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Abstract. The asymptotic stability of traveling wave solutions with shock profile
is investigated for several systems in gas dynamics. 1) The solution of a scalar
conservation law with viscosity approaches the traveling wave solution at the
rate t~γ (for some γ > 0) as ί-» oo, provided that the initial disturbance is small
and of integral zero, and in addition decays at an algebraic rate for |x| -> oo. 2)
The traveling wave solution with Nishida and Smoller's condition of the system
of a viscous heat-conductive ideal gas is asymptotically stable, provided the
initial disturbance is small and of integral zero. 3) The traveling wave solution
with weak shock profile of the Broadwell model system of the Boltzmann
equation is asymptotically stable, provided the initial disturbance is small and its
hydrodynamical moments are of integral zero. Each proof is given by applying
an elementary energy method to the integrated system of the conservation form
of the original one. The property of integral zero of the initial disturbance plays a
crucial role in this procedure.
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Introduction

The study of traveling wave solutions for systems of nonlinear partial differential
equations is one of the interesting topics in mathematical physics. Recently new
progress has been made in the study of the asymptotic stability of several interesting
systems. Namely, Jones [5] proved the asymptotic stability of traveling wave
solutions with a pulse profile for the FitzHugh-Nagumo system. His proof is based
on the spectral analysis to the linearized system. Matsumura and Nishihara [6]
showed the asymptotic stability of traveling wave solutions with shock profile for a
model system of compressible viscous gas. Their result contains the strong shock
case. They use an elemental energy method for the integrated system and this
technique is based on the conservation form of the original system. Independently,
using a similar energy method, Goodman [3] obtained a result concerning the
asymptotic stability of traveling wave solutions with weak shock profile for systems
of conservation laws with positive definite viscosity matrices.

In this paper, we shall apply these energy methods to the following equations (or
systems) in gas dynamics and show the asymptotic stability of traveling wave
solutions:

1) scalar conservation laws with viscosity,
2) systems of viscous heat-conductive ideal gases,
3) the Broadwell model system of the Boltzmann equation for a simple discrete

velocity gas.
For scalar conservation laws with viscosity, I Γin and Oleinik [4] already proved

the asymptotic stability of traveling wave solutions for initial disturbances with
integral zero. They also showed that if the integral of the initial disturbance over
(— oo,x] decays exponentially e~φl (with some α > 0) for |x| -• oo, then the solution
approaches, in the maximum norm, the traveling wave solution at an exponential
rate e~βt (for some β > 0) as t -> oo. The maximum principle plays an essential role in
their proofs and so it is not straightforward to generalize these results to systems.

Recently, using an explicit formula of solutions, Nishihara [8] obtained a precise
estimate of solutions to the Burgers equation. This estimate shows that if the integral
of the initial disturbance over (— oo,x] has an algebraic order 0( | x | ~α) (with some
α > 0 ) for |x|->oo, then the solution converges, in the maximum norm, to the
traveling wave solution at the same algebraic rate t~a as ί-> oo. He also notes that
this time decay rate is optimal in general.

In Sect. 1 we generalize Nishihara's time decay result to a class of scalar conserva-
tion laws with viscosity. We assume that the initial disturbance has zero integral.
We also assume that the integral Ψ0(x) of the initial disturbance over (—.oo,x]
is suitably small in H2 and belongs to a weighted L2 space L2 (with some a > 0),
that is, (1 + \x\Yl2ΨoeL2. Then it is proved that the solution converges, in H1
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norm, to the traveling wave solution at the rate t~β/2 with β = [α] as t -> oo. When α
is an integer, the exponent β/2 of the time decay rate is equal to the exponent α/2 of
the spatial decay rate of the integral Ψ0{x). Comparing this with Nishihara's result,
we conjecture that the time decay rate obtained is optimal in our L2 situations. To
prove the above time decay result, we consider weighted L2 spaces and use an energy
method for the integrated equation which is derived on the basis of the conservation
form of the original equation. The energy method works for the integrated form but
does not for the original equation. The reason is because the monotonicity of the
traveling wave solution gives a dissipative mechanism for the integrated equation
but it produces an acceleration effect for the original equation. (See, for example,
the Introduction of Goodman's paper [3].) This dissipation combined with the
viscosity is sufficient to prove the stability of traveling wave solutions.

In Sect. 2 we treat the system of viscous heat-conductive gases in Lagrangian
coordinates. The system consists of three conservation laws for the specific volume v,
the velocity u and the total energy e + w2/2, where e is the internal energy. The
existence of traveling wave solutions for this system is well investigated by Gilbarg
[2] in general situations including the case of an ideal polytropic gas, i.e., the case
where the pressure p and the internal energy e are given by

p = Rθ/v and e = Rθ/(y - 1) + constant,

respectively. Here θ is the absolute temperature. The constants R > 0 and γ > 1
denote the gas constant and the adiabatic exponent, respectively.

In the isentropic case, the pressure is given by p = Cv~γ with a positive constant
C and the above equations can be reduced to a system of two conservation laws for v
and u. For this system, the asymptotic stability of traveling wave solutions was first
proved by Matsumura and Nishihara [6]. More precisely, they assume that the
initial disturbances for the conserved quantities v and u have zero integrals.
Moreover, they assume that γ — 1 times the shock strength of the traveling wave
solution is suitably small and that the integrals of the initial disturbances over
( — αo,:>c] are small in H2. Under these conditions they proved that the solution
converges, in the maximum norm, to the traveling wave solution as ί-»oo. The
above condition for the traveling wave solution is the same type as those in Nishida
and Smoller's paper [7] for the non-viscous case and in [10] for the viscous case. It
should be noted that this condition does not exclude the case of strong shock when
the adiabatic exponent y is close to 1.

In Sect. 2 we generalize Matsumura and Nishihara's result for the system of an
isentropic gas to the full system of an ideal polytropic gas. The result and the method
are much the same as in [6]. We use an energy method for the integrated system. The
advantage of the integrated form is even the same as in the scalar equation. In this
case, however, there is a difficulty that the system considered is not parabolic, i.e., the
viscosity matrix for the system is not positive definite. In fact, the second and the
third equations of the system can be regarded as parabolic equations for the velocity
u and the absolute temperature θ, respectively, while the first equation for the specific
volume v is not parabolic but hyperbolic. This difficulty of incomplete parabolicity
can be overcome by using the technique which was developed in [11,10] to prove
the asymptotic stability of constant stationary solutions for the same system. There
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also appears a technical difficulty: while the conserved quantity for the third
equation is not the absolute temperature but the total energy, the equation cannot
be regarded as a parabolic equation for the total energy. Such a difficulty does not
appear in the system of an isentropic gas considered in [6]. This difficulty will be
overcome by approximating the perturbation of the absolute temperature by a new
conserved quantity for which the integrated equation restores the parabolicity.
Consequently, the stability analysis for the system considered here is much more
complicated than those for the scalar parabolic equation and for the parabolic
system considered in [3].

In the last section, we consider the Broadwel model system of the Boltzmann
equation for a simple discrete velocity gas. This system consists of three equations.
Only two of them can be reduced to conservation laws and hence the whole system is
not of conservation form. The conserved quantities are called, as in the kinetic
theory, the hydrodynamical moments; for the present system, they are the mass
density and the momentum. The existence of traveling wave solutions for the system
is well studied by Caflisch [1], though there have been no works on their asymptotic
stability. In this paper, we apply an energy method similar to that in [6] or in Sect. 2
and show the asymptotic stability of traveling wave solutions. We assume that the
initial disturbances for the hydrodynamical moments have zero integrals. We also
assume that the shock strength of the traveling wave solution is suitably small.
Moreover, suppose that the initial disturbance for the non-conserved quantity
and the integrals of the initial disturbances for the hydrodynamical moments are
small in H1 and H2, respectively. Then it is proved that the solution converges, in
the maximum norm, to the traveling wave solution as ί->oo. To prove this, we
use the system which is derived from the original system by integrating the equa-
tions for the hydrodynamical moments. The energy method does work for this
partially integrated system. But the system is purely hyperbolic, and the dissipation
involved in the system seems to be weaker than that in the incompletely parabolic
system considered in Sect. 2. So, the stability analysis is complicated.

Notations

We summarize the function spaces used in this paper. L2 denotes the space of
measurable functions on IR which are square integrable, with the norm

H\l ^ 0) denotes the Sobolev space of L2-functions / on IR whose derivatives
dj

xf, 7 = 1 , . . . , / , are also L2-functions, with norm

/ / \i/2

11/11*= Σil^/l l 2 .

