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Abstract. We prove that in the limit h -> 0, the probability for the paths of the
stochastic jump process associated to the quantum time evolution to be in a
tublet around the classical trajectory is of order 1 - exp {- A/h}. We give some
applications of this result to the study of the classical limit of Wigner functions.

1. Introduction

In a previous paper [1] it was shown that the real time evolution of typical matrix
elements of a relativistic quantum field theory with trigonometric interaction can be
described in any space time dimension by a stochastic flow on the function space of
initial conditions. More precisely, there exists a generalized stochastic process
(Φ(x, £), /7(x, t)) with value in the space of initial conditions and a functional S of this
process such that the expectation value at time t in the ground state of the
exponential of the field operator is given by

(Ω\exp{ί(Φtf)-ί(Πtq)}Ω)

S, j(ί2|exp(ί(ΦΦt) - i{ΠΠt))Ω) \t = 0 \ (1.1)

c being a constant. This expression turned out to be very convenient to prove the
existence of limits when the cutoffs required to define the interaction are removed.

In a second paper [2] we concentrated on the case of quantum mechanics, viz on
the case of systems with a finite number of degrees of freedom. We have shown that it
was more natural and useful to write the previous expression using a process in a
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space where one auxiliary dimension has been added to the phase space. Thus
defining a stochastic flow in U2n+1

9 where U2n was the phase space of the classical
system. In this way the original Feynman representation of the time evolution
described by an integral over trajectories is made rigorous. This representation also
has an appealing feature which already appeared in the original work of Feynman.
Namely, it is intuitive that as h (the Planck's constant) becomes smaller and smaller,
the probability on the phase space trajectories pinches on a tublet around the
classical trajectory. This heuristic idea can be given a rigorous meaning as we shall
show in this paper.

The natural mathematical framework for such an investigation is the theory of
large deviations for stochastic processes. This theory has been developed quite
extensively in recent years (see e.g. [3-7] and the references therein). It has been
already used for physical applications in connection with the study of the classical
limit of quantum mechanics ([8-11]) formulated in terms of diffusion processes. In
this paper we shall use another point of view, viz the possibility of formulating the
quantum time evolution for typical quantum mechanical matrix elements in terms
of pure jump processes ([1,2]). Consequently we shall use the theory of large
deviations for this type of processes (see [4-6]).

This paper is organized as follows: In Sect. 2, besides the known results about the
Wigner functions that we have introduced for the sake of completeness, we discuss
an "interaction-like" picture in our framework. This is an essential technical tool for
our later results. Furthermore, to give a probabilistic interpretation of the
Schrodinger equation we introduce an extra dimension to the phase space lR2n

obtaining in this way a stochastic flow on U2n + 1. This is a natural technique which
has been used already in different contexts (see e.g. [12,13]) as well as in [2]. Note
that our representation looks a bit different from the one obtained in [2]. However,
it is more adapted to the study of large deviations.

In Sect. 3 we give the most important result of this paper. The probability for the
trajectories of the process to be inside a tublet around the classical trajectory is one
up to order exp {- A/h}. In fact, as h goes to zero the typical trajectory has no
component in the extra dimension. Consequently for the bounded continuous
functions on IR2 π + 1, the flow tends to the classical one.

These results do not allow us to discuss directly the classical limit for the time
evolution of Wigner functions. Indeed, the expectation value which defines the time
evolution of the Wigner functions contains an oscillatory term depending on h.
However, it can be controlled completely at least for sufficiently smooth Wigner
functions. This is done in Sect. 4. Moreover, for the sake of completeness we discuss a
version of Ehrenfest's theorem and get in this way a connection with an earlier work
by K. Hepp [14].

