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Abstract. We show that there is a natural gauge invariant presymplectic
structure ω on the space si of all vector potentials. The covariant axial
anomaly G is found to be the essentially unique infinitesimally equivariant
momentum mapping for the action of the group of gauge transformations on
{si, ω). The infinitesimal equivariance of G is shown to be equivalent to the
Wess-Zumino consistency condition for the consistent axial anomaly G. We
also show that the X operator of Bardeen and Zumino, which relates G and G,
corresponds to the one-form (on si) of the presymplectic structure ω.

Introduction

The mathematical structure of the consistent axial anomaly G can be studied from
several viewpoints. For example, one can use differential geometric and algebraic
techniques on spacetime, as in Zumino [16] and Zumino et al. [17] or one can use
differential geometry and elliptic analysis directly on the space si of all
connections (vector potentials), as done by Atiyah and Singer [2]. An important
ingredient about G is its integrability criterion, the Wess-Zumino consistency
condition. To go from G to the covariant axial anomaly G, one can use the
explicitly given X operator of Bardeen and Zumino [4].

The present note is motivated by two questions: What is the intrinsic
integrability condition for the covariant anomaly G? And what is the geometrical
interpretation of the aforementioned X operator? Inspired by Atiyah and Singer's
success in dealing directly with the geometry of the space si of all connections, we
feel it would be instructive to examine our questions from the viewpoint of
presymplectic geometry on si. The abstract summarizes our results.

Our presentation is organized as follows. Section 1 sets up the terminology and
notation concerning si and the group of gauge transformations which acts on it,
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and records some facts about symmetric products of Lie algebra valued differential
forms. Section 2 briefly reviews axial anomalies. The main results are derived in
Sect. 3, and discussions are contained in Sect. 4. Our objective of making this work
readable for both mathematicians and physicists has contributed to its length.

1. Connections, Gauge Transformations, and Symmetric Products

Let G be a Lie group in a matrix representation, and let g be its Lie algebra. The
adjoint action of G on g is Adg/l = gλg ~1, whose derivative at the identity gives the
matrix bracket \_λ\ λ] = λ'λ — λλf.

Let P -**-> M be a principal bundle over spacetime M, with structure group G
whose action on P is on the right ((p g) g/==p- (gg'))> free (that is, without fixed
points), and transitive on each fiber [π(p) = π(pθ => p g = p' for some g]. Let ( #)
denote the diffeomorphism pt-^p-g. A vector V is vertical if it is tangent to some
fiber (that is, π^ V=0). The action is described infinitesimally by the "rigid" vertical
vector fields X, where

p (exρί/l), Aeg. (1.1)

The J's are nowhere zero (if ΛφO) because the action is free; they span the vertical
subspace at each point. The map λv-+λ obeys an equivariance whose finite and
infinitesimal versions are respectively [5]

; M (1.2)

A g-valued differential form Ω on P is equivariant if Ad;* ° Ω = ( g)* Ω, and is said
to be horizontal if it vanishes whenever one of its arguments is vertical.

Let si denote the space of connections of the principal bundle. Each A e sd is
an equivariant g-valued one-form on P such that

A(J) = λ. (1.3)

Thus there is no zero connection, si is affine: each tangent vector τ at A is of the
form ±(A'—A) for some A'esi, hence is a g-valued one-form on P which is
equivariant and horizontal [due to Eq. (1.3)]. By equivariance, no information is
lost by choosing local sections s:UQM-+P and working with As'. = s*A and
τ s: = s*τ which, under a change of sections s'(x) = s(x) g(x), transform like As'
= g~1Asg + g~1 dg and τs' = g~1τsg. We suppress the superscript s whenever
possible.

Let HA denote "horizontal" projection onto the null space of A, which
complements the vertical subspace at each point. DAΩ: = (dΩ) ° HΛ is horizontal
and defines the exterior co variant derivative of forms on P. The horizontal 2-form
FA: = DAA is the curvature of A. The structural equations [5] say that FA = dA
+ A2 and, for any horizontal equivariant g-valued r-form Ω on P, DAΩ = dΩ + AΩ
— (— l)rΩA. This latter formula does not apply to the non-horizontal A, but it
does apply to FA and yields the Bianchi identity DAFA = 0.