L2(αelR) denotes the space of measurable functions / on IR which satisfy
<x>α / 2/eL 2, with the norm

where <x> = (1 + |x | 2 ) 1 / 2 . Note that L2 = H° = L% and || • || = || • | | 0 = | | 0 .
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Let T and B be a positive constant and a Banach space, respectively.
Cfc(0, T;B)(k ̂  0) denotes the space of 5-valued fe-times continuously differentiable
functions on [0, Γ]. L2(0,T;B) denotes the space of B-valued L2-functions on
[0, T]. The corresponding spaces of 5-valued functions on[0, oo) are denoted by
Cfc(0, oo β) and L2(0, oo β), respectively.

1. Scalar Conservation Laws with Viscosity

1.1. Traveling Waves and Main Theorem. In this section we study a scalar
conservation law of the form

x = μuxx, (1.1)

where / is a smooth function on an interval [w, u] such that

f"(u)>0 for all κe[w,w], (1.2)

and μ is a positive constant.

The Eq. (1.1) admits smooth traveling wave solutions with shock profile

u(t,x)=U(ξl ξ = x-st, (1.3)

U(ξ)-+u± as £->±oo, (1.4)

where u+e(w,w) and s (the shock speed) are constants satisfying the Rankine-
Hugoniot condition

s(fi+-«_) = /(M + )-/(u_), (1.5)
and the shock condition

/'(«+)< s </'(«_), (1.6)

or, equivalently,

u+<w_. (1.6')

In fact the function (7 can be determined by the ordinary differential equation

μUξ = -sU +/(C7) + a = - M(C7), (1.7)

where α = - sw± + /(M ± ) is the integral constant. Note that the solution of (1.7) with
condition (1.4) is unique up to a shift in ξ.

We consider the initial value problem for (1.1) with the initial condition

u(0,x) = uo(x), (1.8)

where u0 is a bounded measurable function such that

uo(x) -^M ± as x-> + oo, (1.9)

and the integrals

0 +00

J (uo(x)-u-.)dx and j {uo(x)-u+)dx
- o o 0

exist. Under these assumptions IΓin and Oleinik [4] proved that as £->oo, the
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solution u(t, x) of the problem (1.1), (1.8) tends uniformly with respect to xeU to the
traveling wave solution U(x — st) which is uniquely determined by the relation

f{uo-U)(x)dx = 0. (1.10)
— oo

Our aim is to show an algebraic decay rate t~y(y > 0) under some additional
assumptions. Let U be a traveling wave solution. We assume that

UO-UEH\ (1.11)

and the integral

Ψ0{x)= J (uo-U)(y)dy (1.12)
— OO

exists for any XEU, and satisfies

Ψ0eL2 for some α^O. (1.13)

It should be noted that (1.11) and (1.13) imply (1.9) and (1.10).

Since / in (1.1) is defined only on [M,M], it is reasonable to assume

uo(x)e[u,u] for any xeU. (1.14)

In the following we simply assume || u0 — U || γ ^ ε0 instead of the condition (1.14),
where ε0 is a positive constant such that

εo^min{w+ — w, ΰ — w_}. (1.15)

The main theorem in this section is the following:

Theorem 1.1. Let u± e(u, ΰ) and s satisfy (1.5) and (1.6), and let U(x — st) be a traveling
wave solution which smoothly interpolates the asymptotic values u± with the speed s.
Suppose that the initial data u0 satisfy (1.11) and (1.13) for some α^O. Then there
exists a positive constant ε^ ̂  ε0) such that if ||u0 — U \\ 1 + || Ψo \\ ^ είf the initial
value problem (1.1), (1.8) has a unique global solution u(t,x) with

w-t/6C°(0,oo;//1)nL2(0,oo;/f2)

w(ί,x)e[u, u\ for any ί^O,xelR.

Moreover, the solution tends in the maximum norm to the traveling wave solution at the
rate t~γ/2 with y = [α]:

sup\u(t,x)-U(x-st)\^C1(l+tΓ?l2(\\u0-U\\1 + \Ψ0\0[) forany ί^O,
xeu (1.17)

where C1 is a positive constant.
For the proof, we need some properties of traveling wave solutions. Let

u^e(u+,u-)be a, unique state determined by

and let U= U(ξ) be the traveling wave solution in Theorem 1.1. Since M(u) =
s(u-u±)-{f(u)-f(u±))>0 for we(w + ,w_), U is strictly decreasing in ξeU.
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Therefore there exists uniquely number ξ*eM such that

tf(f*) = w*- (1.18)

The following result plays an important role in deriving estimates of weighted norm
of solutions (see Lemma 1.6).

Lemma 1.2. For any βe[0,α], there is a positive constant c0 independent of β such
that

for any ξeU, where <<*> =(1 + ξψ2.

Proof From the inequality Uξ < 0 (for ξeU) and the conditions (1.2), (1.18) and (1.6)
we can deduce that g(ξ) = s— f'(U(ξ)) is an increasing function of ξeU, and satisfies
g(ξj = 0,g'(ξj>0,andg(ξ)-+g+>0(respectivelyg_ <0)asξ-> + GO (respectively
- oo), where g>(ξj = μ-ιf"{uJM(uJ and g±=s- f'(u±). Therefore,

(ζ — ̂ * ) 2 f° r ζ n e a r ^*?
otherwise,

where c is a positive constant. On the other hand, — <£ — ζ*yf'(U)ξ =
< ^ - ^ * > ^ ( 0 > 0 holds for ξeU, and in particular,- (ξ - ξ^yf'{U)ξ^gf{ξ^)/2
for ξ near £ # . These considerations prove the lemma.

1.2 Reformulation of the Problem. Letting U(ξ) be the traveling wave solution in
Theorem 1.1, we put

U(t9 x) = U(ξ) + φ(t9 ξ)9 ξ = x- st. (1.20)

Then the problem (1.1), (1.8) is reduced to

Φt ~ sφξ + {f(U + φ) - f(U)}ξ = μψξξ, (1.21)

Inspired by the relation φ0 = Ψo ξ (see (1.12)) we seek the solution of (1.21) in the
form

φ=Ψξ. (1.23)

Substituting it into (1.21) and integrating once with respect to ξ, we get

ψt-sΨξ + f(U+ Ψ$-f(U) = μΨξξ9 (1.24)

with the initial data

Ψ(09ξ)=Ψ0{ξ). (1.25)

Let us define the solution space of (1.24) by

0, T) = {ΨeC°(0, T H2); ΨξeL2(0, T H2)}

with 0 < T ̂  +oo. Then the problem (1.24), (1.25) can be solved globaly in time as
follows.

Theorem 1.3. Suppose Ψo EH2 n L2 for some a ̂  0. Then there exist positive constants
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ε2( ?g ε0) and C2 such that if\\ Ψo | |2 ^ ε2, the problem (1.24), (1.25) has a unique global
solution ΨeX(0, + oo) satisfying

(1 + tγ\\ Ψ(t)\\22 + }(1 + τ) y | | Ψξ(τ)\\2

2dτ S C2

2(\ Ψ0\
2 + || Ψ0J

2) (1-26)
o

for t ^0, where O^γS M
Here we note that Theorem 1.1 is a direct consequence of Theorem 1.3 because

the solution of (1.1) is unique in the function space C°(0, T H^nL^O, T,H2).
Therefore it is sufficient to prove Theorem 1.3 for our purpose. To do that, we shall
combine a local existence result together with a priori estimates.

Proposition 1.4 (local existence). Suppose Ψ0eH2 and || Ψ0\\2S W 2 Then there is
a positive constant To depending on ε 0 such that the problem (1.24), (1.25) has a unique
solution ΨeX(0, To) satisfying

\\Ψ(t)\\2

2 + j\\Ψξ(τ)\\2

2dτ ^4\\ΨO\\2

2 (1.27)
0

for ίe[O, To]. Moreover, if Ψ0GL2 for some α^O, ίfeπ ΨeC°(0,T0;L
2) and

Proposition 1.5 (a priori estimate). Let T be a positive constant. Suppose that
the problem (1.24), (1.25) has a solution ΨeX{0,T) satisfying <FeC°(0, T L2)
and ΨξeL2(0,T;L2) for some α^O. Then for each βe[0,α], there exist positive
constants ε3( ^ ε0) and C 3, which are independent of T and β, such that if
sup || Ψ(t)\\2 ^ ε3, then the estimate

ί)ΊI (̂0112 +j( l +τ)ΊI Ψ^)\\ldτ^Cl(\Ψ0\
2

p + \\ Ψ0J
2) (1.28)

holds for ίe[0, T], where 0 ^ 7 ^ [^].
Proposition 1.4 can be proved in the standard way. So we omit its proof.

