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Abstract. We discuss SU(2) lattice gauge theories at non-zero temperature and
prove several rigorous results including i) the absence of confinement for
sufficiently high temperature in the pure gauge theory, and ii) the absence of
spontaneous chiral symmetry breaking for sufficiently high temperature in the
theory with massless fundamental representation fermions.

I. Introduction

Non-abelian gauge theories are the central building blocks of modern particle
theories and have been widely studied in recent years. Despite this effort, very few
physical results have been rigorously derived.

In this paper we consider SU(2) lattice gauge theories and derive several results
concerning the finite temperature behavior of these theories." These include the
following:

A. Intwo or more space dimensions, there is a temperature T, < co (depending
on the bare coupling and dimension) such that for temperatures 7> T, static
quarks cannot be confined.?

B. In any dimension, in the theory with dynamical massless fermions in the
fundamental representation, there is a temperature T, < oo (depending on the
dimension and number of fermions) above which chiral symmetry cannot be
spontaneously broken.

The plan of this paper is as follows. In Sect. II we introduce our notation and
review a variety of background information. This includes the definition of our
confinement criteria and the equivalence between the lack of confinement and the
spontaneous breakdown of a global Z(2) symmetry. Section III contains our proof
of the absence of confinement at high temperature. We use a Peierls argument to
demonstrate the spontaneous breakdown of the global Z(2) symmetry. However,

1 Preliminary portions of this work have appeared in [1]
2 Recall that in one space dimension static quarks are confined for all temperatures T < oo
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the energetic estimates needed for our Peierls argument are far more delicate than
those needed in conventional applications of this technique [ 2]. This is because the
probability of a domain boundary is only suppressed by a power of 1/T instead of
the usual exponential suppression. In order to deal with this problem we develop
several renormalization group transformations which are simple enough to be
rigorously controlled and are sufficiently accurate to preserve the overall power of
T. In Sect. IV we consider the theory with dynamical massless quarks. We prove
the convergence of a fermionic cluster expansion (i.e., an expansion in spacelike
hops of the fermions) which converges for sufficiently high temperature for any
value of the bare coupling. The existence of this convergent cluster expansion
implies that all global fermionic symmetries are unbroken. Section V contains
some brief concluding remarks. A number of technical lemmas are relegated to
appendices. In addition, Appendix I describes some inequalities relating the
various standard confinement criteria (Wilson loops, 't Hooft loops, the static
quark potential, and the electric and magnetic flux free energies).

The major difficulty in proving our results is ultimately due to the paucity of
useful analytical tools which are applicable to non-abelian gauge theories. (There
are no non-trivial correlation inequalities [3], no random walk representations
[4], no useful duality transformations [5], etc.) However in pure gauge theories the
measure satisfies both ordinary positivity and reflection positivity [6,7]. Ulti-
mately, this is sufficient to derive the renormalization group bounds that we need
to prove non-confinement.

In the presence of dynamical quarks, the measure contains Grassmann algebra
valued terms and therefore one loses ordinary positivity (the integrand is no longer
a simple number). However the measure is still reflection positive and using this
alone, we are able to prove the convergence of our cluster expansion. (This may
seem somewhat surprising; in most conventional proofs of cluster expansions one
of the very first steps is a resummation yielding a single connected cluster during
which one uses ordinary positivity to justify a small amount of over counting
[6,8,9]. We are able to perform this resummation exactly and thus avoid any need
for ordinary positivity.)

The absence of confinement at high temperatures has been previously
demonstrated for any SU(N) gauge group in three or more dimensions by Borgs
and Seiler using an entirely different approach [10].

II. Background

Thelattice A will be taken to be a (d + 1)-dimensional periodic hypercubic lattice of
size L, x L. For technical convenience we will assume that the lattice lengths in
“time” (L,) and “space” (L) are integer powers of two. A will be regarded as an
anisotropic lattice with timelike and spacelike lattice spacings a, and a,,
respectively. The physical temperature is defined as T=(L,a,)”*. The “spatial”
lattice obtained as a particular equal time slice of A4 will be denoted A,.

On rare occasions the direction and coordinates of links (I) or plaquettes (p)
will be indicated explicitly as [,(#) or p,, (1), where 0 <y, v = d (with =0 denoting
the “time” direction) and where the coordinates {n,} are integers defined modulo
the length of the lattice.
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A. Pure Gauge Theory

An SU(2) valued link variable U[[], is located on every link of the lattice. The pure
gauge action is given by [11]
Sy= P ZA tr(UL0p]—1) + s ZA tr(Ulop]—1). 2.1
§ 435 Ds€
Here, p(p,) indicates a timelike (spacelike) plaquette and U[dp] denotes the
ordered product of link matrices around the boundary of the plaquette p. The
timelike and spacelike gauge couplings are given by

2 2
[))t =3 ag_ 3(as/at) = ag_ 3(LtasT) s

g g2 2.2)
_zag_ 3(LtasT)_ ! ’
g
where g2 is the conventional bare coupling constant. Note that increasing
temperature corresponds to increasing timelike coupling (f,) and decreasing
spacelike coupling (B).

