Communications in
Commun. Math. Phys. 101, 559-577 (1985) Mathematical
Physics
© Springer-Verlag 1985

Local Existence of the Borel Transform
in Euclidean Massless &5

C. de Calan, D. Petritis, and V. Rivasseau

Centre de Physique Théorique de I’Ecole Polytechnique, Plateau de Palaiseau,
F-91128 Palaiseau Cedex, France

Abstract. We extend the methods of [1] to prove large order estimates on the
renormalized Feynman amplitudes of massless @4 euclidean field theory, at
non-exceptional momenta. The Borel transform of the perturbative series is
analytic in a disk centered at the origin of the complex plane. This result is a
step towards the rigorous investigation of the infra-red singularities in the
Borel plane, for theories containing massless particles, like the gauge theories.

I. Introduction

In [1], the large order behaviour of the perturbation series was rigorously
investigated, for the renormalized massive @ field theory. The n™ order term for
any Schwinger function at fixed external momenta was bounded by K"n!, where K
is a constant (depending on the external momenta). This implies the existence and
analyticity of the Borel transform of the perturbative series, at least in a disk of the
complex plane centered at the origin. This result has been rederived recently by
other methods [2].

To extend the work of [1] to field theories containing massless particles is a
non-trivial and interesting problem for several reasons. The renormalization
scheme with subtractions at zero external momenta becomes ill-defined due to
infra-red singularities in the amplitudes. Therefore, one should renormalize with
subtractions at some intermediate energy scale u, and the renormalized amplitudes
are finite only at non-exceptional momenta. The structure of the corresponding
renormalization operator, ensuring that the physical mass of the particles
effectively vanishes, gets more complicated and the resulting structure is richer. In
particular, varying the energy scale of the subtraction point, one recovers
renormalization group equations, and interesting phenomena like the infra-red
asymptotic freedom of the @4 theory can be analyzed. More generally, the study of
theories with massless particles, especially the analytic structure of their Borel
transform, is certainly relevant to the program of rigorous construction of gauge
theories, both in their complete version or in approximations like the N— oo
planar theories.
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In this paper we limit ourselves to the case of massless @4, but the method used
in quite general. As in [1], we prove bounds on each Feynman amplitude at non-
exceptional momenta, which depend both on the perturbation order and on the
renormalization structure of the amplitude. Then we count the number of graphs
with a given renormalization structure, and combining these estimates we obtain
the local existence of the Borel transform in a disk whose radius shrinks to zero,
both when an external invariant goes to zero or to infinity. This should be related
to the existence of two different types of singularities in the Borel plane of the
theory: infra-red renormalons on the left (negative) axis, and ultra-violet
renormalons on the right (positive) axis.

At this stage one might exploit asymptotic freedom to go further. Combining
the estimates of this paper with the dressing techniques introduced in [3], it should
be possible to transform ordinary amplitudes into dressed amplitudes with
improved estimates. Although we do not implement this program in the present
paper, we can describe with good confidence the results one should get. The
ordinary theory with positive coupling constant is asymptotically free in the infra-
red region. (Using this fundamental property, the theory with an ultra-violet cut-
off has been rigorously constructed recently [4, 5].) Therefore, after the dressing
transformation of [ 3], the radius of convergence of the Borel transform should not
shrink when external invariants go to zero, which indicates the harmless character
of the infra-red renormalons in this theory. Of course, the radius should still shrink
when external momenta go to infinity, since the ultra-violet renormalons should be
harmful. Conversely, for the (unstable?) theory with negative coupling constant,
after the dressing transformation, the radius should not shrink to zero when
external invariants go to infinity, but still shrink when they go to zero: this is
similar to the situation for non-abelian gauge theories.

Some familiarity of the reader with [1] is assumed since we use the same
notations and several technical results. The paper is organized as follows: in Sect.
II we give our notations and recall the definition of the modified renormalization
operator in the a-parametric space; Sect. III contains the organization of the
renormalization by classifying the forests in each Hepp’s sector, and exhibits the
result of the corresponding subtraction process; Sect. IV is devoted to the proof of
the technical estimates which allow to derive our main theorems, given in Sect. V.

II. Definition of the Model

The perturbative definition of the renormalized massless @5 model is given in the
formulation of [6]. The Lagrangian is

L =30,00"p— Ap* +counterterms, (2.1)

where the counterterms are defined by the renormalization rules given farther. The
Schwinger functions are defined following the notations of [ 1], except the fact that
the formal unrenormalized Feynman amplitude associated to a given graph G
does not contain any mass term. That is, formula (IL.2) of [1] is replaced by

© © ¢
Is(f)= g £ il;Il do, U™ X(a)exp{— V(4 2)/U(e)}, (2.2

U and V being the standard Symanzik polynomials.
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All the notations of graph theory, including the definition of the forests,
reduced graphs, proper and closed subgraphs, follow exactly Sect. II of [1], and
Lemma IL.1 of [1] remains, of course, unchanged.