Proposition 1.5 will be proved in the following two subsections. Here we show
Theorem 1.3 by the continuation arguments based on Propositions 1.4 and 1.5.

Proof of Theorem 1.3. Choose ε2 and C 2 such that ε2 = min{ε3/2,ε3/2C3}, C 2 =
C 3 . Then the local solution of (1.24), (1.25) can be continued globally in time,
provided the smallness condition | | if /

o l l2^ ε2 *s satisfied. In fact we have
II Ψo II2 ̂  ε2 rg ε3/2. Therefore, by Proposition 1.4, there is a positive constant To =
Γ0(ε3) such that a solution exists on [0, Γo] and satisfies || Ψ(f)\\2 ^ 2|| Ψo \\2 ̂  ε3

for ίe[0, TQ]. Hence we can apply Proposition 1.5 with T = To, and get the estimate
(1.28) for ίe[0, To]. In particular, putting β = 0, we have || Ψ(t) | |2 ^ C31| Ψo \\ for
ίe[0, To]. Noting that || Ψ(T0) \\ 2 ^ C3ε2 ^ ε3/2, we apply Proposition 1.4 by taking
t = To as the new initial time. Then we have a solution on [T o , 2T0] with the estimate
| | ι P ( ί ) | | 2 ^ 2 | | t P ( Γ 0 ) | | 2 ^ ε 3 for ίG[Γ 0 ,2Γ 0 ]. Therefore || Ψ(t)\\2 ^ ε3 holds on
[0, 2TQ]. Hence Proposition 1.5 again gives the estimate (1.28) for te[0,2To]. In the
same way we can extend the solution to the interval [0, nT0~] succesively, n = 1,2,...,
and get a global solution. The estimate (1.26) is a consequence of (1.28) with β = α.
This completes the proof of Theorem 1.3.
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1.3. Basic Inequalities. Let ΨeX(0, T) (for some T > 0) be a solution of (1.24), (1.25)
satisfying ΨeC°(09 T L2) and ΨξeL2{0, T L2) for some a ^ 0. Put

JV(t)=sup| | !F(τ) | | 2 for ίe[0,T],

and assume N(T)^ε0, where ε0 is a constant in (1.15). In order to estimate the
solution, we rewrite Eq. (1.24) in the form

Ψt-(s-f'(U))Ψξ-μΨξξ = F(U9 Ψξ)9 (1.29)

where
(1.30)

Lemma 1.6. For any /?, ye[0, α], there is a positive constant C independent ofT, β and
γ such that

(1 + tγ\ Ψ(t)\2

β + β\{l + τ)y | Ψ(τ)\2

β^dτ + }(1 + τf\ Ψξ(τ)\2

βdτ
o o

Ψo\β + yj(l + τγ-ι\Ψ(τ)\2

βdτ + /?f(l + τf\\ Ψξ(τ)\\2dτ
0

+ jf(1 + τ) y<ξ/l ^11^(^ Ψξ)\dξdΛ (1.31)

holds for ίe[0,T].

Froo/. Let ^ be the constant in (1.18). Multiplying (1.29) by (1 + t)\ξ -
we have

Ψξ)9 (1.32)

where Aβ(ξ) is defined in (1.19), and {•••}« denotes the term which disappears after
integration with respect to ξeU. Integrating (1.32) over [0,ί] x U and using the
estimate (1.19), we have

(1 + ί)Ί ̂ Wl^2 + β\(1 + τγ\ Ψ{τ)\2^dτ + j ( l + τY\ Ψξ{τ)\2dτ
o o

+ } f (1 4- T F ( O Ί Ψ\\F{U, Ψξ)\dξdτ 1 (1.33)
o J

with some constant C. To get the desired estimate (1.31), we must estimate the third
term on the right-hand side of (1.33). Using Schwarz' inequality, we have



106 S. Kawashima and A. Matsumura

with a constant C. We choose a constant R so large that ocCζξ}'1 = l/2 for any
\ξ\ = R, and divide the integral on the right-hand side into two parts Ix and I2

according to the regions | ξ | = R and | ξ | ^ R. Then we have the estimates
Ix^\Ψξ\j and I2^βC\\Ψ\\2 with some constant C. Substitution of these
estimates into (1.33) yields (1.31). This completes the proof of Lemma 1.6.

For derivatives of the solution, we have the following estimates.

Lemma 1.7. Let 1=1 and 2. For any ye[0,α], there is a positive constant C
independent of T and y such that

(1 +ty\\dι

ξΨ(t)\\2 -f J(l +τ)y\\δι

ξ

+1 Ψ(τ)\\2dτ

F{U, Ψξ)\dξdτ\ (1.34),

holds for ίe[0,T].

Proof Let / = 1 and 2. Apply d\ to (1.29) and multiply it by (1 + t)yd\ Ψ. Integrate the
resulting equation over [0, ί] x IR. Then we can get the desired estimate (1.34)z in the
same way as in the previous lemma. The details are omitted.

1.4. A Priori Estimate. We proceed to estimate the solution of the problem (1.24),
(1.25). Put

We first take β = y = 0 in the inequalities (1.31), (1.34)x and (1.34)2, and combine
them successively. Then we have

o I o

+ \Ψξξξ\\F(U,Ψξ)ξ\dξdτ\.

Since F{U, Ψξ) = 0(| Ψξ\
2) for | Ψξ\ ->0 (see (1.30)), the integral on the right-hand side

is majorized by

CJV(ί)J||ίP4(τ)||ldτ
0

with some constant C = C(ε0), where we have used N(T) ^ ε0. Therefore we arrive at
the following lemma.

Lemma 1.8. There are positive constants ε4( — ε0) and C = C(ε4) independent of T
such that ifN(T) ^ ε4, the estimate (1.28) with β = y = O holds for ίe[0, T]:

(1.35)

Next, combining (1.31) with (1.35), we derive the decay estimate for L2-norm of
the solution.
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Lemma 1.9. Let ye[0, α ] n Z . There are positive constants ε 5 ( ^ ε 4 ) and C = C(ε5)
independent of T and γ such that if N(T) ^ ε5, then

(1 + tγ\ Ψ{t)\l_y + (α - 7)}(1 + τY\ Ψ(τ)\2.γ_ γdτ + }(1 + τ)η Ψξ(τ)\2^γdτ ̂  CN2

o o

(1.36)

holds for ίe[0, T]. Consequently, for any 0 g y :£ [α], the following estimate holds:

(1 +ί)ΊI 'ί /(ί)| | 2 + }(1 +τ)" | | ^(τ)| |2</τ^CΛΓ2. (1.37)
0

Proof We first estimate the last integral on the right-hand side of (1.31). If
N(T) ^ ε0, it is majorized by

with a constant C = C(ε0). Therefore, for suitably small N(T), say N(T)^ε5, the
inequality (1.31) becomes

• ί)"| Ψ(t)\2

β + β](ί + τY\ Ψ(τ)\2

f.λdτ + {(1 + τ)' | Ψξ(τ)\jdτ
0 0

with a constant C = C(ε5).

(1.38)

1. Letting /} = α and 7 = 0 in (1.38), we have (1.36) with y = 0, where (1.35) was
used. Therefore the lemma is proved for α < 1.
Step 2. Firstly, letting β = 0 and 7 = 1 in (1.38), and using (1.36) with y = 0, we have
(1.37) with 7 = 1 , where α ̂  1 is assumed. Secondly, letting β = α — 1 and 7 = 1 in
(1.38), and using the estimates (1.36) with 7 = 0 and (1.37) with 7 = 1, we have the
desired estimate (1.36) with γ= 1. Therefore the proof is completed for α <2.
Step 3. We repeat the same procedure as in Step 2. The estimate (1.38) (with β = 0,
7 = 2) together with (1.36) (with 7 = 1) yields (1.37) (with 7 = 2), where α ̂  2 is
assumed. Also, (1.38) (with β = α - 2, 7 = 2) together with (1.36) (with 7 = 1 ) and
(1.37) (with 7 = 2) yields (1.36) (with 7 = 2), which proves the lemma for α < 3.

Repeating the same procedure, we can get the desired estimate (1.36) for any
α _• 0. This completes the proof of Lemma 1.9.

Finally, we show the same decay rate t~yl2 for derivatives of the solution.