Computations on M are simplified by using, for each Beέ%:= {locally defined
g-valued one-forms on M}, the abbreviations FB: = dB + B2 and DBζ: =
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-(-iγζB for ζeΛr(M)®g. [For example, FtA = tdA + t2A2 = tFA + (t2-t)A2

and DtAtA = tdA + 2t2A2, where A means s*A.] The generalized Bianchi identity
DBFB = 0, equivalently DBFB = 0Mm, then follows. J* may be identified with the
linear space of equivariant g-valued one-forms on P, in which case it properly
contains si, since tA(0 S t ύ 1, A e si) is a ray in 3% which meets si only when t = 1.

Let ^ be the group of gauge transformations of P. Each φe$ is a
diffeomorphism on P which projects to the identity map on M, and is equivariant:
ψ(P' g)= (ψp) ^ Its Lie algebra Lie <& consists of all vertical vector fields V on P
which obey the equivariance V(p g)={- g)*(Vp). Through local sections s, φ and
F are described by maps y:UQM->G and Λ:UQM-+Q9 where

φ(s(x)) = s(x) y(x), F(s(x)) = A(x) (s(x)). (1.4)

Note that φ~ x(s(x)) = s(x) y~ x(x), since the action is free. And Λ.(x) = A(V(sx)) for
any connection A. The equivariance of F and Eq. (1.2) give, under a change of
section,

As' = g'ιAsg. (1.5)

The adjoint action of ^ on Lie^ is

Ad^F^φ^F^yyl y"1. (1.6)

Note that (Ad V)(p)= — (φ°QxptV)(φ~1p) = φήί(V(φ~1p)) is clearly ver-
dt t = 0

tical, and is equivariant since φ and F are. The local description follows from
φ~1(s(x)) = s(x) - y " 1 ^) , the equivariance of F, Eqs. (1.1) and (1.2), and finally the
equivariance of φ. We next differentiate Eq. (1.6) at the identity of ^. Note that

— Adexp^F' is the group theoretical bracket [F, V\rp, while
dt t=0

j (exptV)tV'= -<evV'=-\_V, V'l Also, A(\V9 V'])= -IA(V)9A(VJ\. To

see this, start with [F, F7] = [VaTa, V] = - {iv, dVa)Ta, where we have used [3^ V]
= if^-F/ = 0, a consequence of the equivariance of V and the rigidity of λa (cf.
Lemma A l l of [3]). Then A([V, V^)= -(iv,dVa)λa= -ίv,d(A(V)\ which
= -ίy.(DΛA(V)-AA(V) + A(V)A)=-lA(V)9A(V')'] by the structural equation
for the equivariant 0-form A(V). Hence

We remark that Eqs. (1.2) and (1.7) concern vertical vector fields which are
respectively rigid (but non-equivariant) and equivariant (but non-rigid).

^ acts on si on the right: A φ = φ*A <-> y" 1Aγ + y~ι dy, and induces an action
on its tangent vectors: ( </>)ί!sτ = φ*τ<->y~1τy. The infinitesimal generators of this
action are the rigid vector fields V on si where

at ί = 0

The equivariance and horizontality of <£VA follows from the method but not the
statement of Proposition A 6.1 in [3]. Also,

<evA = iv{FA -A2) + d{ivA) = d(ίvA) + AivA - (ίvA) A «-» DAA.
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Each Ve Lie^ gives rise to a passive variational operator Tv which acts on
functionals of A and its derivatives, such that TVA:= V(A) = £?VA. For example,
TvFA = d&vA + {&yA)A + A&vA<r*DADAA = FAA-AFA. The local section de-
scription of Tv is the variational operator TΛ (such that TΛA = DAA) in Bardeen and
Zumino [4]. Next we note that if τ is a horizontal one-form, then 5£vτ=-\vdτ
= ίv(DAτ -Aτ-τA)=- (ivA) τ + τivA^ τsA - Aτs. Hence Tv TV,A = TV{^V,A)
= &v.(TγA) = 2v.SevA <-> φ AΛ) A! - A'DAA = TΛTΛA. Thus from Sgv.S£v