Now the definition of the renormalized massless amplitudes differs from that
one which is used in the massive case. Following [6], the vanishing of the physical
mass is ensured by a first step in the renormalization procedure: all self-energies
(proper bipeds) are subtracted once at zero momentum. Then the remaining ultra-
violet divergences (for bipeds and quadrupeds) are subtracted by a
“u-renormalization” which avoids the appearance of infra-red divergences. The
final result of this renormalization scheme may be written in the parametric
representation

o0 3 _M }: @
15(//4)=§ I doe — = %[ S (U *V’U)] 23)

i=1

O"~8

Since two proper bipeds can never overlap, the set of all proper bipeds of Gis a
forest, and the %’ operation can be written

=T10-7%), 24

where the product runs over all proper bipeds B of G, and 1— 7 % subtracts only
the first term in the gz Taylor expansion of U~ 2exp{—V/U}, 1f 0p scales the «;
variables, i€ B. The # operation is given as usual by

Z=2 11 (=7%), 2.5

¥ Fe%

where the sum runs over all proper divergent forests of G, including the empty one.
After the 2’ operation is performed, the bipeds become logarithmically divergent
instead of being linearly divergent in the « variables. Thus in (2.5) 5 retains only
the first term in the g Taylor expansion (for F biped or quadruped), if g5 scales the
o; variables, ie F.

From [6] it is known that (2.3) is an absolutely convergent integral
representation for non-exceptional momenta (no vanishing partial sum of external
momenta).

If Ug, Ug, V;, Vi are defined as in [1], and if we put

4
A=Ag=p> ¥ a3 Ap=p* Y o;; Ap=p> Y o, (2.6)
i=1 i¢F ieF
we may write explicitly the renormalization corresponding to one subgraph F:
i) if F is a quadruped (Ny=4)

FFeAU_Zexp{—V/U}zU;zexp{AF———lIJ/F—}, (2.7)

(1= U~ exp{ —V/U}= [ dEu(Up+,Up)

Ve+EpVr
cexpd Aot VETCEVE
exp { rterdr UF+6FUF}

Up VFUF—VFUF]
A Ar—2 + , (2.8
[” Upt&Ur T U4 &2 )" @Y
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i) if F is a biped (Np=2)
1
e (1—T7)U ?exp{—V/U} = [ dp(Up+yp;Up) >
0

VF+IPFVF}
exps4d— —-""-—-
p{ Up+wrUr

Uz ViUgz— ViU
| =2 L F 7 F], 2.9
[ Up+weUp  (Up+ypUp)? 29)

T (1—=THU  2exp{—V/U}=Uy exp{AF VF}

Ur
[ o o . (2.10)
(1~ 7pe!(L~TU "> exp{~V/U}
. Ve+ ErwrVe
dpp(Up+ Up) ?ex {A +epdr—
£ dép S Ye(Up+EpppUp) ™ Py Ar+erdr— Up+EryprUr
l: ( VeUp—ViUp >
UF+éFtPFUF (UF+6F1PFUF)2
() 2 VeUp—VrUp <VFUF— VFUF>2>:I
+ 6U—6U + '
UF+€FwFUp< T U GweUp  \Up+ErprUr (2.11)

From Lemma II.2 of [1], and formulae (2.7), (2.11) above, we see that if F is an
open quadruped and F* its closure, we have

Te(1 — Tpet(1— T7)U > exp{ — V/U} =0. 2.12)

Thus in the same way as Lemma IL.3 of [1] is proved, we may take as a more
convenient definition of the # operation,

=2 11 (=75, (2.13)

F Fe&

where now the sum is performed only over all closed divergent forests of G,
including the empty one.

I1. The Classes of Forests and the Subtraction Process

As in [1] we decompose the renormalized amplitude I% into a sum of integrals in
the Hepp’s sectors,

hey={0l0 S 001)S0e) S ... o)} (3.1)

I’é—ZIGa, (3.2)
where the sum runs over all permutations of {1,...,£}, and

—-I Hdoce"“%[e"‘@ (U 2e7")]. (3.3)

hg i=1
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Then for each ¢ the various closed divergent forests are grouped into
appropriate classes, in a way which is almost identical to the way defined in Sect.
IIL.1 of [1]. Given a forest &, and a graph F compatible with & (i.e. such that
F U{F} is a forest), then

i) x(F,#) is the smallest rank i such that FNG{UA4(F) contains a proper
component X(F, %), the closure of which is F.

ii) Starting from the maximal elements of %, we define

HF)={F|IFe F;, x(F, F)>y(F, F)}, (3.4)
WG, F)=(+1. (3.5
If F is a biped, F+G,
WF, %)= Sup i, (3.6)
a(i)e E(F)

where E(F) is the set of external lines of F. If F is a quadruped, F+G,
y(F, )= Iof i, (3.7

o(i)eE'(F)
where E'(F) is the set external lines of F, internal in By 4)(F) and which are not
external lines of any biped containing F.