2. Interaction Picture

Here we consider a dynamical system whose classical phase space is IR2n. The
canonical symplectic form σ on U2n is:

t q i P ' i } > (2-1)
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where a = (qi9pdi=i,..«(respectively d = (q'i9pβ) *n a g i γ e n basis of U2n.
The usual Weyl quantization procedure [16] associates with every function/in

L}(U2n, dx) the operator Q(f) such that

\Wa>da\ (2.2)

where / is defined as

f(a) = (2π)~" J J{d)έ«a*Ήd (2.3)

and αelR2"-* Wfl is a continuous unitary projective representation of the additive
group of U2n\

* σ(α, α') J We+e-,WaWa. = exp I * σ(α, α') J We+e-, (2.4)

where ft is the Planck's constant h divided by 2π.
It is well known that up to quasi-equivalence there exists only one unitary

projective representation of the additive group of U2n admitting ho as multiplier.
This implies that any quantum state <β(/)> is of the form

f daf(a)iτ{RW*φΠ}, (2.5)

where Wa is the usual representation of the canonical commutation relations in the
Weyl form (2.4) on the Hubert space L2(Mn, dx\ R a density matrix, i.e. a positive
trace-class operator of trace one on L2((RW, dx) and Π the parity operator

(Πφ)(x) = φ(-x) ψeL2(Rn, dx). (2.6)

In particular, the Wigner function [15]

Wh(a) = (hπΓntr(RW*φΠ) (2.7)

contains the whole physical information on the system in the state R. It depends
explicitly on h. The set of Wigner functions can be characterized completely as the set
of Fourier transforms of continuous functions W such that

2 Σ
for any choice {λi9 ai}i=ί N, AfeC, α^elR2". It will be useful in what follows to notice
the obvious:

Lemma 2.1. Let Wh be a Wigner function. Then aeM2n-+ Wh(a) is a continuous
mapping ofU2n in U such that | Wh(a)\ ^ 1. Furthermore, the set of Wigner functions is
convex.

We shall be considering quantum dynamics which are given by the continuous
group of unitaries

relR->exp<-H >,
n
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where the Hamiltonian operator H is of the form

( 2 8 )

Pt and Qi being the usual momentum and position operators whereas

V= f dμ(a)Wa, (2.9)

μ being a bounded measure of bounded variation on U2n. By a measure of bounded
variation we will mean one of the form μ = eiφ{ } | μ|, where φ is a real valued function,
and where \μ\ is a finite positive measure. Furthermore, we shall require that V9 and
hence H, is a self-adjoint operator. This implies that |μ| is a symmetric measure and
φ an antisymmetric function.

The potential V is the quantized operator corresponding to the classical
potential in phase space given by

V\a) = J d\μ\(a')cos(σ(a,a') + φ(a% (2.10)
R2n

and the Hamilton operator H in (2.8) is the quantized operator corresponding to the
following classical Hamilton function,

! ί L j (2.11)

On the other hand, let Wh be a Wigner function; then it can be represented as in (2.7),
and the mapping

Wht(a) = (hπyn tr^Rexp J£jf J W^ϋexpj - £ H j ) (2.12)

defines a group of affine continuous mappings of the set of Wigner functions.
Let us first observe that if V = 0, then

W°ht(a)=Wh(at) aeM2\ (2.13)

where

(<?> P)t = ί Qicos (ωi0 sin (o>i0ft, mfiOiQi sin (ω^) + cos

independently of h. A similar property holds for any quantum Hamilton operator
which is at most quadratic in the P's and Q's.

For what follows it is convenient to consider an "interaction-like picture" which
takes into account this free motion.

Let Ho be the Hamiltonian (2.8) with V = 0. Then

W[t(μ) =
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defines a family of affine continuous mappings of the Wigner functions.
For convenience we introduce for each TeU and t^ T the mapping t-^W[t_τ,

which satisfies lim Wlt_τ(a) = Wh(a).
t-+T

The time evolution is governed by an integro-differential equation which is a
Schrόdinger equation in the interaction picture for Wigner functions. We call it
Schrόdinger equation since it defines the time evolution of the states and not of the
observables. More precisely, we have the

Proposition 2.2 (see [1,2]). W[t_τ{a\ VαefR2" satisfies the following integro-
differential equation

with the final condition lim WI

ht_τ(a) = Wh(a).