- JS?FJSfF, = Jί? [ F , > n = if [ F f K Ί g r p and Eq. (1.7), we have

(TvTVf-TVfTv)A=T[V>v%rpA^(TΛTΛ>-TΛTΛ)A = T[Λ^μ^ (1.9)

We remark that in comparing with Bardeen and Zumino, it is helpful to keep in
mind that their Eq. (3.32), namely TΛB = BA — AB, concerns B's which are
independent of A and is used to simplify the bookkeeping in a subsequent
calculation; this formula does not have a counterpart in the formalism we are
using.

We now discuss symmetric products. Given m g-valued differential forms
Li = I%Xa ({λa} a basis for g), define the symmetric product

P(L1,...,LJ: = ±r Σ Lγ...I%?λn{ai)...λπ{am). (1.10)

Here, Sm is the permutation group on m symbols α l 5 . . . , am. In P(...), 1} will mean L
repeated k times. For τ, ξ e Λ.1®g and F,Ke Λ.2(x)g, we have

trP(τ,ξ,F"- 1 )=-tr( Σ ^ F ξ F " - 1 - 1 ' ) , (1.11)

and

FjKFn~2'j-h " Σ T Σ F ' i C F " 1 " - ' ^ " " 1 " 4

+ HΣτFiξn Σ V W ^ - ^ ^ T Σ V W " 2 - ^ ) , (1.12)
/=1 J=0 7=0 /

which shows that trP(τ, ξ, FΛ~x) and trP(τ, ξ, K, Fn~2) are anti-symmetric in τ, ξ.
Consider for example Eq. (1.11). Among the (n+1)! elements of Sπ + 1, there are
n (n—l)! = w!, which generate (n —l)!trQ£...); each of these n! elements has
(n +1) cyclicly permuted companions, which all generate the same term due to the
cyclicity of the trace. Thus l/n comes from («+ l)(n— l)!/(n+ 1)!.

Let ^(^/) denote the space of all vector fields on J/ . To simplify later
discussions we define, for each ηeSC{s^\ the operator δη such that: δητ
= 0 Vτ e ̂ (ja/), (5^ = y/ V̂ 4 e si, and <5̂  acts on functionals of τ and ̂ 4 as a variation.
For example, δη(τAξFA) = τηξFA + τAξDAη; note however that δηFtA = ίZ)^. Thus
δ is identical to the usual functional variation of A. From Eqs. (1.11), (1.12), we get,

f ξ,ί/) t^,FίΓ 2). (1.13)

From now on, we shall freely integrate-by-parts on M and ignore boundary
terms. Such is justified if suitable decay conditions are imposed on the fields, or if
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M is compact without boundary. We have a Jacobi identity involving
and Be J>:

,DBτ,Fn

B-
2) + P(η,τ,DBξ,Fn

B-
2) + P(τ,ξ,DBη,Fn

B-
2)) = O. (1.14)

An elementary derivation begins with the identities $ tr (ξηF\Dτ)Fm)
= Jtr( — (Όξ)ηFιτFm + ξ(Dη)FιτFm) and J tr{ξFι(Dτ)FmηFr)= J tτ{(Dξ)FιτFmηFr

+ ξFιτFm(Dη)Fr), obtained from partial integration and the generalized Bianchi
identity. Equation(1.12) and these identities convert trP(ξ,η,Dτ,Fn~2) into
tv(Dξ terms + Ity terms), which cancel trP(η,τ,Dξ,Fn~2) and trP(τ,ξ,Dη,Fn~2)
respectively. We omit here the (tedious) combinatorics. A more elegant derivation
may be based on Eq. (5.40) of [6].

2. Review of Anomalies

Let gμv be the components of a fixed background Riemannian metric on an even-

dimensional spin-manifold M2n. The associated volume form is ]/gdx, where

]/#: = (det#μv)
1/2 and dx abbreviates the wedge product dx1 ...dx2n.