By remarking that only one external line of a closed quadruped F can be an
external line of a proper biped containing F, it is easy to check that Lemmas I11.1,
II1.2, and IIL.3 of [1] remain true. Thus the final result of this classification is

Ig=3%, Z i (3.8)
F 0ed
where the first sum runs over all closed dlvergent forests of G, &7 is the set of
permutations ¢ such that & is a skeleton forest for ¢ [i.e. #(F)=%1], and

Ig,= | I_Idf%ie““1 [1(=7) I1 (1-Tp)le’R (U 2 VY],  (39)
he i=1 Feg He#(F)

H(F) being defined in [1].
In order to decouple the ultra-violet from the infra-red problems, we split again
the sectors h, into subsectors h,; (0<j<7),

hoy={d0=S 0,y S ... S0 S1IS G4 1)S oo S0t (3.10)

In each subsector, the infra-red problems do not appear for the variables «, ),
i <j, which are not integrated up to + co. Conversely, the ultra-violet divergences
corresponding to the a,), i=j+ 1, are absent and the related 1 — 77 subtractions
do not need to be performed. & being a skeleton forest, we define

H,={H|He A (F); z(H,F)<j}, (3.11)
where z(H, &) is the smallest rank i such that HNG{U A4(H)=H. Then we write

[I 1-Tg= 11 -7y > Il (=7x). (3.12)

He s (F) He#; H'CH(F)—H; H e
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Similarly, we do not perform the 1 — 75 subtractions for the bipeds which are
outside F LA (F). Let 4 be the forest of all proper bipeds of G, and
Br=BNFOHF)), B,=B—%,. (3.13)
Given two arbitrary subforests
HCHF)~H;,  C<H,, (3.14)
we put
FoH'=F"; FuH'UE=9, (3.15)
and we find
3
g—az Z Z z Igaj9 (316)
j=0 #H'CH(F)—-#; €CBy
IGg;= f H due™ T1 (=73 I1 (1~9})8A
hoj i= FeZ' Fea{’,
T1 (=99 Il 1-77)U "2 (3.17)
Fe¥ Fe%,

We will show that each integral (3.17) is absolutely convergent, and can be
explicitly estimated.

In order to apply repeatedly the I or 1 — 7 operations, let us introduce some
definitions. .# and ¢ being two disjoint subforests of ¥U#}, we put

Agg=1 Z %, (3.18)
ieE J}
where E; 7 is the set of lines which belong to all graphs of ¢, and to no graph of .#.
Use= 2 Tlw, (3.19)
SES]— i¢S

where S, 7 is the set of spanning trees S of G whose restriction to F is a spanning
tree of F for any F € .4, and is not a spanning tree of F for any F € ¢,
Veg= 2 51 H %5 (3:20)
Te T_,, i¢
where T 5is the set of two-trees T of G whose restriction to F is a spanning tree of

F for any F € #, and is not a spanning tree of F for any F € #. Any two-tree T
separates the external lines of G into two non-empty sets, one of which is T;, and

the corresponding cut-invariant is sp={ 3 ﬁa)z.

aeTy
Finally, if #, #, A" are three disjoint subforests of YU, with " C #, and &
is a subforest of 4,, we put

A% z=u? A N T 3.21
sF=H x%f(}pg{ﬁp) FUH —H"), FOH (3.21)
U%$ = U - PN TFoT T 3.22
7 xég{(p[}f éz«") pl;Igwa) FUH —H YL~ L), FOH UL ( )
2 Cy
ijg= 2 (H éF)( I1 WF) Voo -xnyoe -2, 70707 - (3.23)
o;%oé FeX’ Feg'
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With these notations we find

Lemma IIL1.
a) [1 (=70 I1 0=Tpe* [T (=75 1 A=TpU 2 "=3 %,. (3.24)
Fe#; Fe¥ Fe%B) P

Fes’

1 k+v+a
g 2=l (L a0 (Lo (11 5)
(U F 0 rexp{AZ — VI /UZ?Y, (3.25)

where &, A, L, k, v, a depend on the index 0.

c) e=+1, (3.26)
HCH, LB, (3.27)

k+0<2(B5)+|#)). (3.28)

d) X,=Usrgm  for m=1,..,k, (3.29)
X,=VirZm for m=k+1,.. .k+v, (3.30)

X,=A%r;  for m=k+v+1,.. k+v+a, (3.31)

a@) 1Al v(6)+a(d) =|8,) + | (3.32)

and the indices & satisfying v(d)=v, a(d)=a, run over a set of at most
1BA*1HN( B, | + || —v—a)! elements.
e) 2 being the set of all proper closed quadrupeds of G, we have
Fedn%=9nF' = Fed, Ym, 1=mZk+v+a, (3.33)

Feln#, = Fe ¢, for one and only one value m{(F) of m,
with 1=m;<k+v+a, (3.34)

Fe¥ = Fef4, VYm, 1Z<m<k+v, (3.35)
FeRBnH; = Fe g, fortwo and only two values m(F), my(F) of m,
with 1<m;<k+v+a, 1=m,Zk+v, (3.36)