Expectations of observables are computed in the measure

dp,=Z;" T1 U] exp$,, (2.3)
led

2
Bs = jq_z ag 3,(at/as) =

where the partition function Z, is defined by [du,=1, and dU[I] denotes
normalized Haar measure on the group SU(2). du , is a reflection positive measure
for reflections in d-dimensional planes parallel to two lattice axes which either
contain lattice sites or bisect lattice bonds [6, 7]. In addition du, is reflection
positive with respect to timelike dihedral planes (i.c., planes parallel to the time
axis and at 45° to a spatial axis). [ Recall that reflection positivity for a reflection
O which cuts the lattice into two equal pieces, 4, and A_ [with @(A4,)=A_]*is

the statement that (FO(F)>=0 (2.4)

for any observable F whose support is contained in A . . This condition guarantees
the existence of a positive definite transfer matrix [6]. Combined with the Schwarz
inequality, (2.4) implies that

IKFO(G))| = <FO(F)>'*(GO(G)»!? (2.5)

for any observables F and G with supports in 4,.]

For each spatial site x € A, let S, represent the set of L, timelike link variables
with the same spatial coordinates as the site x, and let f,(S,) be an arbitrary (real)
function of the links in S,. By repeatedly using reflection positivity for timelike
planes in between lattice sites, one may derive the chessboard estimate [12]

<H fx(sx>>§ygs <H fy<Sx)>*“As'. (2.6)

3 The use of anisotropic couplings allows us to vary the temperature 7, bare coupling g2, and
lattice length L, independently

4 Due to the periodicity of the lattice, any reflection actually leaves invariant a pair of parallel
planes which cut the lattice into two equal pieces
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Similarly, for each spatial bond {xy) € A, (oriented such that x is a site in the even
sublattice of A4y, let f,,,5(S, S,) be an arbitrary real function of the links in S,US,,.
Using reflections in timelike planes through lattice sites plus timelike dihedral
planes, one may derive the chessboard estimate for “bonds,”

< 1/(d|4s))
(oL, fen oS = TT (T Jou(So SNV @)
These estimates will be extensively used in Sect. III.

We will use two different observables which may be interpreted as confinement
criteria. The first of these is based on the “twist,” Q[x], defined on sites of the
spatial lattice A, as the (ordered) product of link variables along the straight
timelike path beginning at the site x € A, and running once around the (periodic)
lattice. (This is a topologically non-trivial closed loop.) The static potential
between an external quark and antiquark, F%, may be expressed in terms of the
two point correlation function of the trace of the twist [13],

exp(—Fx,x)/T)=<{Ztr Q[x B tr Qx> 4, =G 4(x,x") . (2.6)

We will generally restrict our attention to the case where the separation x —x’ is
directed along a lattice axis.’

If the “magnetization,”

m= lirl}g Lliin G ,(x, x)'1? 2.7
vanishes, then this implies that the quark-antiquark potential increases to infinity
as the separation |x—x’| grows, which is interpreted as confinement of static
quarks. Conversely, a non-zero magnetization implies non-confinement of static
quarks.

In addition to the local SU(2) gauge invariance [11], the action (2.1) is
invariant under a global Z(2) transformation which changes the sign of all time-
like link variables which emerge from the equal time slice 4, [14]. Under this
transformation, products of link variables around topologically trivial loops (i.e.,
topologically trivial Wilson loops) remain invariant, however the twist, Q[x],
changes sign. In other words, tr Q[ x] is an order parameter for this Z(2) symmetry.
Consequently, just as in the d-dimensional Ising model, if the magnetization (2.7) is
non-zero, then the measure (2.3) does not describe an ergodic state and multiple
pure phases must occur [15]. In the pure phases (which could be selected by

adding an infinitesimal “magnetic field,” h > trQ[x]), the order parameter has
a non-zero expectation, w4

lim lim (trQ[x]>,= +m
h—0 Ls—> o0

5  The off-axis quark-antiquark potential is always bounded below by the on-axis potential,

F2(x,x') 2 F4 (x,x"),

where x” =x— |[x —xle; and [x — x'|=max |x;— x}|. This is an immediate consequence of reflection
positivity !
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and the Z(2) global symmetry is spontaneously broken. Conversely, if the Z(2)
symmetry is not spontaneously broken, then the magnetization must vanish and
static quarks are confined.