The lagrangian which describes the interaction of a Dirac spinor ψ with a
classical (that is, onumber) external non-Abelian gauge field A is L(A, ψ) = \pΦAxp,
where $A is the Dirac operator yμ(dμ + \ ωa

μ

βσaβ + Aμ) and ω*μ

β are the components
of the Christoffel (torsion-free) spin-connection [15]. The vacuum action func-
tional W(A) is defined through a Feynman path integral: QxpίW(A)
= Jmeas. (ψ)exp(i J ]/gdxL(A,ψ)\ The non-invariance of W(A) under the

ψ \ M >
(infinitesimal) action of ^ on J / defines, in principle, the (perturbative) non-
Abelian consistent axial anomaly

G(V,A):=TV(W(A)), VEUQ^. (2.1)

G is named consistent because, in view of Eq. (1.9), it must obey the Wess-Zumino
consistency condition

TV(G(V\ A)) - TV,(G(V, A)) = GilV, F'] g r p, A). (2.2)

If the vertical equivariant vector field V on P is everywhere proportional to a fixed
X, where λ belongs to the Lie algebra of a U(l) factor of the structure group, then
G(V,A) is called the Abelian anomaly. General arguments [17] show that the
Abelian anomaly is proportional to J θ trFA, where θ is a real-valued function on
M.

The requirements that G(F, A) is linear in F, depends only on local data on J/,
is given by the integral of a translation-invariant 2n-form on M2", and obeys the
consistency condition (2.2), are sufficient to characterize (cf. [16] and references
therein) it up to redefinitions of W(A) through the addition of counter-terms. An
explicit formula for G(F, A) has been obtained [16, 17] by starting with the
Abelian anomaly (or more precisely the Chern character) trF^ + 1 in (2n + 2)
dimensions and transgressing twice. The result, after suppressing a multiplicative
constant an. = in+1((n+l)(2π)n+1)~\ is

G(V,A)= J {n+\)n\dt(\-i)tx{AdMP{A,Fn

tA

1)), (2.3)
M2n 0
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where dM is the exterior derivative on M. Our G in Eq. (2.3) is the negative of that in
[17].

Formally, the non-invariance of W(A) can be interpreted as the non-
conservation of a certain current. Observe from Eq. (2.1) that G(F, A)
= (d*W)(V(A)) and V(A)^DAA [Eq.(1.8)], thus

G(V,A) = J tr(]/gdxK«(DAA)a), (2.4)

where Ka: — (δW/δAb

a)λb are the g-valued components of the current vector K. Let
\_μ... α] be the totally antisymmetric symbol on M2n such that [1 . . . 2ή\ = 1, then
ε/μ 'a:= [_μ...a]/yg is the Levi-Civita tensor (not density). Define the g-valued
current-(2w-l)-form J = Jμ_ξdxμ...dxξ by the relation ε'μ-ξ"Jμ_ξ = Ka. The
right-hand side of Eq. (2.4) can then be rewritten as J tr(dxμ ...dxξ dxaJμ ξ(DAA)a)
= jtr(JDAA)=itr(-(DAA)J)=$tr(ADAJ); so

G(V9A) = f tτ{ΛDAJ)=:Λ'DAJ, (2.5)
M 2 "

which shows that the non-conservation of J is due to G.
The consistent anomaly G corresponds to the amplitudes of anomalous

Feynman diagrams, and represents the non-conservation of certain quantum
numbers. These diagrams are in the form of a fermion loop with external boson
legs. If one symmetrizes the external bosons, then the resulting amplitudes
correspond to the so-called covariant anomaly G. Explicitly [4,11-13]

G(V,A)= ί (n+l)tr(ΛFn

A). (2.6)

There is a current-(2π — l)-form J such that A DAJ = G. It is equal to J + X, where
[4]

η X= J (n+\)nUdttτP(η,A,F^1) (2.7)
M2n 0

for any ηeA\M)®q. Applying A D to J + X = /and using ADX= -(DA) X,
we get

G(V,A) + (DAΛ)'X = G(V9A). (2.8)

An intrinsic integrability condition for G, corresponding to the consistency
condition (2.2) for G, will be derived in Sect. 4.

