ>0;

2. MeJ7|>0O(ρjπi7§>oo(βJ;

3. FeΠl . jρ jnΠg.JβJ; 0 xs inf

4. «0-β(0)6ίίέ(β). »0eHj(O), ρ0eiί2(Ω), 6>0 - θ(0) e ffJ(Ω), ώosHι

o(Ω) (see
(2.21) and (2.22) /or the definition of v0 and ώ0);
5.

00

6. in the case of an outflow: J (\ ΰ n) < o o .
o \s2 }

Let (3.53), (3.54) be satisfied (i.e., let u0, ϋ, QO-Q, Θ0-ΘU θ — θl9 b, r, and
00

ί / ί ΰ'ή\be small enough in suitable norms). Then there exist
o \s_

•*»O/1D +fa, 0t) G Cg(R+;

ρ e C°B(K+;H2(Ω)), ρt e CS(R+; iί

infρ>0,

such that fa ρ,θ) is α solution of (1.1) in Q^.

Remark 3.11. An analogous result can be obtained also if we merely suppose that
2 3 2 + 2 2

faf)( _
(6, r) G ̂ 2 ( R + H 1 ^ ) ) , (&t, ̂ ) e ^2(1R+ L2(Ω)) and that the norms of ΰ, θ- θl9 b,
and r in these spaces are small enough (and of course that φ(0) and sup P3(ί) are
sufficiently small). One gets again the a priori estimates on φ(t) (see for instance the
proof of Proposition 2.2 in [14]), and consequently on ||ϋ(ί)ll 5/2 a n < i llω(OII 5/2 a s i n

Lemma 3.9 (one needs to use now that

Hence the only difference is that in this situation we obtain

fa 0) 6 Cg(R

4. Stability. The Case Without Outflow

In this section we follows the methods of [31]. Suppose that ΰ-ή^O on Σ^, and
that we have two solutions (vb σb ωf), i = 1,2, of (1.17) in g^ corresponding to two
different initial data satisfying f σ(

0

1}= J σ{

0

2) = 0. Suppose that both these initial
data satisfy Ω Ω

j =JR, ye]0,l/2] (4.1)

[see (3.41)], and

P(ί) = P2(t) + P3(ί) < ^ R, Vί e R+ (4.2)
C
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[see (3.43) and (3.47)]. When ΰ ή = Q on Σ^ i.e., Sx =0, from Lemma 3.8 we know
that the corresponding solutions satisfy

φt(t)^R9 i = l , 2 , (4.3)

for each tGR+. If S1Φ0, assume that (4.3) is satisfied. From (3.47) we easily get
(again for Sί=Φ)

ί ( % ) i = l , 2 . (4.4)

If Sx Φ0, assume that (4.4) holds (see, however, Theorem 4.3). By choosing y small
enough, we can make JR as small as we need. From now on we shall assume that

Set now q = v1—v2, Ά = ̂ \ — o2 > β = ω1—ω2. We want to prove that all the
solutions of (1.17) are asymptotically equivalent. More precisely, we shall prove

^c(||?(O)||g+11^(0)112+||j8(0)||g)exp(-εί), (4.5)

ε>0, £e]R+. Now we write the equations for q, η, and β.

7β = fi-f2 in βoo,

q = 0 on Γ ^ (4.6)

\ — n — ΊW n(2) in Π

— qQ=:VQ —VQ m iώ ,

iivq = hί — h2 — (vί+u)'Vη — qVσ2 in ζ ) ^ ,

f/ = 0 on ]0 ,oo[xS l 5 (4.7)
' — l o = = o o '

\ = Q\~9i in δoo J

jff = 0 o n 2 : ^ , (4.8)

? 0 Ξω (

0

1 ) -ω (

0

2 ) in β ,

where

J 2
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and

h1 — h2= — ηdivv1—σ2divq — ηdivύ. (4.10)

We can write also

hί-h2-(υι-\-ΰ) Vη-q- Vσ2= -div[σ2q + (vι + ΰ>?] . (4.11)

At last we have

" r ~ (σ2 + β)cι;(σ2 + ρ,ω2 + δ)J

i l Ί J ω

! + ρ, ©! + 0) (σ2 + ρ ) c > 2 + ρ, ω2 + θ)

1 ff

divw,

1

(σϊ+ρ)cv(σί+ρ,ω1

+ (v — μ) divg div^i + ̂ 2 + 2M) r

Γ ! _
L(σi+e)co(σi+ρ,<

1
(σ2 + ρ)cv(σ2 + ρ,ω2 + θ)