Lemma 1.10. Let I = 1 and 2. For any 0 ^ 7 ^ [α], there are positive constants
ε6( ^ ε5) and C = C(ε6) independent ofT and 7 such that ifN(T) = ε 6, then the decay
estimate

(1.39),
0

holds for ίe[0,T].

Proo/. We combine (1.34), (/ = 1,2) and (1.37). If N(T) = ε0, the last integral on the
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right-hand side of (1.34)! is majorized by

CN(t)\ ( 1 + τ Π l ^ τ ) || \dτ.
o

Therefore, for suitably small N(T), we have

(1 + tγ || Ψξ(t) | | 2 + J(l + τγ \\ Ψξξ(τ) II 2dτ ^c\\\ Ψ0,ξ \\2 + }(1 + τ)" || Ψξ(τ) \\ 2dτ\.
o I o J

This inequality together with (1.37) gives the desired estimate (1.39)!. Similarly, we
can obtain (1.39)2 using the estimates (1.34)2, (1.37) and (1.39)!. This completes the
proof of Lemma 1.10.

Now, the estimate (1.28) follows directly from (1.37), (1.39)x and (1.39)2. There-
fore the proof of Proposition 1.5 is completed.

2. Systems of Viscous Polytropic Gases

2.1. Traveling Waves and Main Theorem. The one-dimensional motion of a viscous
heat-conductive polytropic gas is described by the following system of equations in
Lagrangian coordinates:

(μux/v)x9 (2.1)

[(e + u2/2)t + (pu)x = (κθx/v + μuujυ)x9

where the unknowns v > 0, u and θ > 0 represent the specific volume, velocity and
absolute temperature of the gas, respectively. The pressure p and the internal energy
e are related with v and θ by the equations of state

p = Rθ/v, e = Rθ/(y - 1) + constant, (2.2)

where R>0 is the gas constant and ye(l,2] is the adiabatic exponent. The
coefficient of viscosity and heat-conductivity, μ and K, are assumed to be positive
constants.

The system (2.1) admits smooth traveling wave solutions with shock profile

(v,ti,θ)(t,x) = (V, U, Θ){ξ\ ξ = x-st9 (2.3)

(V,U,Θ)(ξ)^(v±,u±,θ±) as ξ->±oo, (2.4)

where v+>0> u±9 θ±>0 and s are constants satisfying the Rankine-Hugoniot
condition

f + - « - ) = 0, (2.5)
- s(u+ - u_) + (p+ - p_) = 0,

and Lax's shock condition that

either λf < s < λΐ or λ£ < s < λϊ, (2.6)

where λx = — (yRΘ)1/2/v, λ2 = 0 and λ3 = (yRΘ)1/2/v are characteristic roots of the
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hyperbolic system associated with (2.1) (i.e., the system (2.1) with μ = K = 0). In (2.5)
and (2.6) we use the abbreviations p± = RΘ±/v±, e± = Rθ±/(y - 1) + constant, λf =
-(yRΘ±)1/2/v± and λ% = {yRΘ±)1/2/υ±. Note that (2.6) is equivalent to

u+<u_ {ors{v+-v_)>0). (2.6')

The functions (V,U,Θ) are determined by

ί-sV-U = au

]sΌ + P = μUξIV + a2, (2.7)

, - s(E + U2/2) + PU = κΘξ/V + μUUξ/V + a3

where P = RΘ/V and E = RΘ/(y — 1) + constant, and aγ = — (sυ± + u±\ a2 —
— su± + p± and a3 = — s(e± + u2

±/2) + p±u± are the integral constants. The system
(2.7) is transformed into ([2])

I κΘξ/sV =-{E- (s2/2)(V - bjs2)2 + b\βs2 - fo2},

l l / = - ( s 7 + fl1), (2.8)

w h e r e bλ= — sa1+ a2 = p±+ s2v± a n d b2 = (sal/2 — a1a2 — a3)/s = e± +p±v± +
52u+/2. See [2] for the existence and uniqueness (up to a shift in ξ) of the solution of
(2.8) with the condition (2.4).

We consider the initial value problem for (2.1) in a neighborhood of a traveling
wave solution, with the initial data

(v, u, θ)(09x) = (υθ9uo,θo) (x).

Let (K, U, Θ) be a traveling wave solution with shock profile. We asume, as in Sect. 2,
that

(υo-V,uo-U,θo-Θ)eH\

and the integrals

ΦoW= j (vo-V)(y)dy, 1F0(χ)= J (uo-U)(y)dy,
— oo — oo

^ 0 (x) = j (eo + u2

0/2)(y) -{E+ U2/2)(y)dy
— oo

exist for any xeU, and satisfy

{Φ09Ψ09W0)eL2,

where VF0 = (y - l)(W0 - U Ψo)/R. In the above we put e0 = Rθo/(y - 1) + constant.
Here we note that (2.10) and (2.12) imply the relations

+ j>o - V)(x)dx = 0, + f ("o " U){x)dx = 0, (2.13)
— oo — oo

7 ( e 0 + «g/2)(x) - (£ + ί/2/2)(x)^x = 0.
— GO

Let v<v,ΰ and θ < θ be any fixed positive constants. Suppose that the constants
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v+,u± and θ± in (2.5) and (2.6) satisfy the following inequalities uniformly with
respect to ye(1,2].

y^v±£ϋ, |M ± | ^M, θ^θ±^θ. (2.14)

As in Sect. 1, we choose a positive constant ε0 such that

εo<min{t;,0}, (2.15)

and assume ||ι;0 — V, θ0 — Θ 1̂  S ε0 instead of the condition inf {vo(x)9 Θ0(x);
xeU}>0.

The initial value problem (2.1), (2.9) is solved globally in time as follows.

Theorem 2.1. Let v+,u+,θ+ and s be given constants satisfying (2.5), (2.6) and (2.14),
and let (V, U, Θ)(ξ)9 ζ = x — si, be a traveling wave solution which smoothly inter-
polates the asymptotic values (v+,u+,θ+) with speed s. Suppose that the initial data
(vo,uo,θo) satisfy (2.10) and (2.12). Puf

Then there exist positive constants δ1 and ε x( ̂  ε0), which are independent ofγe(l, 2]
and (v±,u±9θ±), such that ίf(γ ~ l)\v+ —V-\^δί and N0^εί9 then the initial value
problem (2.1), (2.9) has a unique global solution (v9 M, θ)(t,x) with

'v - Ve C°(0, oo H1) n L2(0, oo //1),

(u-C/,θ-Θ)GC0(0,oo;/f1)nL2(0,oo;//2), (2.16)

Anf{v(t,x\ θ(t,x); t ^ 0,XEU} > 0,

Moreover, the solution tends to the traveling wave solution in the maximum norm:

sup|(t;,M,θ)(ί,x)-(K,t/,©)(x-sί)|-^O as ί->oo. (2.17)

For the proof, we need some properties of traveling wave solutions. We first note
that the Rankine-Hugoniot condition (2.5) gives

for υ+ —v_>0, and

v+

for υ+ -V- <0, where δ± =d±/(l +d±) with d±=(y- l)\υ+ — ι?_|/2t;±.

Lemma 2.2. The traveling wave solution (K, U9 Θ)(ξ) satisfies sVξ = —Uξ>0 and
sΘξ<0for any ξeU. Moreover there is a constant C independent ofγe(\,2] and
(v±,u±,θ±) such that for ξeU,

Vt\,Wa\,\θ<{\ZC\v+-v-\,

Θζ\£C(γ-l)\υ+-v-\, \Θξ/Vξ\ S C(γ - 1). l ' ;
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The estimates in (2.19) can be shown by direct calculations. We omit the proof.

2.2. Reformulation of the Problem. Setting

(t>, «, 0)(ί, x) = (V9U9 Θ)(ξ) + (0, φ9 w)(ί, ξ\ ξ = x- st, (2.20)

we rewrite the problem (2.1), (2.9) in the form

Φt ~ sΦξ -ψξ = O,

Θ\ f μ , ί μ

γ~l 2Y Λ lv+Φ

(φ, φ, w)(0, {) = (φ0,φ0, wo)(ξ) = (v0 -V,uo- U,θ0 - Θ)(ξ). (2.22)

It should be noted that the third equation of (2.21) is reduced to

(2.23)

Equation (2.23) is not of conservation form but it is regarded as a parabolic equation
in w.