The operator X also has a direct physical interpretation. In theories with
Goldstone bosons and anomalies the effective action has a term

Γ=\G (2.9)
id

which is the integrated version of Eq. (2.1). φ is then interpreted as the Goldstone
field, whose local description is y [see Eq. (1.4)]. From the equations of motion for
A, one can [8] identify

tr (Ad;x VX(A φ)) <-> tr(y " ίAyX(y ~ ιAy + γ ~x dγ))

as the covariant current of the Goldstone bosons in the direction of V.



Covariant Anomaly as an Equivariant Momentum Mapping 443

Finally, we mention a result of Atiyah and Singer [2] which relates the
consistent anomaly G to some elliptic differential geometric construction on si.
They consider the null space (zero-frequency modes) of φA o (1 + y2n+1)/2, and that
of its adjoint, as fibers over each A e si. Taking the formal difference (as in
iC-theory) of these fibers, one eliminates the jumps in dimension as A varies, and
obtains a vector bundle over si, the index bundle. Since the affine space si is
topologically trivial, the first Chern form c1 of the index bundle, being a closed
2-form on si, is globally exact. Hence cί = d^β for some one-form β on si. It is a
corollary of their general constructions that (again we suppress the aforemen-
tioned constants an)

β(V(A)) = j (n+l)s*(iv]dttτ(AF;Ay\=G(V9A). (2.10)

Here, s: UQM-+P is a local section, FtA stands for the 2-form tdA + t2A2 = tFA
1

+ (ί2 — t)A2 on P, and $ dttr(AF"A) is a Chern-Simons secondary invariant [6].
o

The fact that the integral in Eq. (2.10) equals G can be verified by using the
identity s*{iv\τ{AFn

tA)) = iτ{AFn

tA) + n(t2 -t)\τP{A,AA-AA,Fn

tA~
ι\ followed by

Eqs. (B-27)->(B-33) of [17].
In the next section we will study the covariant anomaly G from the viewpoint of

the presymplectic geometry on si.

3. Main Results

In this section, d denotes the exterior derivative on si. If Φ is an r-form on si, iτΦ
will sometimes be used to denote the (r—l)-form Φ(τ,...). Let [τ,ξ] be the Lie
bracket for vector fields on si. We abbreviate the expression
(τc

a(A)dξa

μ(A)/dAcJd/dAa

μ by ίτdξ, so that [τ9ξ] = iτdξ-iξdτ. We also recall the
operators Tv and δτ from Sect. 1.

If α is a one-form on s/9 (dα)(τ,O = iτd(α(ί))-ΐξd(α(τ))-α([τ,ξ]) = δτ(α(ξ))
+ φτdξ) - δξ(a(τ)) - a(ίξdτ) - α([τ, ξ]). Thus

(dα)(τ,ξ) = δτ(α(ξ))-^α(τ)). (3.1)

Likewise, if ω is a 2-form on si, then from (dω) (τ, ξ, η) = iτd(ω(ξ, η)) — iξd(ω(τ, η))
i7]Jξ)-ω([ξ,ίί],τ), we get

{dω) (τ, ξ, η) = δτ(ω(ξ, η)) + δξ(ω(η, τ)) + δη(ω(τ, ξ)) . (3.2)

For now, let ω be an arbitrary but fixed closed 2-form on si. Since si is affine
and hence topologically trivial, ω is globally exact. Let α be any globally defined
one-form on si such that da = ω. (We will soon specialize to a preferred ω and α.)
Let H:(Lie^)x J3/->R be any function which is linear in Lie^; motivated by
Eq. (2.8), we define its transform H: (Lie^) x J ^ - > R (also linear in Lie^) by

H(V9A): = H(V9A) + x(V(A))9 (3.3)

that is^ H(Λ9A): = H(Λ,A) + OL(DΛΛ). Using the fact that Tv(a(V\A)))
= δy(oc(V'(A))) + oι(TvTv,A)9 Eqs. (1.9) and (3.1), and da = ω, we see that H satisfies
the Wess-Zumino consistency condition