Γ ί ί 1
Lc^σ! + ρ,«! + θ) φ2 + ρ, ω2 + θ) J '
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From (4.6)—(4.8), by proceeding as in Lemma 3.1 (see also Lemma 5.1 in [31]), we
have for each 0 < ε < 1,

d t m ^ 2 Q dt

y \\Vq\\l + v\\di*q\\2

02

+ -Λ| |« | |?+-(| |t; 1 | | i+| |M|| |) | | ι/ | |g. (4.13)
ε ε

Moreover, after some straightforward calculations, one gets

Lemma 4.1. Let S^WΘ-ΘJl^l (for simplicity), ^WύWl+WΰWi+Wΰ-θ^l
+ | |r | |I, p e C2, cv e C1 and (3.7) be satisfied. Then the following estimates are valid

(4.14)

(4.15)

l)- (4-16)

Using (4.14H4.16) in (4.13) one obtains

1 d \ \ n \ \ 2 + l P l d \ \ n \ \ 2 + P l d l l β l l 2

lp3θ1

+| | ί | |g + ||i?||§). (4.17)

Now we want to estimate \\η\\l We can repeat essentially the considerations of
[31]. Let z be the solution of the Stokes' problem

Az-Vπ = 0 in Qm,

divz = η in Qx, (4.18)

z = 0 on Σx,
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which exists since J η= J η0— J j" [ηΰ ή + (σ2 + ρ)q'n]=0 for each ί e ! R + ,
O Ω 0 dΩ

because ΰ-ή=0 on dΩ\S1 and 77 = 0 on S1# Therefore, we have

| |z | |?^c |Mlo. (4-19)

Multiplying (4.6)x by z and integrating over Ω, from (4.19) one has

Ω

ύ\ qt

%z

Ω

O n t h e o t h e r h a n d

Γ d c c
J qt'Z= — \ q z- J q-zt.
Ω at Ω Ω

By taking the time derivative of (4.18) we see that zt is the solution of

Azt—Vπt = 0 in Q^,

divz^fff in Q^,

zf = 0 on i;^,

and from (4.11)

ηt= — div PF,

where

P F Ξ (σ2 4- ρ)^ + (ϋi + u)η . (4.21)

Let (f̂ , ^ ) be a solution of the Stokes' problem

A'V—V^ — q in <2oo>

div/^/* = 0 in Q^,

τT = 0 on Z,,,

which satisfies

\V\ -\-\V0*\ <c\\q\\ . (4 22)

Hence, by recalling again that W fi\dΩ = 0 since M n = 0 on 5Ω\S± and ^ = 0 on Sj,
one gets

Ω Ω Ω

Ω Ω Ω

and estimating W,

(4.23)
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Multiplying (4.20) by δ, 0<δ< 1, and recalling the estimate for || fx — / 2 | | 2 L 1 , we
obtain

(4.24)

By choosing ε = δpJ4, from (4.17) and (4.24) we have

l + cδ(\\q\\\+\\β\\l)

Now we integrate (4.25) with respect to t. Since [because of (4.19)]

\q-z

we get

f ί
\\l+

(4.25)

(4-26)

Assuming that

and

C2 4p3θxc2

8c 2 ' δCaPaθi'8c2(l

(4.27)

(4.28)
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[see (4.1) and Lemma 4.1], we have

lkllo +Wio+ll£llo+ ί (ll^llS+lldivίiig+iiPiSiig+iiηiig)

o

^C3(\\<lo\\2o+\\rio\\2o+\\βo\\2o)
+c 3 ί (ii^iii+Niiii+SaXiiβiig+ikiig+ii^iS). (4.29)

0

Putting

^iiβωiig+iif/ωiig+ii/ίωiig+ίdi^iig+iidivίiig+iiFiJiig+iiίίiig)
0 (4.30)

and

C(t)^υ1(t)\\ϊ + \\ωί(t)\\l + S2(t), (4.31)

(4.29) can be written as

ψ(t)£c3\ψ(0)

hence by GronwalΓs lemma one has

V(0S^(0)exp

^c3φ(0)exp

t

0

8C 3J

By (4.2) we have that

t

0

Introducing

q(t,x)=Qxp(oct)q(t,x),

Rίt Λ"Λ £*"Ί

and repeating the considerations from

ll«(ί)llo + lto(f)ll§+ll/*(ί)llo
t

-f J exp[ —2α(ί —5)](|
0

for each ί e R + .

Hence we have proved:

+ J ζ(s)ψ(s)ds
o J

ζ(s)ds\

ίcRt.