To interpret this equation probabilistically as a backward Kolmogorov
equation for a Markov stochastic process, let us introduce an auxiliary dimension
and define the function Ξ:~] - oo, T] x U2n+1 ->C,

'tiq,P)> (2-14)
I \ n J n )

with |μ| defined as

\μ\ = μ\μ\(a'). (2.15)

Ξ is a bounded continuous function such that lim Ξ(t9 q9 p, s = 0) = Wht(q,p). The

time evolution of Ξ is described in the following

Proposition 2.3. Let vtqps be the bounded positive measure on U2n + 1 defined as:

dvtqps(q\p',s') = l-j d\μ\(-a't-.τ)l \-ύn\-σ{a\a)^ φ\-a[.τ\\\βh{sf)

v 2 n + l

with βh the Bernoulli measure, i.e. βh — hiβh^~^-d- Then Ξ satisfies the following
equation:

- ^ ( ί , q, p,s)+ J dvtqps(q\ p\ s')
0 1 R2"+1\{0}

x {Ξ(t, q + q\p + p'9s + s') - Ξ(t, q9p,s)} = 0

with the boundary condition lim Ξ(t, q, p, s) = em)s Wh(q,p).

The next theorem is an application of a known result of the theory of stochastic
differential Eqs. [17] III. p. 176
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Theorem 2.4. There exists a locally infinitely divisible process with values in R2n+1

9

t<T^(Q\{T\ P\{T\ S\{T))

such that (Qτ(T), Pj(T)9 Sγ(T)) = (q,p9s) a.s. whose generator has a modification Λt

satisfying

(AJ)(q, p,s)= J dvtqps(q\ p\ s')(f(q + q\p + p\ s + s') -f(q, p, s)),
R2 n + 1\{0}

such that Ξ(t,q,p,s) = E[S(ί = T, Q\(T\ TO, Si(T))lfor all feC\ (U2n + 1% where
C\ (IR2n + x) denotes the space of bounded continuous functions with bounded continuous
derivative.

As a consequence one has the following

Corollary 2.5. For every T ^ 0,

Wiτ(q,p) = exp j ^ J E | ^ e x p j^S'(Γ) J Wh{Q\T\ TO)]•

For the sake of completeness we derive a similar result for the time evolution of the
Wigner functions, expressing the Wigner function at time t as an expectation over a
Markov process of its initial value. Such a representation has already been derived in
[1] (see also [18] for a similar representation), but with a slightly different stochastic
process.

Theorem 2.6. There exists an infinitely locally divisible Markov process (β(T), P(T)9

S{T))e U2n + \ whose generator A has a modification which is given for allfeCl {U2n + 1)
by

(Af)(q,p,s) = J dvTqps(q',pf,s'){f(q + (f,p + p\s + sf) -f(q,p,s)}
R2 n + 1\{0}

For any Wigner function belonging to Cl(U2n) and for T > 0 we have

As already mentioned in [1], from these theorems we define for t ^ 0 and for all
feCl(U2n+1),

(2.16)

t -• Φht is a continuous flow on C\ (JR2n+1). In a similar way one defines the family of
mappings (ί ^ 0) of Q (U2n+1)

(ΦlJ)(q,p,s) = E C / ί β ' ί ί X m S ' W ] . (2.Π)

Our main interest is in the flow Φhr However for technical reasons connected with
the fact that the drift of the process (β(ί), P{t\ S(ή) is not bounded, we shall first
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consider Φ\v and we will show that the corresponding result for Φht follows
immediately.

3. Classical Limits

It has been noted in [19] that the equation governing the time evolution of the
Wigner function (Eq. (3.34) in [2]) approaches, in the limit h-+0 the classical
Liouville equation. Therefore, one can expect that the solution of the limit equation
is close to the solution of the equation describing the time evolution of Wigner
functions.

This can be done by gathering the previous results with those of Ventsel [6],
estimating the probability for a path of the stochastic process (Q(T), P(T), S(T) to be
close from the classical trajectory.