Set wo = (eo + ul/2)-{E+U2/2) = Rwo/(γ-l) + ψl/2+Uψo. Then, from
(2.11), we have (Φo>Ψo>Wo) = (Φo,ξ¥Ό,ξWo,ξ)' Taking it into account, we seek the
solution of the problem (2.21), (2.22) in the form

(2.24)

where w = Rw/(y — 1) + ψ2/2 + Uψ. Let us introduce

y ^ (2.25)W(
R

Using this W, we can write w in the form

iv
with ψ=Ψξ. (2.26)

Substituting (2.24) into (2.21) and integrating once with respect to ξ, we get the
system for (Φ, Ψ, W):
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Φ,-sΦζ-Ψζ = O,

R

y-

Θ+ w

( 1 2 7 )

with w given by (2.26), where we have used the relation (2.25). The initial condition

for (2.27) is

(Φ, Ψ9 W)(0, ξ) = (Φ , Ψ , W )(ζ). (2.28)

Before introducing the solution space, we first rewrite the system (2.27) in the

form

γ-i
-suξψ

K
(2.29)

where Ft and F2 are nonlinear terms with respect to (Φ, Ψ, W); they are expressed in
terms of (φ, ψ, w) only, that is,

Φ
2V V(V + φ)

{{b1-s2V)φ-Rw

RV V + φ'

(2.30)

In the above derivation, we have used the equality (RΘ — μU^/V— bγ — s2K(see
(2.8)). From (2.29) and (2.30) the equations of Ψ and W can be regarded as a
parabolic system, provided | φ, φ \ is small enough.

From these considerations we can define the solution space of the problem (2.27),
(2.28), as follows.

X(0, T) = {(Φ, ψ, W)eC°(0, T H2); ΦξeL2(0, T H1

Then we have the following

Wξ)eL2(0, T H2)}.

Theorem 2.3. Suppose (Φ0,Ψ0,W0)eH2. Then there exist positive constant δ2,

ε 2 ( ^ ε 0 ) and C2 independent of ye(l,2] and (v±9u±9θ±) such that if

- ι ; _ | ^ < 5 2 and
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No = || Φo, Ψo, WJ(γ - 1)1/21| + || φ0, ψ* wo/(y - I ) 1 ' 2 1 | , ^ e2,

then the problem (2.27), (2.28) has a unique global solution (Φ, Ψ, W)eX(0, + oo)
satisfying

\\(Φ, Ψ, W/(γ- l) 1 / 2)(ί) | | 2 + \\(φ,ψ,w/(γ- l)

j l ) 1 / 2 ) ( τ ) | | 2 + | | 0 ( τ ) | | f + | | ( ^ w ) ( τ ) | | | ί ί τ ^ C 2 i V 2 (2.31)

for ίe[0, oo), where (φ, ψ, w) is defined in (2.24) and (2.26), and (Φo>Ψo>wo)ίS the initial
value corresponding to (φ9 φ, w) (see (2.22)).

The function (φ,ψ,w) in Theorem 2.3 becomes a global solution of the
problem (2.21), (2.22), which belongs to the space specified in Theorem 2.1. Thus we
have a desired solution of the original problem (2.1), (2.9). On the other hand the
solution of (2.1) is unique in the above space. Therefore the proof of Theorem 2.1 is
completed.

From these considerations, it is sufficient to prove Theorem 2.3 for our purpose.
The local existence of a small solution of (2.27), (2.28) can be shown in the standard
way (cf. [19]). So, for the proof of Theorem 2.3, it suffices to show the following a
priori estimates, because the continuation argument used in the proof of Theorem
1.3 is also applicable to this case

Proposition 2.4. (a priori estimate). Let (Φ, Ψ, W)eX(0, T) (for some T > 0 ) be a
solution of the problem (2.27), (2.28). Put

N(t)= sup {||(Φ, Ψ,W/(y-l)V2)(τ)\\ + \\(φ,ψ,w/(y - l ) 1 / 2 ) ^ } (2.32)

for ίe[O, T] . Then there exist positive constants <53, ε 3 ( ^ ε 0 ) and C 3 , which are
independent ofT9γe(ί, 2] and(v±, u±, 0±), such that if(y - l)\υ+ - v_ | ^ δ3 and N(T)
g ε 3 , then the following estimate holds for ίe[O, T] .

C2

3Nl (2.33)

2.3 A Priori Estimate, I. Let (Φ, Ψ, W)eX(0, T) (for some T> 0) be a solution of
the problem (2.27), (2.28) satisfying N(T) ^ ε0, where ε0 is a constant defined in
(2.15). In the following, we use the symbols C, c, <5,... to denote the constants which
may depend on v,v,ΰ,θ and θ but not on T,ye(l,2] and (v±,u±,θ). We first show
the estimate for the L2-norm of the solution.

Lemma 2.5. There are positive constants δ4 and C such that if(y — i)\v+ —v-\ ^ δ4,
then

^C<M|Φ0, Ψo^o/iγ-l^W' + I^ΨWF^ + lWWF^dξdτ} (2.34)
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holds for ί e [ O , T ] .

Proof. Putting k(V) = (b1— s2 V)~1, we multiply the equations of Φ, Ψ and W in
(2.29) by Φ9k(V)VΨ and #/c(F)2W, respectively, and calculate their sums. Then
we have

+ { -}ξ = k(V)VΨF1+Rk(V)2WF2, (2.35)

where
I f R2 1

£i(Φ, *F, WO - - j Φ 2 + fc(7) 7 !P 2 + -^(F) 2 W2 L

E2( ψ9 Ψξ) = AΨ2 + μk(V) Ψ2 + μk(V)ξ Ψ ψξ9

with A = ΠHV)V)ξ + (γ - l)k(V)Uξ9

sR2

E3(W9 Wξ) = k{V)k(V)ξW
2 + K

G(Ψ9 W9 Φξ9 Wξ)=κ(y - ί)^γ^UξΨWξ + κR(^fλ w(wξ + 1^γLUξψ

and {m '}ξ denotes the term which disappears after integration with respect to ξeU.
Here we have used the equality k(V)ξ + sk(V)2Uξ = 0 to simplify the term ΨW.

We shall estimate the functions Ex ,E2,E3 and G by using the properties of the
traveling wave solution. We first note that

± τ for s^O, (2.36)

where p+ = Rθ+/υ+. By virtue of this inequality, we have

/ W2 \ ( W2 \

c\Φ2+ Ψ2+ -)^E1^C[ Φ 2 + Ψ2 + - ) , (2.37)
V 7 - 1 / \ 7 - 1 /

W2 \
W2) (2.38)

with some positive constants c and C, where k(V)ξ = s2k(V)2Vξ and sVξ>0 are
used in (2.38). Next, for any α > 0, there is a constant Cα such that

W2

2
ξ\ a ( γ ) \ + \ ξ \

(2.39)

where we have used the inequalities in (2.19).
Finally we show that suitably small (y — l)\(v+ — ̂ _|, say (y — l)\v+ —υ_\^δ,

there is a constant c = c(δ) > 0 satisfying

E2^c{\Vξ\Ψ2+Ψ2

ξ). (2.40)
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For this purpose it is sufficient to check the inequalities

wϊA/\Vξ\>0 and supD/\Vξ\<0 (2.41)

for sui tably small (y — l)\v+—V-.\, where

D = μ{μ\k(V)ξ\
2-4Ak(V)}

is the discriminant of E2 with respect to (Ψ, Ψξ). By direct calculations, using (2.8),
we have

A/\Vξ\=γk(V)2A, D/\Vξ\=-μ\s\k(V)3D,

where

A = b1-2(y- l)k(V)~\ B = bx + s2RΘk(V) + k(V)~ι - 4(y - l)k(V)~\

with bx =p+ + s2v+. We estimate A and D by using the inequalities (2.36) and
θ+ ^ Θ ^ θτ (for 5^0). By the relations in (2.18)1>2 there is a constant C such that
for s ^ 0,

s2^ypτ/v+ -C(y-l)\v+ - ι ? _ | , θ± ^θ+ -C(y-l)\v+ - ι ? _ | . '

Taking into account these inequalities, we get the following estimates for 5^0.

D^(Pτ+ s2υτ) + s2RΘ±/pτ - 4(y - l)pτ

^(5-2y)Rθτ/v±-C(y-l)\v+~v_\,

where C is a constant. Choose δ so that 2Cδ = Rθ/ϋ. Then we have A, D ^ Rθ/2v for
(y — l)\v+ —v_\^δ. This inequality together with (2.36) implies (2.41), and conse-
quently the desired estimate (2.40).