TV(H(V\ A))- TV(H(V9 A)) = H(ίV9 V%p, A) (3.4)
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iff H satisfies

Tv(H(V'9A))-Tv.(8(y,A)) + ω(V(A), V\A)) = H{\V, V]m,A). (3.5)

We next require that ω be gauge-invariant, that is, ( φ)*ω = ω. A function
H: (Lie^) x J / - > I R is said to be a momentum mapping [1] for the action-of ^ on
(si, ω) if it is linear in Lie^ and

d(ff(V, )) = ω(y,.), that is, δξ(H(V,A)) = ω(V(A\ξ). (3.6)

In other words, H is a momentum mapping if, with respect to the presymplectic
structure ω, V is the hamiltonian vector field of the function H(V, •) on si. The
momentum mapping H is said to be equivariant if

V9A). (3.7)

Differentiating this (with the chain rule) at the identity of ^, and using Eq. (3.6), we
get

-ω(V(A\ T(A)) = β(£V9 V%p9 A), (3.8)

that is, — ω{DΛΛ9DΛΛ
/) = β([A9A

r]9A). Equation (3.8) is the criterion for in-
finitesimal equivariance. Our definition of equivariance is a slight modification of
that in [1], which treats left actions. From the same reference, one learns that the
cohomology class of ^ defined by an equivariant momentum mapping is trivial.
Next note that since si is path-connected [A + t(A!—^4) is a ray in si from any A to
any A~\ and hence connected, Eq. (3.6) says that any two momentum mappings
must differ by a function C(V) which is independent of A and linear in V. From
Eq. (3.8) we see that the additional requirement of infinitesimal equivariance on
the two momentum mappings translates into the restriction that C([V, V]^)
must vanish for any F, F'eLie^.

Let us restrict to the class of H's for which H is a momentum mapping. Then H
satisfies the Wess-Zumino consistency condition (3.4) iff Jϊ is an ίnfinitesimally
equivariant momentum mapping. The reason being that in such case, TV(H(V, A))
= δv(H(V\ A)) = ω(Ψ(A\ V(A))9 and thus the left-hand side of Eq. (3.5) simplifies
to -ω(V(A\V\A)).

We now specialize to the following closed ^-invariant 2-form on si\

ωA(τ,ξ):=- J _
M2n \i = 0

= - ί (n+\)ntτP(τ,ξ,Fn

A

ι). (3.9)
M 2 n

The definition is clearly independent of the choice of local sections. Equation (1.11)
shows that ω is skew and can be written in the above two ways. It is closed because
of Eqs. (3.2), (1.13), and the Jacobi identity (1.14). It is ^-invariant: [(• φ)*ω~\A (τ, ξ)

φ

We believe that, up to a constant multiple, this is the only 2-form on si which is
closed, ^-invariant, with values depending only on local data on si, and is given by
the integral of a translation-invariant section-independent 2rc-form on M2n.

Consider Eqs. (3.6) and (3.8) with this ω, and the identity
- ί tr((DΛ)FιξFm) = ί tr(ΛF\Dξ)Fm).
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We have

= f (n + 1) tv(AδξF
n

A) = δξ(G(V, A))

and
(n~\

-ω(K(yl),F(4))=-ί(n+l)tr Σ AFι

A(FAA-AΊ

Thus all infinitesimally equivariant momentum mappings are of the form H(V, A)
= G(F, A) + C(Ύ), where C(V) is any linear function on Lie^ (and independent of
A) which vanishes on brackets. G is actually equivariant (not just infinitesimally so)
since tv(A{y~ 1FAy)n) = tv(yAy~ ίFA); we emphasize that the equivariance of G is to
be distinguished from its section-independence. The C's are of limited significance
here because if one insists that H(V, A), and hence C(F), is given by the integral
over M2n of a quantity which obeys locality, then [14] for each choice of C,
counter-terms can be added to the action functional so that G + C, rather than G, is
the covariant anomaly.