Following [6] we consider the exponential moment G[(U q, p, s, z\ z = (zl9 z29z3),
ZiEUn, i= 1, 2, z3eU:

sin(σ(α'Γ-,,α) +

uίh \c o s h ( 2 Z 3 J ~
and we assume that G[ exists at least in a neighbourhood of the origin, which is
equivalent to assume that V can be analytically continued in a neighbourhood of the
real space.

Lemma 3.1.

_£-[Π>2n+l ±Πl(t rx n c τ\
Zcruu —^ VJΛI C, M, L7, Λ, Zl

is a bounded convex continuous function. Furthermore,

This lemma is obvious, except that for the last statement one uses the fact that |μ| is
symmetric, which is a consequence of the reality of the potential.

The next lemma is also obvious:

Lemma 3.2. The Legendre transform G!

h* of G\,

Gi*(t,q,p9s9ξ)= sup {z1ξ1-\-z2ξ2 + z3ξ3-GI

h(t9q9p9s9z)}

is a convex bounded (continuous) function. It reaches its minimum Ofor

dV dV
f i = —-5—te>pΛ £2 = ~j-(<it>Pt)> £3 = 0

dp oq

independently of h.
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Consequently, one can define an action function

ί

Ih

t{φ) =$dtGl* (ί, qt,pt,st9qt9pt, st), φt = (qt, pt, st)9
o

whose minimum defines the classical path.
We are interested in the behaviour for small h of the process {Q\T\ P\T\ S\T)).

We remark first that

t,q,p,s,-

is independent of h.
The next result is easy as well:

Lemma 3.3. Let

GI

0(z)= sup G[(t9q9p9s9z).
q,p,s,t

It is a convex continuous function bounded on every compact. Furthermore, we
obviously have

G[(t,q,p,s,z)^GI

0(z)9 Gj(0) = 0.

As defined, GQ(Z) has all the properties required to apply VentseΓs results except the
fact that it is possibly infinite. However, if

( 4cosh(ftz3) + 2cosh(-z3 j j -

Then G[{t,q,p,s,z) ^ G[(t,z). Furthermore, G[{t,z) ^ G[(z), where

where ||(^,p)|| is the Euclidean norm on U2n.
We are now in position to apply the main result of [6] (Theorem 2.1): If p is the

Sup norm distance between two trajectories viz:

poτ(φ, φ) = Sup / £ ' (9i(t) - φ.(ή)2,
t e [ 0 , Γ ] V » = l

and if the tublet Φqps(ε) around the classical path in U2n+ί is defined by

φqιjβ) = {ΨI <p(P) = fe P> s ) ; ihτ(φ) ^ « } ,

then for any positive <3, γ9 ε0, for sufficiently small h and for all q, p, s, E ! R 2 Π + * and
ε ^ ε 0

Prob {poΛ(Ql,Pi S& Φqps(ε)) ^ δ} ^ exp | - A(β -y)\

From this estimate it follows that the quantum flow defined in (2.17) tends in the
limit where h goes to zero toward the corresponding classical flow. More precisely,
we have the
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Proposition 3.4. Let Φ[t be the mapping for t > 0 ofCl(U2n+ι) defined by

(ΦlFM^s) = ElF(QI(tlPIMSI(t))l(q9p,s)eU2n+\

no

where the ql,pl,st satisfy:

dp oq

with the initial condition (gί=o>Pί=o>sί=o) = (4>P>s)

Proof For ε > 0, let us introduce the characteristic function χε of the set Φqps(ε) and
observe that:

χε is measurable as a consequence of [6]. We have then

where || Ξ \\ is the Sup norm of Ξ viz:

The continuity of Φqps{ε) implies that one can choose ε so small that the first term is
small. Then choosing h small enough makes the second term arbitrary small. •

As a corollary we give now our main result.
The quantum evolution approaches as h goes to zero the classical one viz.