An alternative confinement criterion is based on the behavior of the electric or
magnetic flux free energy [16,5]. The magnetic flux free energy is defined by
changing the sign of the gauge coupling on a topologically non-trivial stack of
plaquettes. Explicitly,

exp(—Fy*/T)=(t[So1 D4= <FI;[ exp—2f, tr(U[ﬁp])>A> (2.8)
where S, is any coclosed set of plaquettes which winds once through each [01]
plane of the lattice. (For example, Sy, = {po.(#)|n, =n, =0}.) [The magnetic free
energy of a gauge theory has a simple analog in a spin system; it corresponds to the
difference in free energy produced by changing periodic boundary conditions to
antiperiodic in one direction, or equivalently the expectation of an operator which
flips the sign of the coupling on a topologically non-trivial coclosed set of links
[17]1]

The electric flux free energy is simply related to the magnetic free energy [16],
exp(—F§*/T)=3(1 —exp(— F3*¢/T)) = 3(1 = [So: D 4- 2.9)

By rewriting the theory in terms of a transfer matrix acting on a suitable Hilbert
space, one may show that exp(—F°/T) is the expectation of a projection
operator onto states with global electric flux flowing through the periodic lattice in
the 1-direction [16, 18]. If static quarks are confined by an asymptotically linear
potential, F%(x, x") ~ g|x — x'|, then the string tension ¢ may be interpreted as the
energy per unit length of electric flux, and consequently one expects the electric flux
free energy to grow with the size of the lattice, F¢°° ~ ¢ L,. Conversely, if the electric
free energy remains finite as L,— oo, then this is interpreted as the absence of
(linear) confinement.
The two confinement criteria,
lim  lim Fé(x,x)=00 and lim F§*=o0
|Jx=x'|= 0 Ls—= o Ls—>

are not strictly equivalent [18]. However, we prove in Appendix I that linearly
confining behavior for the electric free energy implies the presence of an
asymptotically linear static quark-antiquark potential. Specifically, we show that

Foi(x, x')/}x — x| 2 (F*°~ 2T In2)/L, (2.10)

for |x—x'|= Ly/2.

B. Dynamical Fermions

For part of our discussion, we will add to the theory massless fermion fields [11].
Therefore, to each site i of the lattice A we will associate v independent generators
of a Grassmann algebra, denoted by y[i],, «=1,...,v. The fermions at each site,
xLi1, transform under some (reducible) representation of the SU(2) gauge group.
We will assume that v is a multiple of four, and that the fermion representation is
equivalent to (v/2) copies of the fundamental representation. The fermion
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contribution to the action may be written as
Sf:l Z<J_.> 2L M (UL (2.11a)
=T

where for each link /e A, M, is a v-dimensional matrix depending on the link
variable U[!]. The explicit form of the matrices {M,} depends on the particular
fermion latticization scheme adopted. We will assume that M, has the form

1 0 yI* x ULT*
5(a/a) [y[l] « UL 0 ] (2.12a)
for spacelike links, and
1 0 yU1* x UL*
Mgl o]

for timelike links (* denote complex conjugation).® Here, for each link [ e A, y[1] is
a fixed v/4 dimensional unitary and hermitian matrix. The set of matrices {y[I]}

must satisfy y[op]= —1 (2.13)

for every plaquette p € A in order to recover the Dirac equation in the continuum

(2.12b)

limit. Splitting the fermions into two parts, y[i]= < vlil >, the action may be

rewritten as’ gL’
Sy=3(a, as) Z“ @@UYMUMy[1-eUy[AUT )
+3 _Z, (w[l])’[l] UlwU]—-wU[AUL wli]) . (2.11b)

Conventional choices for the matrices {y[[]} are either

ny

z
ynJ=(—1)<» (2.14a)

(which gives “staggered” fermions [19,20]), or
y[nd=v, (2.14b)

with {y,,7,}=26,, (which yields “naive” fermion [11]). (Since the irreducible
representation of this Clifford algebra is of dimension 21 * /2 for naive fermions v
must be a multiple of 4 x 21*1/2], Naive fermions are umtarlly equivalent to
21*1/21 copies of staggered fermions [20].2 For later notational convenience, we

6 Inorder to satisfy reflection positivity, fermions must obey antiperiodic boundary conditions
[7]. In other words, the sign of the coupling matrices {M,} must be flipped on a coclosed set of
bonds which intersects once with every closed loop which winds once around the lattice. In most of
our discussion this will not be indicated explicitly. Note that we have rescaled the fermion fields so
as to remove a conventional factor of (a))? from the coupling matrices

7  The fermions may be given a bare mass by adding the term [11] mth[z]tp[l] We will only
consider the massless theory

8  The continuum limit of this theory actually describes 2* 1" ¥/2)(y/4) species (or “flavors™) of
physical fermions [20]
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will assume that for all timelike links y[1] equals the same matrix (which we will
call) y,.