Let us determine α up to closed one-forms. Since sέ is affine and hence star-
shaped about any fixed element Ao, there is a linear map [10] / from 2-forms to
one-forms such that Id + dl = the identity map. Explicitly,

(Iω)A(η):=\tdtωAt(η,A0-A) = f (w + 1)«J tdttτP(η9 -{A^-AXFX1),
0 M 2 " 0

(3.10)
where At: = Ao + t(A-A0) is the ray in si from Ao to A and i ^ ^ F ^ ^ ^
+ (t -12) (AA0 + A0;4) is the curvature of the connection At. The tangent vectors η
and yί0 — A, though based at the point A, are equivariant horizontal g-valued one-
forms on P and, since the notion of horizontal forms is independent of any
connection, we can just as well regard them as tangent vectors based at At. Note
that Iω is independent of local sections, though it is not ^-invariant:

(( φ)* (Iω))A (η) = (Iω)A.,(( φ\η) = f t dtω{A.φ)t((- φ\η9 Ao - A • φ) + (Iω)A (η).
o

From the homotopy property of / and the closure of ω, we have d(/ω) = ω.
Thus Iω is one choice for α. Observe that Iω is the sum of two parts, one which is
homogeneous in Ao, and one which is independent of Ao. We now show that the
latter part is also an acceptable choice for α. Let

ocA(η):= ί (n+\)n\tdttτP(ri,A,Fn

tA-
1). (3.11)

M2n 0

Since there is no zero connection, this α is not obtainable from Iω by choosing any
Ao; we must therefore explicitly check that dα = ω. Using Eq. (3.1), a variant of
Eq. (1.13), and δηFtA = tDtAη, we have

(da)A(τ,ξ)= ί
M2n

- P(τ, tξ, F"tA')-{n-\) P(τ, tA, tDtAξ,
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which, upon the use of the antisymmetry in the first two slots of these trP's, and the
Jacobi identity (1.14), becomes

Rewriting the third integrand as

t φ - 1) P(τ, ξ, t\djdi)FtA, Fn

tA

 2) = tr(n - 1) P(ίτ, tξ, (d/dt)FtA, Fn

tA

 2 ) ,

and using a variant of Eq. (1.13), the above integral

= - J (n+l)nJdί | - t rP( ίτ , ίξ , ί ?Γ 1 )=- ί ( n + l ) n t r P ( τ , ί , F r 1 ) = ω^(τ,ξ).
M2" 0 dt M2n

This one-form α on jrf is neither section-independent nor ̂ -invariant, and its
integral representation on M2n is given by the X operator of Bardeen and Zumino
[4], in the sense that a(ξ) = ξ X. Corresponding to the choice /? = (?, the solution
H of the Wess-Zumino consistency condition (3.4) is G(V, A) + oc(V(A)) = G(A, A)
+ (DAΛ) X which, in view of Eq. (2.8), is the consistent anomaly G. From the
paragraph following Eq. (3.8), one sees that the infinitesimal equivariance of G is
equivalent to the Wess-Zumino consistency of G. We summarize,

Proposition. Let ω be the closed ^-invariant 2-form on s$ given by Eq. (3.9).
A. Then, up to linear functions on Lie^ which vanish on brackets,
(i) The covariant anomaly G is the unique infinitesimally equivariant momentum

mapping for the action of & on (s/,ω). It is also equivariant.
(ii) For any one-form a on s$ such that da = ω, H = G is the only choice of

momentum mapping for which H(V, A): = H(V, A) + ot,(V(A)), that is
H(Λ9 A): = H(A, A) + ct,(DAA), satisfies the Wess-Zumino consistency condition.

B. // α (such that doc = ω) is further specified by Eq. (3.11), then oc(ξ) = ξ X and
G(V, A) + a(V(A)) is the consistent anomaly G. Furthermore, the infinitesimal
equivariance of G is equivalent to the Wess-Zumino consistency of G.