Fe#BnF = Fe g, foroneand only one value m,(F) of m,
with 1=m,<k+v and FeJ,
for all the other values of m, 1<m<k+v+a, (3.37)

Fe®B,—(F uHk)=BALH(F)—(#'UK)] = Fe g,

for one and only one value m,(F) of m,
with 1Zm,<k+v. (3.38)
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H oy CH
<m< m=" 0
f) Vm, 1<m=Zk+v+a {zmgy, (3.39)
GC I Ims
Vim, 1=m=Zk+0vd YA CL,098,9H,,, (3.40)
GOL LI I 0L s
IuE0,
VYm, k+v+1=m=Zk+v+a {f,,.g% (3.41)

8) Vm, 1sm=k+v, if Fe ¢, and F'€ oy, 4(F), then F'€ 4,0 4,, except
perhaps if FeBnH; and F' e (BnG)U(2nK); in the last case, m; and m,
being the values of m defined in (3.38), Fe ¢, = FeJ,0/4, and
Feg,, = Fet,vf, . Ymktv+lsmsk+v+ta,if Fe g, and F'e s, (F),
then F'e #,0 2,.

Proof. As for the proof of Lemma IIL.4 in [1], the proof is a simple matter of
computation. We add the subgraphs of ¥U.#;U4%, one by one, starting from its
maximal elements. Assuming formula (3.25) at a given step, we add a new subgraph
F and perform the corresponding Taylor operation. Formulae (2.7),...,(2.11),
which give the first step, can be generalized to the following steps in a tedious but
trivial way, and the various assertions of Lemma III.1 are recovered by simple
inspection.

Let us now perform the usual change of variables, in each sector o, defined by

= II B (3.42)
i’eng
where GY is the subgraph {a(1), 6(2), ..., 6(i)}, made by taking i lines in the order of
the sector. From (3.17) and Lemma IIL1, we find
1 1 - 1
2= (g ) el (T aer) ([Lam v Gy
0 0\i=1 é O\Fex Fe¥

where

wov-2( 1 §:§Z kio Yfmgm
Y;=(Ug™) I1 N II Niich
9

m= m=k+1
k+v+a
< kl:[ » Ay.J,..) .(dﬂfﬁlfc””“l exp{—B,W}, (3.44)
wg= @ -2, (3.45)
V%i’
W=Ad— A%+ vre (3.46)

and it has to be understood that in Uy %, Uyngr, Virém A¥m; and W, the f,
variable is taken equal to 1, since the exphc1t ﬂ{ dependence has been factorized by
using the homogeneity properties of the integrand.
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The bounds of the f§, integration are given by:

if 1j<t—1, by=er- o)™l b= o)™t (347
if j=0, by=By...0,-1)" by=+o, (3.48)
if j=¢, b;=0; b,=1. (3.49)

IV. Estimates
IV.1. Bounds on W. First it is evident that

-1
A—A;‘f,;A—AVggA—AgngH B> (4.1)

where i, is the highest rank of all the lines belonging to at least one Fe & :
iy=Sup Supi. 4.2)

Fe% o(i)eF
Let us now find a lower bound on V¥ ¥/U% <. To each spanning tree S of Sy (i.e.
such that SNF is a spanning tree of F for every F € ) we associate a two-tree

T(S)=S—{A(S)}, 4.3)

where
i) MS)eS/FuAB,.
ii) S—{A(S)} has two connected components, each of which contains a non-
empty subset of the external vertices of G.
i) VF e #(F), MS)¢ F— X (F, F).
iv) A(S) is the line with the above properties which has the maximal rank.
We define

i,= Inf i. 4.4)
SeSg
A(S)=a(i)
Lemma IV.1. If wg=0, then
£—1
V2 UG 227 si0clk H Bis (4.5)

i=iy

where s, is the minimal value of the cut-invariants of G,and y=1if Ge #;, x=0if
G¢ A,

Proof. VS, A(S) is outside any F € # (&), F +G. By writing (3.22) and (3.23) as
Ug?= > u(S); u(S)= (H ai>< IT €F> ( Il wp>, (4.6)
i¢S FeX Fe¥%

SeS,

S¢Sk S¢SF
| ZE TZT u(T); U(T)=Sr(q“i)< Il fF)( I1 U’F>s 4.7)
* o N

and by using A" C H#,C A (F), &£ CAB,, we see that the product of £ and y variables
must be the same in u(S) and v(T(S)), except eventually for £. The factor 2~ takes
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into account the fact that many spanning trees (at most 2%) can be associated to the
same two-trees. This achieves the proof of Lemma IV.1.
Let us put

m2 = Inf(sinfo 'u2) ’ (48)
io1 =Sup(iy, iy). (4.9)
We note that m? + 0 at non-exceptional momenta, u* being different from zero

by definition. And we find finally

-1
= W01=2_"m267(‘; IT B:. (4.10)

i=io1
Lemma IV.2.
W <W,,=2M?, (4.11)
where M? =s,,+p* and s,,, is the maximal value of the cut-invariants of G.