Let G be the subgroup of U(v/4) which commutes with all the matrices {y[[]}.
[G contains at least a U(1) subgroup and, for staggered fermions, equals U(v/4).]
The fermion action (2.11) is invariant under the global Gx G symmetry
corresponding to independent rotation of fermions on even and odd sublattices.
(Explicitly, for any element (u,v) € G x G, w[i]-uy[i], and Pp[i]->p[i]v! for even
sites, while p[i]—vy[i] and ¢p[i]—>p[i]u’ for odd sites.) This symmetry is referred
to as chiral symmeltry.

The full measure is given by

duy=2;" TTAUL TTdxlilexp(S, +5,)., (2.15)

where dy[i]= ]’v'[ dy[i],1s the standard measure on a Grassman algebra [21]. The
a=1

measure (2.15) is invariant under the global chiral symmetry [as well as the local
SU(2) gauge symmetry].

In order to discuss reflection positivity in the presence of fermions, it is
convenient to split each link variable, U[[], running from site i to site j, into two

“half-bonds” [7],
alf-bonds” [7] ULl = wi, jiwh, i1 (2.16)

Here, for each nearest neighbor pair of sites (i, ), w[i,j] € SU(2) may be regarded
as starting at the site i and running halfway toward the site j. In the measure
[14dU[1] is replaced by [T dw[i,jldwlj,]. Since the action and every physical

led i
observable only depends 2);1 the half-bonds through the combination (2.16), this
form of the theory is strictly equivalent to the original form. However, introducing
redundant variables in this fashion simplifies the definition of reflections through
planes which bisect links.’

In the presence of fermions, it is not simple to define reflections through
planes containing lattice sites in such a way that the bare measure (]—I dx[i]) is

reflection positive. Reflections through planes between lattice sites may however
be usefully defined as follows,

O(zA)=z*O(A),
O(AB)=0O(B)O(A),
OWli,jH=wlO®), O()1*, 2.17)
Ol =®emO1ew, D" .
OWli =0l 60 IwleMOD".
Here @ denotes a particular reflection which takes site i into site @(i), z is an
arbitrary complex number, and 4 and B are arbitrary observables (polynomials in

the basic fields) whose support is contained in A4 , . y[i, @(i)] denotes the product of
the matrices y[I] along the straight line from site i to site ©(j).

9  Alternatively, the introduction of half bonds may be avoided by using a partial gauge fixing
which sets certain link variables to one (see [6])
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This definition of reflection is chosen so that i) the bare measure
(H) dwli, jldwlj, 1T dw[ildp[i]
ij i
is reflection positive, and ii) the action may be expressed in the form
S, +8;=A+6(4)+ X B,O(B), (2.18)

where 4 and B; are observables whose support is contained in A . This implies
that the full measure satisfies reflection positivity [12]. Verifying (2.18) requires
using the fact that

POV —wLTy UL ]
v/2
= 2 LWL DOWLIWL D+ w0, 1[0, 1w, (2.19)

where O is the reflection which bisects the link [= {ij». This decomposition of the
fermion action will be used in Sect. IV.

In order to test for possible spontaneous breaking of the global chiral
symmetry, we will study correlation functions of observables such as p[i]y[i].
This is an order parameter for the chiral symmetry, and its expectation in the
measure (2.15) vanishes identically due to the symmetry. However, if the large
distance limit of the two-point function

Jim - lim Gl {RLTY 0D
does not vanish, then this demonstrates the spontaneous breakdown of chiral
symmetry, and the existence of multiple pure states in which {py will have a non-
zero expectation [15]. Conversely, if all correlation functions of chirally non-
invariant, local fermion operators decay for large separations, then this implies
that the chiral symmetry is unbroken.

IIL. Non-Confinement at High Temperature

In this section the following theorems demonstrating the absence of confinement
for sufficiently high temperature will be proven.

Theorem I. For every coupling g*>>0 and spatial dimension d=2 there is a
temperature T* < co and a function u(T) such that for all temperatures T < T* and
all sites x,y € A,,

Fé(x, )/ TS(T)< 0,

with u(T) bounded uniformly as the spatial lattice size L,— 0. Furthermore u(T)—0
as T— 0.