Now, let α in (2.39) be α = c/4 and put δ4 = min {<5,c/4Cα}. We then integrate
(2.35) over [0,ί] x U and use (2.37) ~ (2.40) to obtain the desired estimate (2.34)
under the condition (y — l)\v+ —v_\^δ4. Thus the proof of Lemma 2.5 is
completed.

Next we estimate the L2(0, T; L2)-norm of the derivative Φξ — φ.

Lemma 2.6. There is a constant C such that

J (2.42)

holds for ίe[0,T].

Proof. Multiply the equations Φ and Ψ in (2.29) by VΨξ~VξΨ and - VΦξ,
respectively. Next we apply dξ to the equation of Φ in (2.29) and then multiply the
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resulting equation by μΦξ. Calculating their sums, we arrive at the equality

| φ £ - VΦξΨ ) + (&! - s2V)Φ2

ξ - Vξ{sΦξ +Ψξ)-VΨ\

from which follows the desired estimate (2.42) after integration with respect to t and
ξ. This completes the proof.

Finally we note the estimate for the L2(0, T;L2)-norm of w:

- cί J ^ Cj J|^2w|dξdτ, (2.43)
o

with some constant C. This is an easy consequence of (2.26).

2.4 A Priori Estimate, II. We proceed to estimate the H^norm of the quantities
(φ,ψ,w). We first rewrite (2.21) (see also (2.23)) in the form

Φt ~ sφξ -Ψξ = °>

yΨ,

R
— ( w t - swξ) + {b1 - s 2 V)φξ - l y

(2.44)

where fx and f2 are nonlinear terms with respect to (φ, ψ, w):

Φ <fL

Kφ
(2.45)

Compare (2.44) and (2.45) with (2.29) and (2.30), respectively.
The estimates for the L2-norm of δ'ξ(φ, φ, w), I = 0 and 1, are obtained in a similar

way as in Lemma 2.5.

Lemma 2.7. Let I = 0 and 1. There is a constant C such that

| |d' ξ (φ,φ, w/{γ - d'ξ
+'(φ, w)(τ)\\2dτ

(2.46),
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holds for ίe[0, T], where

κ = fl<AII/il + | w | | / 2 | fori = o,
1 \\Ψξ,Ψξξ\\fi\ + \wξ,wξξ\\f2\ for 1 = 1.

Proof. Put k{V) = (&! - s2V)~ K We apply dι

ξ{l = 0,1) to (2.44) to obtain the system
for dι

ξ(φ,φ,w). Multiply the equations of dι

ξφ, dι

ξφ and dι

ξw by dι

ξφ, k(V)Vdι

ξφ and
Rk(V)2dι

ξw, respectively. Calculating their sums and integrating the resulting
equality over [0, ί] x U, we can get the desired estimate (2.46)̂  in a similar way as in
Lemma 2.5. We omit the details.

For the L2(0, Γ;L2)-norm of φξ, we have the following

Lemma 2.8. There is a constant C such that the following estimate holds for ίe[0, T].

1 I I < ^ ^ ( ^ H-

= (2.47)

Proof Multiply the equations of φ and φ in (2.44) by Vφξ — Vξφ and — Vφξ,
respectively. Next we apply dξ to the equation of φ in (2.44) and then multiply the
resulting equation by μφξ. Calculating their sums and integrating over [0, t] x IR, we
can get the desired estimate (2.47) similarly as in Lemma 2.6. We omit the details.

Now, we shall combine the estimates (2.34), (2.42), (2.43), (2.46)i, (2.46)2 and (2.47)
to get the desired estimate (2.33). Firstly, we calculate (2.34) + {(2.42) + (2.43)} x α
with α = 1/4C. Then, for (y — l)\υ+ —V-\^δ$ = min{(54,α/2C}, we have

\\(φ9ψ9 w)(τ)\\2dτ, W/{γ -

f f I Ψ,φ\ \F,\ + \W\ \F2\ + \φ2w\dξdτ\.
o J

(2.48)

Combining successively the estimates (2.48), (2.46)!, (2.47) and (2.46)2, we reach the
following inequality.

N(t)2 + \ I
0

, W/(γ-iyi2)(τ)\\2 + \\<Kτ)\\l

+ \w,wξ,wξξ\\f2\dξdτ>.

It follows from (2.30), (2.45) and (2.19) that for \φ9ψ,w\-+09

\FuF2\ = O(\φ,φ,w\2 + \Φ,Ψ\\Φξ,wξ\l

(2.49)
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Therefore the integral on the right-hand side of (2.49) is dominated by

CN(t)\\\φ(τ)\\l+\\(ψ9w)(τ)\\ldτ9
o

with some constant C = C(ε0), where N(T) ^ ε0 is assumed. Thus we arrive at the
desired estimate (2.33) for suitably small N(T). Thus the proof of Proposition 2.4 is
completed.

3. The Broadwell Model System

3.1 Traveling Wave Solution and Main Theorem. The one-dimensional Broadwell
model system for a simple discrete velocity gas is written in the form (cf. [1])

where the unknown functions Fί9 F2 and F3 represent the mass densities for gas
particles moving in x-direction with the constant speeds f, 0 and — v, respectively.
Here v is a positive constant.

For the density distribution function F = (F1,F2,F3), we define the hydrody-
namical moments, the mass density p and the momentum m (in x-direction), by

+ F3, m = v(Fι-F3). (3.2)x

We also define another quantity z by

z = v2(F1 + F3). (3.2)2

Then F = (Fl9F29F3) is conversely represented by (p,m,z) as follows:

F1=(z + v2m)/2v\

F2 = (v2p-z)/4v\

F3 = (z-v2rn)/2v2. (3.3)

Using (3.3), we can transform (3.1) into the following equivalent system.

pt + mx = 0,

mt + zx = 0,

zt + v2mx = {(v2p - z)2 - 4(z2 - v2m2) }βv2. (3.4)

The function F = (Fί9F2,F3) satisfying the conditions F1 ,F2,F3>0 (positive-
ness) and F\ = FXF3 is called a local Maxwellian. By the relations in (3.3), the
condition for the positiveness of F is equivalent to

v\m\<z<v2p, (3.5)

and the condition for F to be a local Maxwellian is

p > 0, I u I < v, z = pσ{u\ (3.6)
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where u = m/p is the fluid velocity, and

v2

σ(u) = - {2(1 + 3u2/v2)112 - 1}. (3.7)

In this paper, the function (p,m,z) satisfying condition (3.6) is also called a local
Maxwellian.

In what follows, we shall investigate the system (3.4) instead of the original
system (3.1). The system (3.4) admits smooth traveling wave solutions with shock
profile

ξ = x-st, (3.8)

(P,M,Z)(ξ)^(p±9m±9z±) as ξ->±oo, (3.9)

where p±9m±, z± and s are given constants satisfying the condition (3.6), i.e.,

p ± > 0 , | M ± | < U , z±=p±σ(u±) (withκ± = m±/p±), (3.10)

the Rankine-Hugoniot condition

0,

- s(m+ - m_) + (z + - z_) = 0,

and in addition Lax's shock condition that

either λ_(u+)<s < A_(w_) or λ+(u+) <s < Λ+(M_). (3.12)

Here A+(M) = (u ± σ(u)1/2)/σ0(w) with σo(w) = (1 -f 3u2/v2)112 are the eigenvalues of the
hyperbolic system

= 0,

w)}* = 0, u = m/p,

which is derived from (3.1) (or (3.4)) by the Chapman-Enskog expansion. Note that
condition (3.12) is equivalent to (see [1])

w+<w_ (ors(/9 + -p_)<0). (3.120

Let p < p and ΰ < v be any fixed positive constants. We simply assume that the
constants p ± , m± and z± in (3.10) — (3.12) lie in the region

p_^p±ύp, \u±\^ΰ (wi th M ± =m ± /p ± ) . (3.13)

We consider the initial value problem for (3.4) in a neighborhood of a traveling
wave solution. Let (P, M, Z) (£), £ = x — si, be a traveling wave solution. Suppose
that the initial data

(p,m,z)(0,x) = (po,mo,Zo)W (3 1 4 )

satisfy

1 (3.15)
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Moreover we assume that the integrals

Φo(*)= ί (Po-P)(y)dy, Ψ0(x)= f (mo-M)(y)dy (3.16)
- oo — oo

exist for any XEU, and satisfy

(Φo, Ψ0)eL\ (3.17)