Proof. Trivially A—A% < A</u* On the other hand, we may associate a
spanning tree S(T) to each two-tree T of G by adding an arbitrary line A'(T) such
that TU{1(T)} is a spanning tree. In each monomial v(T) of V¥ the product of &
and p variables contains at least as many variables as the corresponding
monomial u(S(T)) of U% ¢, which achieves the proof of Lemma IV.2.

IV.2. Bound on the B, integration. i) For 1 <j</—"' we bound the f, integration
by

b bo
J= [ dBBeetora 1o hW <by~ [ dp,poeto-ie bV (4.12)
by by
Therefore,
J<bamtpectots | gpocto= i thiW 4.13)
1

We note that v=>1 if G is a biped (wg = — 1), which allows us to replace the lower
bound of the ¢ integration by 0. Using the trivial bound W= V¥ 4/U% ¥, we find

U%Y
J<<V3”,> bAW ~S(b, W) *I(wg+v+3). (4.14)
By using (4.10), or (4.11) if wg= —1, we get
UJ{.Y
J= (foy> b5 Wy (b, Wo) ™I (ws+0v+3), (4.15)
where Wy =Wy, if 020, Wo=W,, if og=—1.
ii) In the particular subsector j=0 we get no ultraviolet problem, J is empty

and therefore a=0. The B, integration is directly bounded by

J= j' dﬁ,ﬂ‘;"’“—le—ﬂtW:b‘l"G”fdtt‘“G‘L"—le_'b‘W. (416)
by 1
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Therefore,

JEb9ety (}: dit@c o tgm W < pocty(p W)TO6 T T i (we+v+1), (4.17)
and finally

U.#.? v
J= <—V§$> Wy ©5(b, W) 12 I(wg+v+3), (4.18)
4

which is identical to (4.15) for a=j=0 (with the convention f,=1).
iii) In the particular subsector j=¢, we get no infra-red problem since f, is
bounded by 1. The g, integration is directly bounded by

1
J=[dppeervrate V<1, (4.19)
0

since G € ;if G is divergent, which implies wg +v+a 2= 1. This case is similar to the
massive theory treated in [1]. Anyway it corresponds to a bound which is simpler
than in other subsectors, and it may be included in the general case. From (3.44),
(4.10), (4.11), (4.15), (4.18), and (4.19), we obtain

k  UXmZm ktv  YHmZm k+tvta AHm_
Y,séKﬁ(U;“’)‘Z(H ";é'")( I “";;‘_’;) I 5=
m=1 Ug m=k+1 Vg m=k+v+1
I B:
i=j
-1 \1/2
[I, ﬂi -1 —wG
1=t (1:[ lﬁ) Iog+v+3), (4.20)
];;[ ﬁi 1=1o
Where i0=i01 if (J\)Ggo, i0=f lf (UG= —1

Here K, like K, ..., K¢, K, K’ in the following, is a number which may depend
on m?, M2, and N(G), but not on the order n(G).

IV.3. Bound on U%¥. We write U% < like in (4.6), and we remark that the leading

tree Syeaq < i.e. the spanning tree Se Sy for which ]« is maximal) must be a
i¢S

spanning tree inside each F belonging to (%),

S.a€Sp, VFe#(F). 4.21)

This property follows from Sect. II1.4 of [1] and may be also recovered from
the correspondence between trees used again in the next subsection. Therefore, no
¢ variable appears in the leading monomial of U% . By taking p,=0 VF, and by
noting that S¢2S,,, since %, 2%, we see that the leading monomial of U% ¥ is
bounded from below by the leading monomial of Uy, 4,. Therefore, we write

£—1
U592 I1 B2, (422)
i=1
with
g=—2 Y LGNF/FUA,). (4.23)

FeFuRB1U{G}
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IV.4. Bound on U§rgm/US% and Vrgr/VZ¥¥. These ratios are bounded by
introducing a correspondence ¢,, between the spanning trees of S, 7 and the
spanning trees of Sy. If a given spanning tree S is such that SNF/.#, U ¢, isnot a
spanning tree for a given Fe ¢,, we add internal lines of F/4,u ¢, and cut
external lines of F until we obtain a spanning tree. This operation is made for each
F e ¢, starting from the smallest graphs. Since ¢,, is defined exactly like in Sect.
IIL.4 of [1], we do not repeat here the analysis. Let us simply mention that in the
particular case where F € #(F), o(S) =S, the set of graphs F, ..., F, which have
a common external line 4 with F is totally ordered by inclusion

F,CF,C ...CF,CF. (4.24)

From (3.6) and (3.7) it is true again that F; € ¢,, = F;e #(%),and itis easy to see
from our definitions of x and y that
x(Fl’ 0.)<y(F15 a—)<x(F2’ )<y(F2a &’)< ..
o SX(F,, F)<Y(F,, F)SX(F, F)<y(F,F)=si(h).  (425)
Moreover, the same correspondence ¢,,, with exactly the same properties, can

be extended to a correspondence between the two-trees of T 7 and Tg. Thus we

find the same bound, up to a factor M?/u?, for the ratios U¥rZ/U%¥ and .
V.)t’m.?m/fo.Z’