Theorem IL. For every coupling g*>>0 and dimension d=2 there is a temperature
T** < o0 and a function o(T) such that for all T> T**,

Fi*/T<o(T)< 0
uniformly in L.
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Using the definitions (2.6) and (2.7), Theorem 1 has the trivial corollary that for
all T>T* the two point function of the twist is bounded from below,

Ga(x,y)zexp(=u(T)>0 Vx,ye A,
as is the magnetization,
mzexp(—w(T)/2).
Similarly, Theorem II is equivalent to the upper bound
exp(—FR*¥/T)=1—2exp(—o(T)) <1
for all T> T**.

A. Projections

We begin by introducing projection operators for the upper and lower hemi-
spheres of SU(2), '

Pt=

X

{1 if +1rQ[x]1=0 G1)

0 otherwise.
We may bound our confinement criteria in terms of expectations of these
projections,
G4(0, )= G015 rQlx] (Pg +Pg) (P + P ).
> 2 Q[O1 tr Q[x]Pg Py —2(P§ Py
2UPFPIY—UPIP ) — &P (1 -3 Q[0]))
=1—4(PgP; )= 21— [5tr QO] 4.
Here we have used translation invariance and the global Z(2) symmetry to
combine equivalent terms.

To bound the magnetic flux free energy, we introduce projection operators on
two spatial sites halfway around the lattice from each other,

exp(—F™¢/T)={(Pg +Pq)t[So:1(P{ +P:)>4
S2{Pq P t[Sa 1) a+2{Pg Py t[So11)4
=2(Pg P, 1[S6,1>4+2{Pg Py [So1 D 4-
Here x=3Lé, So1={po1(@)ng=n,=0}, and So;={po:(A)lno=0,n,=—1}. In
the last step, we have simply made a change of variables in the first expectation
which flipped the signs of the set of timelike links {I,(#)|n, =n, = 0}. This moves the
coclosed set of plaquettes with negative couplings from S, to Sg, and changes the
projection P, to Pg. Next we use reflection positivity (2.4) for the reflection which
leaves invariant planes perpendicular to the 1l-axis containing sites 0 and Xx.
Therefore
exp(—F"™*¢/T)S4{Pq P, t[So; 14
S4Pg P )P Pt S0, 1e[So: 1>
S4CPg P Y 2Py P2
<[8<Pg P12, (3.3)
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(Here, the first step is reflection positivity, the next step repeats the change of
variables used above in the second expectation, and the last step uses the fact that
(Po P y=(Py)y=1/2)

This result shows that the magnetic flux free energy will have non-confining
behavior (F™*¢>0) if the probability of oppositely directed twists is sufficiently
small. To demonstrate spontaneous magnetization, we must in addition show that
the probability for the twist to deviate from +1 is small.

B. Peierls Argument

In order to control the dependence of (Pj P; > on the separation x, a modern
version of the Peierls argument may be used to bound this expectation in terms of
expectations of nearest neighbor projections [2]. Inserting 1=P," + P, on every
site of the spatial lattice yields.
(PgPy,= X < [P T1 P;> , (3.4
QCAs \yeQ y¢Q 4
where Q represents an arbitrary set of spatial sites such that 0e Q, x¢ Q. Now let
C be a minimal length path (i.e. set of links) in A, running from 0 to x, and define
a contour vy to be any connected, coclosed set of hnks (in A) such that y[C]=1.1°
(Links in y are defined to be connected if they are contained in the boundary of a
common plaquette; in other words their coboundaries intersect. y[ C] denotes the
number of (oriented) links of y contained in C.) Therefore, resumming all sets Q
whose coboundaries contain a given contour, one finds

PiPOS T (PP TT PPy z< PP 69
yCAs y'dey y \v'oey
({yy"> € A, denotes the link running from spatial site y to the nearest neighbor site
y".) We will show (in the next subsection) that this expectation of nearest neighbor
projections around a contour obeys a bound
< 1 P} P;> <xl (3.6)
vy ey
for some (temperature and coupling dependent) constant k. Assuming this for the
moment, (3.6) implies that

(PGPIYS ¥ N(yhe,
y|Z2d
yleven
where N(|y|) is the number of contours of length |y|, and the sum starts from 2d since

this is the size of the minimal coclosed contour. In Appendix II we give a simple
counting argument which shows that

Ny s W=D g (37)

10 Unlike previous applications of the Peierls argument [2], we define contours in such a way
that topologically non-trivial contours do not cut the lattice into two disjoint pieces. Our
definition simplifies the counting of contours of a given size
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(provided L,>4). Therefore, if 3x <1, we find that

2(3K2)d[(d—1) d— 2)(3;«)2]

<P0P >~ —1 (1—(3K)2)2

(3.8)