φ(at)β(t, x),

[31] we get, for

Vφ)\\l+\\Vβ{s)

2+ll/U§)exp[-

(4.32)

ί S 2 1 . (4.33)

t)iΊ(t'X)' (4.34)

a sufficiently small α,

I8+Il fωil2)ώ

-(2α-c4K)ί] (4.35)

Theorem 4.2. Let the assumptions 1-5 of Theorem 3.10 be satisfied, and ΰ ή\Σoo = 0.
Assume also that (4.1) and (4.2) are satisfied for γ small enough in such a way that
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(4.28) holds and

2a-c4R>0 (4.36)

(see (4.35)/ Let (uf, ρf, θf) be the solutions of (1.1) in Q^ corresponding to the

initial data (u%\ ρ(

o

ι), 0(

o

ι)), satisfying | ρ(

o

ι) = ρ vol(£2), i = l , 2 . Then the difference
Ω

(q,η,β) between (uf,ρ*,θf) and (uf, ρf, θf) satisfies (4.35) and tends to zero as
ί~»oo.

Theorem 4.3. Let (uf,ρf,θf) and (wf,ρf,0f) be two solutions of (1.1), (1.5) such
that J ρ (

0

1 } = f ρ(

0

2) = ρvol(Ω)

N,, VίeR + , i = l , 2
(4.37)

uΐ(s)-a(s)\\i+\\ΘKs)- θ(s)\\l)dsίN2 + N3t, VteR + . (4.38)

Suppose that

-0x111^4, VίeR + , (01 = inf 9), (4.39)

and that ϋ ή\Σoo-^0. If Nu JV3, JV4, αnrf iV6 are small enough, then the difference
(q, η, β) between (wf, ρf, θf) and (w|, ρ|, θf) goes to zero in L2(Ω) exponentially as
ί-KX).

Remark 4.4. Conditions (4.39) and (4.40) are satisfied if ΰ, U, and r are as in Remark
3.11. •

5. Periodic and Stationary Solutions. The Case Without Inflow and Outflow

It is well known that from the global existence theorem and from stability it follows
that there exists a T-periodic solution under the action of T-periodic external
forces (and heat sources) and boundary data (see, for instance, Serrin [24, 25]).

Let us explain briefly this argument: one constructs a global solution (7* by
starting from some initial data, and then considers Un(x) = U*(nT,x). By the
stability result, and using the periodicity of the data, one gets that Un-*U^
strongly in L2(Ω) (and, by compactness, in some stronger topology). Finally, one
proves that the solution having U^ as initial data is a Γ-periodic solution.

We are now in a position to apply this method for showing the existence of a T-
periodic solution (w, ρ, 0)of(l.l)1~(l.l)3,(l.l)5, (1.1)7 with f ρ = ρvol(ί2),ρa given
positive constant. We have only to verify that: Ω

(i) given b, r, w, θ satisfying (4.2), ΰ n = 0 on 3Ω, it is possible to find initial data
(vo,σo, ω0) which satisfy the assumption 4 of Theorem 3.10 (in particular the
compatibility conditions) and such that (4.1) is satisfied; (ii)the limit of (v*(nT),
σ*(nT), ω*(nT)), say (v^, σ^, ω^), satisfies the assumption 4 of Theorem 3.10 and
(4.1).
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To verify (i), one can proceed in several ways. For instance, extend ΰ and θ in
[ — T, oo[ by periodicity, and choose an extension b and f of b and r in [ — T, oo[, so
that

b(- T) = - F[p(ρ,0(0))] + Jϊfi(0) + 27,(0) + 5(0) Fΰ(0) in Ω, (5.1)

f ( - T ) = 4 ff(0)p,(ρ,9"(0))divfi(0)- k ΛΘ(0)
Q Q

Γ9"(0)] in Ω. (5.2)

One can proceed in such a way that the function ^ 2 ( 0 [defined as in (3.43)] satisfies

^i(ί) + ̂ 2(ί)^c 5R, Vte[-T, oo[. (5.3)

Choose now as initial data in t0 = — T the functions ι;0 = 0, σ0 = 0, ω 0 = 0. By (5.1),
(5.2) we obtain φ(—T) = 0. Hence by applying Theorem 3.10 we get a global

solution (v9 σ, ω) (for b and f!) in [ — T, oo[, which satisfies φ(t) S ~ir- c5R = RU and

we apply the argument described before to this solution [we can suppose of course
that R is so small that l?1^min(l/2c1,c3), and moreover that R1 satisfies (4.28)
and (4.36)].