If R,, denotes any such ratio, we find in the same way as in [1],

m_sz§24|ym|2Fe§m t’(F/fmu!m)Fe;,,l;ny(ﬁ) x(F,f)giq(F,?)ﬁi. (4.26)
FefnnBnF y(F,F)Si<x(F,F) :
By using Lemma III.1 and formula (IIL.33) of [1],

k+v

I Rm§K3< I )
m=1 Fei; x(F,Z)Zi<y(F,%)
my(F)Sk+v

“1\. (4.27)

(FE%(JF)/\@ x(F,#)Si<y(F, %) l> (Fe?n.% YF, F)Si<x(F,%) )
-1 -1
IV.5. Bound on A%z, H B:] . We have

Afrs <Ay g, =1 % (4.28)
where E,, is the set of lines which belong to all F € ¢,,, and to no F € .4,,. Therefore,
A%r s is not vanishing only if there is no F € .#,, containing a graph F € #,,, and if
the whole set of F € ¢, is totally ordered by inclusion. In this case, let us call F, the
smallest graph of the nest #,,. We find

AJ Fm _ﬂzf(F [Fm Ufm)“a(z(pl FmUFm)) (4.29)

where z(F,, #,,U #,) is defined in (3.11) as the maximal rank of the lines of
F./# %, From (3.33) and (3.37), 4, £,2 %, and we get

-1

— -1
fm;,n(U ﬂ) <@t T p, (4.30)

i=z(F{, %)
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Moreover, from (3.41),if F € #,, then F € #, and thus F ¢ # . Let ¢, be the nest
{F,F,,...,F,}, with F,CF,C...CF,. We may conclude
2F, F)S2(Fp, F)s ... S2(F, F)S]. (4.31)
Using (3.34), (3.36) and formula (II1.33) of [1], we find finally

k+v+a Affm

e TS | | I1 B, (4.32)
m=k+v+1 Fe it ieZp
H ﬁt my(Fyzk+v+1

where
Zp={ilz(F, #)<i<Inf(z(By (F), #).))} . (4.33)

IV.6. Bound on the B, integrations. From the preceding bounds we obtain an
estimate of (3.43) by

Igw: 215, 4.34)
1
II,s!éK"f 5(1"1 ﬁ‘*”"ldﬁ)F(mG+v+z) (4.35)
0
where
i+n= > NGINFIF R )+ > 1
FeFu®,0{G} FeRBnH(F)
X(F, F)Li<y(F,F)
+ > 1+ > 1—- > 1
Feit; Fex; Fe®BnF
my(F)<k+v my(F)2k+v+1 WF, F)Si<x(F,F)
X(F, F)Si<y(F,F) ieZp
+%Xioj_wGXo, (4.36)
and

1 if j<i<ip,
Xiojz —‘1 if i0§i<j, (4.37)
0 otherwise,

1 if i,gise—1,
o= {0 otherwise, (4.38)
N
oorFoay=_ 3z (MOaig), e
C connected component 2

of GINF|F By

b(C) being the number of two-lines reduction vertices in C.
Lemma IV.3. YFe &, i€ Zy, if the following conditions are satisfied:
i<j;, zF,F)Si<yF,F);, m(F)=zk+v+1.

Proof. i) Either F'= By (F) € #;. Therefore, F’C Bz(F), and from the definition
of y(F, %), we must have z(F’, #)>i, hence i€ Z.

ii) Or F'=Bg ., (F) €% . Then from (3.33) and (3.37), F'e #,, Vm=k+v+1.
From Subsect. IV.5, " A% %m g, would vanish for m=m,(F), which contradicts the
hypothesis.
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Lemma IVA4. Defining y(F, %)= Inf i for F biped, we have

a(i)eE(F)
b(C)— > 1
Fe# u%1u{G} C connected component FeFnAB
of GINF|F B, YWF, F)Si<x(F, %)
2 Y 1+ ¥ 1+ by L. (4.40)
FeFn%A Fe%, FeFn%B
X(F,#)=i V'(F,F)si V(F,F)Si<yF,F)

Proof. For any biped Fe % U#,, there exists in F'=Bgz 4,(F) a connected
component of GINF'/# U%,, which contains the reduction vertex of F for
i2y'(F,%). This proves Lemma IV 4.
We are now in position to estimate i+#;. We do it first for i <Inf(j, i), by
distinguishing the possible cases for the connected components C of
. N
GINF/# u4%,. Defining P(C)=Sup <(TC), 1) we find,
N(C)
2

a) N(C)=6, then —2=P(C).