5. Discussion

Some questions raised by our approach are

A. The Degeneracy of ω. Being a presymplectic structure on an infinite
dimensional space, the relevant notion for ω is that of weak non-degeneracy: Does
co(τ, ξ) = 0 Mξ => τ = 0? From Eq. (3.9) we see that ω is weakly non-degenerate only
when dimM = 2, in which case it gives a symplectic structure on s$. In higher
dimensions (of M), its defining expression is homogeneous in F, and thus vanishes

/Γn-1 _ Ί \

i d e n t i c a l l y a t f la t c o n n e c t i o n s ; r e w r i t i n g ωA(τ, ξ) a s — J t r Σ FA

 γ ιτF\ \ξ\,
\U = o J /

one sees that whenever the structure group is compact semi-simple, the de-
generate directions τ at each A are characterized by the equation

1-1 _ .1 \
X FA

 ιτFι

A \λa)λa = O, whose left-hand side is to be understood as the
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projection onto g of a matrix-valued (2n — l)-form on M2n. The fact that for certain
choices of P [for example: dimM = 4 and all compact semi-simple structure groups
except SU(iV^3) and SO (6)] the theory is anomaly-free, certainly suggests that
part of the degeneracy of ω is of group theoretical origin.

Since ω is gauge-invariant, one can also address the issue of its weak non-
degeneracy on stfjW, where <§' consists of those gauge transformations on P which
equal the identity on a certain fixed fibre in P. Unlike @, the group <$' does act
without fixed points on j / 5 thereby ensuring that stfjy is a manifold.

B. The Level Sets of G. Here we find it convenient to view the equivariant
momentum mapping G as a map from jtf into (Lie^)*, the dual space of Lie ̂  and
G(V, A) will be written as GA(V). This view explains the nomenclature since linear
and angular momenta are maps from the cotangent bundle [(g, p)-space] of
Euclidean space into the dual of the Lie algebra of the translation and rotation
groups, respectively (cf. [1]).

Note that Lie^ inherits from g an Ad-invariant [by Eq. (1.6)] and section-

independent [by Eq. (1.5)] inner product (V, V'): = f \ίg dx tΐiΛΛ'). Thus, to G we

can associate a map G* :<β/->Lie^, defined by (G*, V) = G(F'); for each Aesέ,
the element G* in Lie^, which is an equivariant vertical vector field on P, can be
described via local sections as tr(ε/μ -'a(F%)μ aλ

a)λa, where ε' is the Levi-Civita
tensor defined in Sect. 2. The norm square of G can then be defined as
| |G| | 2 : = (G # ,G # ) = G(G#), which is a real-valued function on j / . One can ask
what the level sets of | |G||2 (henceforth abbreviated as /) look like, and whether
they have any physical significance.

One can investigate the level sets of/ with Morse theory, the use of which on
functions constructed out of momentum mappings is not new in pure mathematics
(cf. [9] and references therein) nor in mathematical relativity [7]. In our case, a
scheme goes as follows. The function / is expected to have degenerate critical
points (those where the Hessian is not an isomorphism). These degeneracies are
hopefully milder for /, the restriction of / to a suitable submanifold of s$. A
generalized Morse lemma is applied to /. Findings about / are translated into
those about / by using an appropriate slice theorem for the action of ^ on j / , and
exploiting the equivariance of G. We anticipate the degeneracy of ω to contribute
non-trivial difficulties towards the implementation of the aforementioned
program.
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Note added on proof. In the above expression for G#, one can lower the indices on the Levi-Civita
tensor and raise the indices on Fn. It is then easy to see that in 2n dimensions, the norm square of
G is proportional to the norm square of the Lie algebra valued part of the matrix valued form Fn,
and is therefore proportional to the Yang-Mills action functional only when n = l. In the π = l
case, our presymplectic structure is symplectic and agrees with that used by Goldman, W.: The
symplectic nature of fundamental groups of surfaces. Adv. Math. 54,200-225 (1984). Also, in the
72=1 case, our momentum mapping is implicit in Atiyah,M.F., Bott,R.: The Yang-Mills
equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A308, 523-615 (1982). These
references are brought to our attention, respectively, by J. Marsden and K.Uhlenbeck.