C. Disorder Probabilities

The crux of the proofis now to bound the expectations of the contour projections

< 1 P! P\ as well as (1— {5 trQ[0]]>. These expectations essentially measure
(xy>ey
the probability of formation of domain boundaries or point defects, respectively;

in other words they measure the disorder in the twist Q[x].
We begin by using the chessboard estimates (2.6) and (2.7) to bound these local
expectations by thermodynamic quantities,

A-ltrQo]H < <xlj (1—|2trQ[x]|)>”"‘S' (3.9)
< 1 PP > <H P TT P >|7|/(‘”As|). (3.10)
(xyyey xeAe yeAg

Here Ag(A?) represents the even (odd) sublattice of A,
These resulting thermodynamic expectations each have the form

<H fy(Q[y])> for some set of non-negative class functions {f,}. It will be
yeds

convenient to express these expectations in terms of the transfer matrix T,

< I1 fy(Q[y])> - I14ut IT @D

yeds yeds

'eXP[ﬂt 2 tr(ULop] =1+ Z tlf(U[ap]~1)]

=z xle_I dQ[x]1/(L[x]) H dU[l]TLf({U“[l]} {UL}; B B) -
(3.11)

Here U?[[1=Q[i1U[12[j]" for [=ij>, and we have introduced (the L, power
of) the transfer matrix T whose matrix elements are given by

TH({U ’[l]} UL} B B
= H H dU [l]expf, Z Z tr(ULOUL- [ - 1)

t=1

expﬂstZl peZ tr(U,[op]—1). (3.12)
(In this last expression, the subscript on U,[[] denotes the time of the link matrix,
and U,[[1=U[1], U, [[1=UTI.) To derive (3.11) one makes a change of variables
(gauge transfomration) which effectively sets to one all timelike link variables
except for those that end in the spacelike slice A, which are transformed into the
twist Q[x].
In Appendix III, we derive a simple recursion relation for the transfer matrix
which yields the bound,

TH{UTL LU B, B Sexp <ﬁ> P U’ -0+ l/lle>> -(3.13)
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Here F. is an explicit constant (depending on g, and L,) and, if L, =2*, then the
“renormalized” coupling f3.. is the image of 8, under the k'™ iterate of the mapping

B—sIn(I,(4P)/2P). (3.14)
[I,(z) is a modified Bessel function.] As T— o0, . ~f,/L,+ O(Inf3,), and

Forn —(L— 1)§1n(4nﬁ3)~k§1n8.

[For the precise definition of F . see (A3.5).]
Inserting this bound on the transfer matrix yields the result

(1 5@Dm) =271 T derxaA@DxD) [T dut)
-exp<ﬂ>lEZA tr(U”[l]U[l]T—1)+|AS[F>). (3.15)

This reduces the original theory with L, time slices to an effective theory defined on
a single time slice.

At this point, one can exactly integrate over the remaining spacelike link
variables and find

(11 @01 77 eiwir§ 11 S0 sin ol e
T I ebif). 616
where 2 ;cosmosw, sinh(2f sinw sinw’)
(o, 0 p=e )< 2B sinw sinw’ >’ (317)

and €™ is the eigenvalue of the twist Q[x] in the upper half plane (ie.,
0= w[x]<n).

We must now perform the final integral over the eigenvalues {w[x]}. Consider
first the right-hand side of (3.9) and note that

and J(w, s f)sexp2f(cos(w—w')—1),
sinw sinw'J(w, w’; B) L (4B) ™ exp2p(cos(w—w)—1).

Furthermore, 1 — 2 trQ[x]|=1~—|cosw[x]|<sin’w[x]. Hence,

<xg (1-1 tr9[>€]l)> < (e /2B HZ,,285)/Z, (3.18)
where Z,(f) is the partition function of a d-dimensional xy model,
2,0~ T1 ey 5 fleos(OLI—00D-1D. 619

To evaluate the contour expectation (3.10) we will use the fact that
PIP; J(o[x], o[yD) < P Py [J(wlx], n/2)J (r/2, o[yD]'? .
Inserting this bound yields |4,| decoupled integrals, so that
<xn P TP > < (" (B )/Z, (3.20)

eAg yeAQ
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h K9
e iPB)= F:%sinzcoJ (w,7/2)* (3.21)

and j(f) ~ (4p)~“/)/ndp as f—co.

To complete our estimates we must derive an upper bound on the xy model
partition function, and a lower bound on the full gauge theory partition function.
This is done in Appendix IV where we find explicit functions z, () and z(B,, B,)

such that Z, (B <z (B,
Z,2 2B Y.