(C)

b) ——= —2=<0 and C is not proper. Then

i) Elther C contains at least one (if Cis a quadruped) or two (if C is a biped) two-
lines reduction vertices coming from bipeds F’ with y'(F’, #)<i< y(F', #), and we
find from Lemma IV 4,

N(ZC) —2412P(C) if Cis a quadruped,

N(C) —2+422P(C) if Cis a biped.

ii) Or C contains at least one proper biped B’, with B'=B/#uU%,, and
i<y(B, #). In that case

— either z(B, #)<i, Be #; and, if m;(B)=k+v+1, i€ Zg from Lemma IV.3;

—or x(B,#)<i<z(B,#), Be #(¥) and there must exist at least one
reduction vertex inside B/# U4%,, coming from a biped F'€ %, with y(F', #)<i;

— or i<x(B, %) and there must exist at least two reduction vertices inside
B/ U4,, coming from bipeds

Fie®,, F,e®,, with y(F,#)<i, yF,F)=i.

Using Lemmas IV.3 and IV .4, we always find

N
(2C) —2+4+22P(C).
N(O)
¢) ——— —2=0 and C is proper but not closed. Then C is a quadruped, the

closure of which is a biped B'=B/# U4%,.
i) If Be #(F), either x(B, #)<i< y(B, #), or there exists in C at least one
reduction vertex coming from a biped F’€ %4, with y(F', #)<i.
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ii) If Be # U4, either x(B, #)<1i, or there exists in C at least one reduction
vertex coming from a biped F'e 4., with y(F’, #)<i. In all these cases we find
N(C) —2+1=P(C).

d —= N(C) —2=0, C is proper and closed, C+F/# u%,. Then C=Q/F U%;.

By using the fact that Q is closed, that Bz(Q) is proper and that F is a biped of 4, if

B4(Q)+F, we see from the definition of y that i< y(Q, %). The use of Lemma IV.3
again if z(Q, #) =i, or Lemma IV.4 if z(Q, #)>1, gives N(2C) —24+1=2P(C).

e) ._N(C) —2=—1, Cis proper and closed, C+F/# U%,. Then C=B/F U%,

with Be % (%) and i< y'(B, #). The analysis is identical to the analysis made in

case b) above and gives N(2C) —2422P(C).

f) N(ZC) —2=0, Cis proper and closed, C=F/% u%,, F +G. In that case, we

N(C)
2=

5 0.

N(©O)

g —

z(F, #) <1, or there exists in C at least one reduction vertex coming from a biped

Fe#, with y(F,#)<i. In both cases from Lemmas IV.3 or IV4,

MO 5410,

2
n NO N(C)

i<yG,F ) =/ +1, we can do the same analysis as in case b) if G is a biped, giving

keep

—2=—1, C is proper and closed, C=F/%# u%,, F+G. Either

—2=<0,C=F/#u4%, with F =G. In that case, since G € # (%) and

N(2C) —2+422P(C), or as in case d) if G is a quadruped, giving (ZC) —24+1
= P(C).
All the cases from a) to h) are mutually exclusive and give finally

. . . N,

i<Inf(io,j) = i+n;2 ? (4.41)
with

N;= Y N(GINF/F UAB,). (4.42)
FeFuB,u{G}
GINF|F B +F|FUBy if F£G

Lemma IV.5.

1<i<Inf(iy,)) = i+n;21. (4.43)

Proof. From the preceding analysis, we see that (4.43) is true unless we have
GINnF/FuB,=0 (emptiness) or GINnF/FuB,=F/FuA, (fullness),
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VFe % u%,u{G}. We cannot have always emptiness since i>1, nor always
fullness since i £ — 1. Moreover, (4.43) is true from case h) above if we have fullness
for F =G. Therefore, for (4.43) being violated, we must have at least one F, with
fullness for F, and emptiness for Bg g (F;). Since x(Fy,%)>y(F, %),
VF, e % u4,,thisis possible only if there is one (if F, is a quadruped) or two (if F,
is a biped) F'e o (F,) with i y(F’, #). From Lemma IV .4, we are left with at
least one such F’, not used in cases f) or g) above, and giving a further + 1. This
achieves the proof of Lemma IV.5.

Let us see now the case i=j. From Subsect. IV.5, Lemma IV.3 remains true
except for the maximal graphs F, of the nests ¢,,, Vm=k+v+ 1. Let us call #,, the
subforest of s, made from these F,. We define a new forest

M=F OB N(H(F)—H)0Hy.
Lemma IV.6. Vi, 1Zi</—1,

~

, N, 1
i+ r + EXioj_wGXO’ (4.44)
with
N,= S N(G!NF/M). (4.45)
FeMu{G}
GInF[M +F/M

Proof. First, as remarked in Subsect. IV.3, the leading tree of Sy is a spanning tree
inside any F € s#(%). Therefore, i +#; may be estimated as well by replacing
> o(GInF/FuHB,) by > w(GinF/H).
FeFu®B1u{G} Fe MU{G}
Now the same analysis [cases a) to h) above] can be repeated, with the following
modifications:
i) In Lemma IV 4 there appears a further (+ 1) term for each

F e[(#(F)— K)o 1B, if y(F,F)<i.