Note that the assumptions (3.15) and (3.17) imply the relations

0, f(mo-M)(x)dx = 0. (3.18)
— oo — oo

Our main theorem in this section is

Theorem 3.1. Let p ± , m±, z± αrcd s be given constants satisfying (3.10) ~ (3.13), and feί
(P,M,Z)(ξ\ ξ = x — st,be a traveling wave solution which smoothly interpolates the
asymptotic values (p±,m±,z±) with the speed s. Suppose that the initial data
(po,mo,zo) satisfy (3.15) and (3.17). Then there exist positive constants δ0 and ε0

independent of(p±9rn±,z±) such that if\p+—p_\^δ0 and

N0=\\p0-P,m0-M,z0-Z\\ι + \\Φ0,Ψ0\\Ss0,

then the initial value problem (3.4), (3.14) has a unique global solution (p,m,z)(ί,x),
which satisfies f

(p-P,m-M,z-Z)eC°(0,oo;i/1)πL2(0,oo;i/1), (3.19)

and asymptotically tends to the traveling wave solution in the maximum norm:

sup | (p, m, z) (ί, x) - (P,M,Z)(x-si) I-»0 as ί ^ o o . (3.20)
xeU

It is worth noting that the traveling wave solution (P,M,Z)(ξ) satisfies the
condition (3.5) uniformly in ξeU (see (3.26)), and so does the solution (p,m,z)(£,x),
provided No is suitably small. Therefore we get a positive solution of the original
system (3.1) through the relation (3.3).

For the proof of Theorem 3.1, we first study the properties of traveling wave
solutions. The eigenvalues λ±(u) satisfy (cf. [1])

d
j-λ±{ύ) > 0, L(M) < min {M, 0} ^ max {u, 0} < λ+(u)

for \u\ < v. Therefore, noting the equalities λ-( — v)=—v9λ-(v) = λ+( — υ) = O and
λ+(v) = v, we have

— υ + c^λ-(u)?£ min {«, 0} - c, max {u9 0} + c ^ λ+(u) ^v-c

for \u\ ̂  M, where c = c(ύ) ( < v) is a positive constant. In particular, from (3.12) and
(3.13), we have

— v + c ^s !gmin{u_,0} — c or max{w+,0} +c ^ s ^ v — c. (3.21)
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The system for the traveling wave solution (P,M,Z)(ξ) is

- sPξ + Mξ = 0,

- sMξ + Zξ = 0, (3.22)

- sZξ + v2Mξ = {(v2P - Z)2 - 4(Z2 - v2M2)}βv2.

The first two equations give

where aγ = — sp± + m± and a2 = — sm± + z+ are the integral constants. Substitut-
ing (3.23)x into the third equation of (3.22), we obtain

v2 + 3s2

sPξ = 2 (P ~p+)(P - p_), (3.23)2

where \s\ < v is used. The existence and uniqueness (up to a shift in ξ) of the solution
of (3.22) with the condition (3.9) is obvious from (3.23)1$2 and (3.12)'.

We summarize the properties of the traveling wave solution.

Lemma 3.2. The traveling wave solution (P,M,Z)(ξ) satisfies

sPξ<0, Mξ = sPξ<0, sZξ = s3Pξ<0 (3.24)

for any ξeU. Moreover there are positive constants C and c depending only on p, p and

ΰ such that for ξeU,

- p _ | 2 , (3.25)

^v2P-c. (3.26)

The inequalities in (3.24) and (3.25) are obvious. The estimate vM + c^Z follows
from the fact that Z — vM is a monotone function of ξ e U with the asymptotic values
z+ — vm+ ^ z+ — v\m+ \ ̂  c for £—• + oo, where c is a positive constant depending
only on p,p and ΰ. Similarly, we have — vM Λ-c^Z and Z ^ v2P — c with some
positive constant c. This completes the proof of (3.26).

3.2. Reformulation of the Problem. Let us reset the problem (3.4), (3.14) on the
moving coordinate ξ = x — st. Putting

(p, m, z)(ί, x) = (P, M, Z)(ξ) + (0, φ, w)(ί, ξ)9 (3.27)

we rewrite the problem (3.4), (3.14) in the form

ί)t - sφξ + ψξ = 0,

φt — sφξ + wξ = 0,

. wt - swξ + v2φξ -Aφ-Mφ + Bw = Γ(φ9 φ, w), (3.28)

9ξ) = (φθ9ψθ9wo)(ξ) = {po-P9mo-M9zo-Z)(ξ)9 (3.29)

where

A = {v2P-Z)/4, B = (v2P + 3Z)/4v2, (3.30)

Γ(φ9 ψ9 w) = {(v2φ - w)2 - 4(w2 - v2φ2)}βv2. (3.31)
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Inspired by the relations (φo,Ψo) = (̂ o,s> ^o,d ( s e e (3-16)), we seek the solution
of the problem (3.28), (3.29) in the form

(φ9ψ9w) = (Φξ9Ψξ9w). (3.32)

Substituting (3.32) into (3.28) and integrating the first two equations once with
respect to ξ, we get

Φt - sΦξ +Ψξ = 0,

Ψt-sΨξ + w = 0,

• wt-swξ + v2Ψξξ-AΦξ-MΨξ + Bw = Γ(Φξ ψξ9w). 3.33)

The second equation of (3.33) gives

w=-(Ψt-sΨ£. (3.34)

Substituting (3.34) into the remaining equations of (3.33), we get a closed system for

(<ρ, n
LX(Φ, Ψ) = Φt-sΦξ +Ψξ = 0,

L2(Φ,Ψ) = (Ψt-sΨξ)t-s(Ψt~sΨξ)ξ~v2Ψξξ

+ AΦξ + {M-sB)Ψξ + BΨt=- Γ(Φξ9 Ψξ9 -(Ψt -sΨξ)\ (3.35)

with the initial condition

(Φ, ?P)(0, ξ) = (Φo, Ψ0)(ξl Ψt(0, ξ) = Ψ,(ξ) = (sΨ0,ξ - wo)(ξ). (3.36)

We introduce the solution space of the problem (3.35), (3.36) as follows.

09T) = {(Φ, Ψ)(t9ξ); ΦEC°(0,T;// 2 ) , ΨEC°{0, T;H2)nC\0, T;Hι),

Then we have the following

Theorem 3.3. Suppose that (Φ0,Ψ0)EH2 and Ψ1eH1. Then there exist positive
constants δl9εί and Cx independent of(p±im+,z+) such that if\p+—p_\^δ1 and

then the problem (3.35), (3.36) has a unique global solution (Φ, Ψ)eX{0, + oo)
satisfying

| |(Φ, Ψ)(t)\\2

2 + II Ψt(t)\\l + } II(Φδ, Ψξ9 %)(τ)\\ίdτ ^ C2N2 (3.37)
o

for ίe[0, oo).
For the solution (Φ, Ψ) in the above theorem, we define (φ, ψ, w) by (3.32) and

(3.34). Then it becomes a global solution of the problem (3.28), (3.29), and
consequently we have the desired solution of the problem (3.4), (3.14) through the
relation (3.27). On the other hand the solution of (3.4) is unique in the space
C°(0, T H1). Therefore the proof of Theorem 3.1 is completed.

To check the local existence of a solution of (3.35), we transform (3.35) into the
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following system of third order.

(dt — sdξ)(dt — (s + v)dξ)(dt — (s — v)dξ)I ^ I + lower order terms = 0.

This system is strictly hyperbolic, and therefore the standard arguments give a
solution (Φ, Ψ)eX(0, T) for some Γ > 0 . So, for the proof of Theorem 3.3, it is
sufficient to show the following a priori estimates.

Proposition 3.4 (a priori estimate). Suppose that the problem (3.35), (3.36) has a
solution (Φ, Ψ)eX(0, T)for some T > 0. Put

N(t)= sup {||(Φ, «F)(τ)||2 + || ^ ( τ J H j (3.38)

for ίe[0, T~\. Then there exist positive constants δ2,ε2 and C2 independent ofT and
(p + ,ra + ,z+) such that if\p+ — p _ | ^ δ2 and N(T)^ε2, then

N(t)2 + j \\(Φξ9 Ψξ9 Ψt){τ)\\\dτ ̂  C\Nl (3.39)
o

holds for ίe[0,T].

33. A Priori Estimate. Throughout this subsection we suppose that the problem
(3.35), (3.36) has a solution (Φ, Ψ)eX{0, T) for some T > 0. As in Sect. 2, the symbols
C, c and δ denote the constants with may depend on p, p and ΰ but not on T and
(p ± ,w ± ,z ± ) .