Theorem 3.5. Let Φht be the quantum flow defined on Cl(U2n + 1) by

Then

lim (ΦhtF)(q, p, s) = F(qt, pt, s),
ftjO

where qn pt, are the solutions of the Hamilton equations

dH dH

with initial condition (qt9pt)t = 0 = (Q,P)

Proof From the very definition of Φ{t and Φhn one has that

But as it was remarked, Φf° is independent of h. The result follows from the following
observation:
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Let q\, p\ be the solutions of the system of equations:

j dV j dV
q< = -dp P<=Tq

with initial conditions (qI

t,p
I

t)t=0 = (q,P) Let

Qt(<l> P)i = cos fat) (q1^ sin (ω t

rriCO

Pt(<l> P)i = Wi^i sin fat)(q*t)i + cos fa

Then Qt and Pt satisfy

Q'~ dq' ' " dp

with the same initial conditions as q\, p\, and

Then the result of the theorem is obvious.

4. Classical Limit of Wigner Functions

Previous results cannot be directly applied to the study of the classical limit (h[0) of
Wigner functions. Indeed, from the representation derived in Sect. 2 the function
under the expectation contains h explicitly, i.e.

where {Q{t\ P(t% S(ή) is the stochastic process defined in Theorem 2.6.
However, from the observation that

l, (4.1)

one can expect that the integral has an oscillatory character which implies that the
limit exists and is precisely the one given by the classical motion, at least for
sufficiently smooth initial conditions. More precisely, one has the following (see also
[20] for connected results)

Theorem 4.1. Let t^>(qt,pt) be the solution of the classical equation of motion with
initial condition (q,p)eU2n. Assume that f0: U2n-+C belongs to Qj(!R2") and is such
that t-+fo(qnpt) is analytic {for t < T), then

Bm

for t < T.

Proof Observe that it is sufficient to prove the result for the interaction picture (see
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remark Sect. 2). For this one has the explicit representation

•ΣW*.,
n^0θ 0

( h
g(tnia,a'n)g\ Ln^1,u-r-un,un^1

2 *) \ 2 /'

where

g(t, a, ά) = sin(φ;, a) + φ{a')). (4.3)

We can rewrite the previous expression as an integral over the instants of jump of the
process

exp < 4-1 μ | > E exp < -S(t) >fo{Q\t\ P\t)) = J P(dω)F(h, ajo)(ω). (4.4)

ωeΩ means that ω = (n, 0 < t1 < < tn < t) and

JP(<fo)F(ω)= Σ fΛ.ίΛ.-1-f ΛiFίίi,...,^,
Π ^θ0 0 0

F(K ajo)(ω) = QYj '\J\d\μ\{aMtn, a, <)

There exists an integrable majorant Fo for F(h, α,/0),

(4.5)

F o is a majorant since the measure |μ| is symmetric and g is antisymmetric in the
variable a!. This implies immediately that (dk/dhk) (hnF(h, α, /0)(ω)) \h=0 = 0 for
k ^ n — 1. On the other hand, Fo is integrable since the perturbation series for the
solution of the classical equation of motion

^(qt,pt)={H(qt,pt)J(qt,Pt)}, (4.6)

where {,} denotes the Poisson brackets, was assumed to be absolutely convergent.
To conclude the proof one has to observe that pointwise in ω

lim F(h,a,fo)(ω) = {V{aJ,{V(ata_iy--{V(ati),fo(a)}---}}. (4.7)
ft0
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For the sake of completeness let us mention the connections of our results to
those obtained by K. Hepp [14]. Actually, the Wigner functions contain explicitly h
viz

Wh(a) = (hπyntr(RW*φΠ).

For coherent states (see e.g. [21]) one has explicitly:

} (4.8)

Namely, they are smooth approximations of Dirac measures on phase space U2n.
Consequently, one has:

Proposition 4.2. Under the same assumptions as in Theorem 4.1

L \ Ί u r υ i — t r l »- — f x^v^ υ/"" j r j ~ΪΓ j I Ί O F O / J0Wί> Pt)>

where \qopo) is the coherent state defined in (4.8), Q(f0) the quantum operator
associated to the function f0, and (qt,pt) the solution of the classical equation of motion
with initial condition (qo,po)eU2n.

Related results about the classical limit of Wigner functions can be obtained for
one dimensional systems and more generally for completely integrable systems [22].
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