These terms are used everywhere like those coming from F'e 4,.

ii) Each time we consider some F’e (%), we may again conclude that
F’ € #,; [now because all the graphs of #'(#)— #; have been reduced], and that
ie Z, (now because all the graphs of J#,, have been reduced), except if F'=G.

iii) Each time we deduced from i<z or i<x the existence of one or two
reduction vertices coming from F’e€ %, we may now deduce the same existence
with

F e[(H(F)—H)oH,1n%,
since
yF, F)y>x(F,F) if FeHF).

iv) Incase d)above, if F € #(#), we may again conclude that i < y(Q, &) from
y(F, F)>x(F, F).

v) In case h) above, we cannot conclude now that G € . This corresponds to
the fact that we maintain the restriction GINnF/.# +F/# even for F=G, and
achieves the proof of Lemma IV.6.
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Lemma IV.7. Vi, i,<i</—1,
itz l+45, (4.46)

Proof. If i=i,, then i=i,. From the definition of i, in Subsect. IV.1, there is a
spanning tree S, for which A(Sy) = a(i,). Let A(S,) be the set of lines A’ of S, /.4 such
that S,/.# —{A’} has two connected components, each of which contains a non-
empty subset of the external vertices of G. Then V1" A(S,), either 1'=o(i’) with
i'Si,, or Ve F—X(F,%) for some Fe#(F). In this last case, i,=y(F, %)
>x(F,%) and X(F,%)/% CGj for i=i,. Therefore, Vi=i,, there must exist a
connected component C; of G7/.# which contains all the external vertices of G,
and we have

N(C))
S -

From the preceding analysis with the forest .#, we see that (4.46) is true unless
there is fullness or emptiness for any F € #, F+G.

i) If there is not fullness for G, we find w(G{/H)=ws+ 1.

ii) If there is fullness for G, we have emptiness for some F, € #, F =+ G, with
fullness for any FOF,, F e /. But since i=i,=i,, we have F, ¢ # from Subsect.
IV.1. We also have F, ¢ # (%) because i> y(F, #)>x(F, %) would contradict
emptiness for F,. Therefore, F, € %4, and i= y(F,, %#). This F, is not used in the
analysis and gives a further + 1, which achieves the proof of Lemma IV.7.

fwg=—1,i,=¢and i<i,. If w; =0, we obtain directly the result (4.49) below.
If wg=1, we write, since i+#7;,=3,

2~ wgyo= ﬂc‘)T‘N(—G) >0. (4.47)

1 . i+n,+o
dp.gitm—1 Tt T 76
5) bibi i+n;

Using (4.48) and Lemmas IV.5, IV.6, and IV.7, we obtain finally from (4.35) the
following bound on the f; integrations:

1 1
fap.pirmtee 1l <3mg [ dppitmtes™1  (4.48)
0 0

-1
5| < Kl (wg+0(0)+3) TT vi ', (4.49)
i=1

where
vi = Sup(%a Nl) ) (450)
and N, is defined in (4.45).

V. Results

Gathering the results of the preceding sections, we see from (3.8), (3.16), (4.35), and
(4.49) that we are left with the summations over &, #”, ¥, o, j, and 0.

As a consequence of Lemma II1.6 and Appendix B of [1], we may write, given a
forest 4,

-1

> LTk, (51)

g S i=1
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where
s=|M=\F|+|B | +|H(F)— H|+|Hyl. (5.2)

From the definition of 5, | #,, = a(5). From item d) of Lemma IIL.1, the sum
over J gives at most a factor 8"(|%,| + || —v—a)!, and the sum over j gives a factor
¢+ 1< 2n. Finally, the sum over the disjoint forests &, #”’, and € gives at most a
factor 8", from Appendix A of [1]. We find

HEIS K5I (g +v+3)s! (1B, + 1] —v—a)!, (5.3)
or equivalently
SIS K| +|#(F)| +|B,| + 8., (5-4)

from which we deduce the following theorem, similar to the corresponding
Theorem I in the massive case [1].

Theorem L. For any graph G of the massless euclidean ®3 model, we have

HEAI=K"[f(G)], (5.5)

where K depends only on u, N(G) and on the external momenta f,, ..., fiy, and f(G)
is defined as

f(G)= Sup f(F), (5.6)

closed divergent
forests # of G

[(F)=q(F)+20(F), (5.7)
q(F) and b(F) being the number of quadrupeds and bipeds in F.

On the other hand, the theorem proved in Appendix C of [1] remains, of
course, unchanged:

Theorem IL. If y(N, n, f) is the number of labeled graphs G with N(G)=N, n(G)=n,
f(G)=/, there exists a number K’ depending only on N, such that

YN, n, ) S K m)*(f)71 (5.8)
As a simple corollary of Theorems I and II we have

Theorem IIL. The Borel transformed perturbative series for any Schwinger function
of the euclidean massless @5 model, at fixed external momenta, has a non-vanishing
radius of convergence.
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