To verify (ii), one has only to look at the compatibility conditions. By a
compactness argument one knows that (v*(nT), σ*(wΓ), ω*(nT)) converges to (v^,
σ^, ω^) in a strong topology; hence, it is easily seen that

υ*(nkT) Jί^L —L- { - Vlpiσ^ + ρ9ω0D + 9(0))] - AVoo - Aΰ(0)}
(ϊoo + Q

- 0,(0) ~(vo0 + fi(0)) • V{j>n + ΰ(0)) + fe(0) Ξ (i J o ,

and analogously for ωf(nkT). Consequently {V^Q E HQ(Ω), (ώ J O e HQ(Ω) and (ii)
is satisfied.

One can prove also that there exists a stationary solution. In fact, by assuming
that b, r, ΰ, and θdo not depend to ί, we know now that for each T > 0 there exists a
solution which is T-periodic. By the stability result, the periodic solutions
corresponding to a rational period are always the same, hence there exists a
solution which is constant for t e Q. By a continuity argument this solution does
not depend on t e 1R (see [31, Sects. 6 and 7] for similar results for the barotropic
case). We have obtained in this way

Theorem 5.1. Let the assumptions 1-5 of Theorem 3.10 be satisfied, and ύ'ή\Σoo = 0.
Assume also that (4.2) is satisfied for y so small that (4.28) and (4.36) hold. If fe, r, M,
and θ are periodic of period T > 0, then there exists a T-periodic solution (w, ρ, θ) of
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(1.1)1-(1.1)3, (1.1)5, (1.1)7 such that J" ρ = ρ vol(Ω). // b, r, ΰ, and θ are independent
Ω

of t, then there exists a stationary solution (w, ρ, 0) of (1.1)1-(1.1)3, (1.1)5, (1.1)7
such that J ρ = ρvo\(Ω). Moreover, these solutions are asymptotically stable and

Ω

unique among all other solutions (u, ρ,θ) which satisfy (4.37) for Nί small enough,

and such that J ρ = ρvol(Ω).
Ω

Remark 5.2. One can also obtain some results about almost-periodicity by
following the methods utilized in [14] for the barotropic case. •

6. Appendix

In this section we want to remark that all the results proved in this paper hold also
when the coefficients μ, v, and χ are not constant, but depend in a suitable way on ρ
and 0. More precisely, we suppose that μ e C 2, v e C 2, χ e C2 and that μ >0, v ^μ
and χ>0 for ρ > 0 and θ>0.

The proofs of the theorems require some modifications that we want to
underline. First of all, the second order operators in (l.l)i and (1.1)3 are now

-Au = Di(μDiu + μVuί)+V[(v-μ)divu] (6.1)

and

div(χPΘ). (6.2)

Hence in Sect. 2 we are led to consider the operators

Λov= -Di(μς)Div + μQVvi)-V[_(yQ-μQ)άiyυ'\, (6.3)

and

-div(χ 0 Fω), (6.4)

where μo = μ(ρo,θo), vo = v(ρo,θo), χo = χ(Qo,θo).
The bilinear form associated to Ao is no more coercive in HQ(Ω), but it is easily

verified that

for each λe<£ with Reλ^(cJμl)\\Vμo\\L6(Ω) = λo. (Here μt= min μ0, c^^

Remark that ρ0eH2(Ω), Θ0GH5/2(ΩI 0 < m ^ ρ o ( x ) ^ M , 0 < 0 3 ^ 0 o ( x ) ^ 0 4 ,
hence λ0 < + 00 and μ1 > 0.

Moreover, following the usual regularization procedure, one gets the a priori
estimates,

| M | 2

+ 2 ^ c ( l + | |Dμ o | | ; + | |Dvo | |β

1)(Moi;||k

2+ ||t;||§), k = 0,1, (6.5)

where a is a suitable positive integer, and c depends on Ω and in an increasing way

on ί/μl9 μ2= max μ0 and v2 = max v0. An analogous result holds also for ω.
Ω Ω

The proof of Lemmas 2.1 and 2.3 must be changed somewhere, since now ||i;||o
appears on the right-hand side of (6.5), and Di(μ0Vvι) gives some additional terms
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when it is integrated by parts. Moreover, on the right-hand side of (2.1)! we have

now also

Aov-{-DiiμDiϋ + μVtf) — V[(v — μ)divv]} ,

where μ = μ(σ + ρ,ώ + B), v = v(<τ + ρ,ώ + 0) [and something of this kind on the

right-hand side of (2.3)l5 too].

However, having taken into account these modifications, the local existence

theorem still holds under the same assumptions.

With regard to the global a priori estimates and to the asymptotic stability, we

have only to remark that in (3.1)l9 (3.3)1? (4.6)1? and (4.8)! we set now

and

The additional expressions which appear on the right-hand side of (3.1)l5 (3.3)l5

(4.6)1? and (4.8)x can be estimated in the same way as in the previous situation, and

consequently all the results exposed in this paper are still valid.
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