First we show the following basic estimates.

L e m m a 3.5. There are positive constants δ and C such that if \p+ — p _ | ^ <5, then

2 - i- II V ^ C O 1 1 ? - + - II ^ " X O I I 2 - K I I I i ^ ^ i 1 ^ ^ " ( τ ) i l ^ -K | | ( V ^ ^ , 2

ύ c i l l Φ o I I 2 + II ΨoII2 + IIwoII2 + ί ί ( l ^ 1 + 1 Ψξ, Ψt\)\r\dξdΛ (3.40)

holds for fe[0,T].

Proo/ We first note the elemental estimates for the coefficients A, M and B in Eqs.
(3.35). From (3.24) we know that

sAξ = -(v2 - s2)sPξ < 0, sBξ = -^(v2 + 3s2)sP, < 0, (3.41)
4 4v

where |s | < v is used. Therefore there are positive constants c and C such that for

T^C, (3.41')

where A+(v2p+ — z + )/4 and 5 + = ( ^ 2 p + H- 3z+)/4i;2. We also know that

where Is| < y and 5(2! = — sp±(s — u+) < 0 (see (3.21)) are used. Therefore we have the
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estimate

(3.42)

with some positive constant c.
Now we show (3.40). Firstly, we calculate

-Ψξ'L1+A-1(Ψt-sΨd'L2=-A~1(Ψt-sΨd'Γ. (3.43)

The left-hand side is reduced to

* ji(Ψ t - sΨξ)
2 4- y ΨI - AΦ Ψξ 1

where {--}ξ denotes the term which disappears after integration with respect to ξeU.
Secondly, we calculate

ΦL1+A-1ΨL2= -A~XΨ'Γ. (3.44)

The left member is reduced to

A-χ{\AΦ2 + \BΨ2+ Ψ(Ψt- sΨ$) + *£A-\Ψ2

Hence, the combination (3.43) + (3.44) x λ with a positive constant λ yields

{E^Φ, Ψξ) + E2( Ψ,Ψt-sΨξ) + E2(Ψ)},

{ (tsΨξ)} Γ, (3.45)

where

E2(Ψ,Ψt- sΨξ) = A-'ί^BΨ2 + λΨ(Ψt-

= -λ-{A-\M-sB)}ξΨ
2,

G(Ψ,Ψt-sΨζ, Ψξ) = λ(v2 - s2)(A-%ΨΨξ

+ y,A - %{s( Ψ, - 5 Ψξ)
2 + 2v2( Ψt - s Ψξ) Ψξ + sv2 Ψ2}.

We choose a constant λ > 0 so that the inequalities

supD;<0, j= 1,2,3, (3.46)
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hold uniformly in (p ± ,m ± ,z ± ), where Dj is the discriminant of the function Ef

DX=A(A- λv2\ D2 = λ(λ - B\ D3 = M2~ 4{Λ - λv2){λ - B).

For this choice of λ, there exist positive constants c and C such that

c(Φ2 + Ψ2) ^E^ C(Φ2 + Ψ2\

(3.47)

On the other hand, (3.41) and (3.42) give

0^E2SCΨ2 and £ 4 ^ c\Pξ\ Ψ2, (3.48)

respectively, where C and c are positive constants. Moreover, for any α > 0, we have

\G\^a\Pξ\Ψ2 + Ca\p+ - p-\2{(Ψt-sΨξ)
2 + Ψ2

ξ} (3.49)

with some constant Cα, where (3.25) is used. We choose α so that α = c/2. For this
choice of α, we assume that \p + - p_ | 2 ^ c/2Cα. Then the equality (3.45) together
with the estimates (3.47) ~ (3.49) give the desired estimate (3.40) after integration
with respect to t and ξ9

It remains to check condition (3.46). It is easily seen from (3.4Γ) that the first two
inequalities in (3.46) are equivalent to

Aτ/υ2<λ<B± (for 5^0). (3.50)

On the other hand, we know that D3/4υ2 = (λ —λ^iλ —λ2) with λγ =
(A + v2B - D1/2)/2v2 and λ2 = (A + v2B + D1/2)/2v2, where D = Z2 - v2M2 is the
discriminant of D3/4. Therefore the last inequality in (3.46) holds if

</ί<inf/l2. (3.51)
ξ ξ

Since D ^ min {D +, D _ } and D + = z\ — v2m\ ^ cl with a positive constant c0, the
condition (3.51) is satisfied if

(Aτ + ι; 25 τ - co)/2ί;2 < /I < (A± + υ2B± + co)/2v2 (for 5 ̂  0), (3.52)

where we also used (3.4Γ). The inequality (Aτ + υ2Bτ - co)/2v2 < (A± + v2B± +
co)/2v2 (for 5 ̂  0) is equivalent to

v2\p+ ~ p _ | + |z + - z _ | < 4 c 0 , (3.53)

which is satisfied automatically for suitably small |p+ — p_ |. Under the condition
(3.53) we take λ to be

λ = (A++ A_)/4v2 + (B+ + BJ)/A = {p++ p_)/8 + (z + + z_)/8ι;2. (3.54)

Then (3.50) and (3.52) hold uniformly in (p + ,m+,z+). Thus condition (3.46) has
been checked. This completes the proof of Lemma 3". 5

For the derivative Φξ, we have the following

Lemma 3.6. There is a positive constant C such that for ίe[0, T],
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j j ξ | (3.55)

Proof. We calculate the equality

{Ψt-sΨξ + v2Φξ)'dξL1 + ΦξL2= -Φξ-Γ. (3.56)

The left-hand side of (3.56) is reduced to

Therefore, integrating (3.56) over [0, ί] x U, we get the desired estimate (3.55). This
completes the proof.

We proceed to estimate the higher derivatives.

Lemma 3.7. There is a positive constant C such that for ίe[0, T],

| |Φ ξ ( ί ) | | 2 + II Ψξ{t)\\\+ II Ψtξ{ή\\2 + \ \\(Ψξξ, Ψtξ)(τ)\\2dτ - c\ \\(Φξ, Ψξ9 Ψt){τ)\\2dτ
o o

I ΦoJ2 + II ΨoJΪ + II wo^ll2 + f j(l ̂ 1 + I Ψξξ, Ψtζ\)\Γξ\dξdτ], (3.57)
o J

ξ, Ψιξ)(t)II2 + } II Φξ(r)II2 + II(Ψ ξ , Ψt)(τ)\\jdτ\

(3.58)

Proof Since dξL,{Φ, Ψ) = L,{Φξ, Ψξ) and dξL2{Φ, Ψ) = L2(Φξ, Ψξ) + AξΦξ +
(M — sB)ξΨξ + BξΨt, we can calculate the equalities

-dξΨξ-dξL1+A-1dξ(Ψt-sΨξ)'dξL2= - A~x d ξ{Ψt - sΨξ) dξΓ, (3.59)

dξΦ'dξL1+A~1dξΨ'dξL2= -A~ιdξΨ dξΓ (3.60)

in the same way as in Lemma 3.5. Add (3.59) to λ times (3.60), where λ is the constant
given in (3.54). Integrating the resulting equality over [0, t] x U, we get the desired
estimate (3.57) as a counterpart of (3.40).

Next we calculate the equality

dξ(Ψt -sΨξ + v2Φξ)'d2

ξLί + dξΦξ-dξL2 = - dξΦξ-dξΓ

in the same way as in Lemma 3.6. Integrating it over [0, t] x U, we get the estimate
(3.58) as a counterpart of (3.55). This completes the proof of Lemma 3.7.

Combining successively the estimates (3.40), (3.55), (3.57) and (3.58), we have

Ψξ,Φξξ,Ψξξ,Ψtξ\\Γξ\dξdτ\ (3.61)
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for ί e [ 0 , T ] , w h e r e \p+ — p - \ ^ δ is a s s u m e d . S i n c e

\Γ\=0(\Φξ9Ψξ9Ψt\
2) for \Φξ9Ψξ9Ψt\^09

the integral on the right-hand side of (3.61) is majorized by

CN(t)\ ||(Φξ9Ψξ,Ψ t)(τ) ||Idτ,
o

with some constant C. Substituting it into (3.61), we reach the final estimate

N(t)2 + (1 - CN(t))$ \\(Φξ9 Ψξ9 Ψt){τ)\\\dτ ^ CN2

0
o

for ίe[0, T], where C is a constant. Therefore, assuming N(T) ^ 1/2C, we obtain the
desired estimate (3.39). Thus the proof of Proposition 3.4 is completed.
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