Inz,,(B)~ —4In8nf+(29—1)"!In2,

(3.22)
Asymptotically,

as ff, L~ oo and

2(Bes e~ ~ e,

as T—»o0. The positive constant ¢ depends on the bare coupling g* and L,
Combining these results yields

(11, 0 -Relan) <0r/ap. ) (3.23)
and -

<neP+ IT,Py) SLoep-) 3™, (3.24)
where r= J(y(;ﬁﬁ__));“ and s (4ﬂ )Zd( 3 E}/} )>)eF>. Note that the ratios r and s

remain bounded as T— oo (uniformly in L,). Returning finally to (3.9) and (3.10), we
have

A-EQ[0])=r/@4f.)~0(T)"! as T-oo,
and
<n P;P;> <,
(xyyey
where
k=[s/(4B-) V] ~O(T)"“ VM as T-oo.

Thus, we have established the basic bound (3.26) needed for the Peierls argument.
Inserting (3.8), (3.25), and (3.26) into the initial bounds on confinement criteria,
(3.2) and (3.3), yields the theorems stated at the beginning of this section.

IV. Chiral Symmetry at High Temperature
In this section we derive the following theorem:

Theorem IIl. For every coupling g*>>0 and spatial dimension d=1 there is a
temperature T, > oo such that

lim hm <BLwlwlvlil) 4

li—jl= o |4~
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vanishes for all T>T,,. More generally, for T>T,, all correlation functions of
chirally non-invariant local fermion operators exhibit exponential clustering. Our
result for T, will actually be independent of the bare coupling.

The starting point of our proof is the observation that spacelike terms in
fermion action (2.12) are suppressed relative to timelike terms by a factor of (a,/ay)
=1/(L,a,T). Therefore an expansion in powers of the number of spacelike hops
should converge for sufficiently large temperature.

Consider the expectation of some product of local fermion operators,

0= 11 G Tyl =T] ;. @.1)

where O is some finite set of sites and each I} is an arbitrary unitary matrix. Define
0; to equal one for sites not contained in the set O. The expectation of ¢ is given by

Oy=2"*[TTdUTN T drli] (Ho (oi> exp(S,+5S,0)
AL exp(Lil M i, (UUDLD) - “.2)

where S, is the pure gauge action (2.1), S , is the timelike part of the fermion action
(2.11), and L= {ij) denotes an arbitrary spacelike link running from site i to site j.
Our cluster expansion is generated by the representation,

exp (L1 M2 LiD = TT (1 +25). 43)
where »=1
fapn= (L] TW[i>j])a(w[i>j]TM(ij)XD])z . (4.4)

(The half-bond w[i,j] is to be taken in the representation under which y[i]
transforms. Note that exp f&;, =1+ f&;, since (f5;,)*=0. This decomposition
is equivalent to (2.19).) Inserting this representation in (4.2) yields

O= 3 (0 I1 frexp=5y.).
CCZy, XL (a,l)eC

Here L= {l,e A} is the set of all spacelike links and C is an arbitrary subset of the
set consisting of v copies of L. Each set C may be decomposed into a number of
connected components, where connectivity is defined by first projecting Z, x L
onto L, then projecting L onto the set of links in A, and finally using the ordinary
definition of connectivity in the spacelike slice A,. (In other words, two spacelike
links are connected if they may be joined by a sequence of timelike links.) Next, we
may resum all components of C which do not intersect the set O. This yields the
cluster expansion,

@=g (o 1 f I (1-f)=3l. 43)
0\ @hed (@hed 0

where the sum is over all sets Q C Z, x L which are composed of clusters which are i)

connected, and ii) connected to some site of the set 0. Q is the “closure” of Q,

defined as the set of all elements of Z, x L which are connected to (any element of)

QuO.



Finite Temperature SU(2) Lattice Gauge Theory 327

Our main result for this section is
Theorem IV. The cluster expansion (4.5) converges absolutely and uniformly in | Ay if
y=2d*v2¥/(Ta 2"~ V)< 1. (4.6)

To prove Theorem IV, we need a bound on the generic term I, in the
expansion (4.5). To obtain this, we will use the fact that the measure (2.13) satisfies
reflection positivity about planes without sites. Therefore, I, may be bounded by
a chessboard estimate,

ol*< T1 <<n TJ(&-))((H Hﬁf‘)e‘sﬁs>

ieQuO \\jed a,)eQ U'~1
ledi

I <<(;’} , HLa+ f,?‘)) e—sf,s> : 4.7)

Here T/ represents a sequence of reflections between lattice planes which moves
the site i to the site j. '~ indicates that !" is one of the |4|/2 links which may be
moved by a sequence of reflections to the link I. The notation i € Q means that there
exists an element (o, [) € Q such that [ € i (i is the coboundary of the site i). To
derive (4.7) we have used the fact that

Sy =3 (a/a) (T DO G LWL 1), »

where @ is the reflection through the plane which bisects the link {ij>. To simplify
the expectations in (4.7), note that due to reflection positivity

Z=IT1AUINTTdeLile® T TT0 4492 [TAUI [T dzAile [T TT0+£),
(4.8)

where T C A is any set of links which is invariant under all reflections through planes
without sites. Since each of the numerators in the second set of expectations in (4.7)
is equal to the right-hand side of (4.8) for some set T, these expectations are all less
than one. Consequently, we find

l*= T1 (Ny/D), 4.9)
where ieQuo

= <fndxmﬂ;fw,~>< I Hﬁ‘>CXP > XU]TM<,-k>X[k]>, (4.10)
jea (4De0 I'~1 le=(jk> g

and
D={e %) (Z/Z,)= <f I—IA dyl[j] exp. ;'ro A1"M jk)X[k]> SN C A8
je t=<J g

Here {...), denotes expectations computed with the pure gauge measure (2.3), and

Z, is the pure gauge partition function. We have used (4.8) to justify deleting the

spacelike part of the fermion action in the denominator of the first expectations in
4.7).

At this point, we may finally integrate out the fermions explicitly. Consider the

denominator D first,, and note that it consists of |4,| independent fermion integrals,
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each involving vL, fermionic degrees of freedom coupled together in a linear chain.
It is convenient to make a gauge transformation which, for each spatial site x € A,
sets every timelike link variable with the same spatial coordinates as x to the same
value (2[x])*/%. Hence,

D=< 1 d(Q[x])>g , (4.12)

xeds

where
L, L
Q=] tIJl dy,dp, exp3 t=21 (Pe—170Q ", = PyeQ~ Yop,_ ). (4.13)

This function is explicitly computed in Appendix V where we find
d(Q)=2""(tr(1+Q))* =27 &~ Dp*(Q), 4.14)
where the projection P*(€) is one if trQ2>0, and zero otherwise. Thus
D=2" vldlpvlds| < 1 p+ (Q[X])> >2" le|2v|Asl<p+ (Q[0]) >LASI =2 Vv =14
T ’ 4.15)

[The next to last step was an (inverse) chessboard estimate, and the last step
follows from the global Z(2) symmetry of the pure gauge theory.]

For each numerator N; a very simple bound will suffice. First recall that each f;#
term contains a factor of 3(a/a,). After extracting these overall factors, the
remaining fermion integrations are of the form

q

where j is a vector containing all v|A| fermion components, and each vector o, is a
unit vector. (If O, is not one, then N; is a sum of v! terms of this form.) From
Appendix III, one easily sees that the eigenvalues of the matrix m (which describes
timelike fermion hopping) are all bounded by one. By the usual rules of Grassmann
integration, this implies that the integral (4.16) is bounded by one. Consequently,
we find

INIS ([ TT Glafa)) V=) (Hhiicor, (4.17)
(ai é)éeiQ
Inserting these bounds into (4.9) yields
ol SR Gk(a,/ay))@!, (4.18)
where
k=220 DiLe (4.19)

Finally, we must count the number of sets, N(Q), of a given size |Q|. Since vL,
elements of Z, x L project onto a given spacelike link [ e A, we have

N(Q) = (vL)'9'n(1Q)),

where n(]Q]) is the number of sets of links in the spacelike slice A, of size |Q] (and
where each connected component is connected to the set 0). A standard counting
argument (based on Euler’s Konigsberg bridge problem) [22] implies that the
number of connected sets of size g touching a given site is bounded by (2d)*%. Since
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there are at most |O| connected clusters in the set O, we obtain

© © 10]
KO < (vk)!! o 2 2 0 (lQl - Zl: %) iU1 2dy* " Gvk(L,a,/ag)

=Qpin 41,-.,9]0]=0

dz (y/z)%mn

=(vk)!°! £ 3 G (=2

[o]
:VQ’T““(T((;ILir)!(a/az)'O' TNz =) (4.20)
Provided y= 2d2vk/(Tas) <1. (421)

Here Q,,;, is the minimal size of a set Q with a non-zero contribution, and the
contour C circles the points z=0 and z=y counterclockwise. This proves
Theorem IV.

If O=vy[ilw[i]p[jlw[j], then since Py is chirally non-invariant the contri-
bution from sets consisting of two disjoint clusters vanishes identically. Hence Q,,;,
equals the minimal number of links connecting site i to j, and

LI HT) ~y
as |i—j|—oo. This establishes Theorem III with
T, =2d*v2¥/(a 20~ Dk 4.22)

Note that T, remains finite in the time continuum limit (L,— c0).

V. Discussion

We have established that for sufficiently high temperature static quarks cannot be
confined (in the pure gauge theory), and that chiral symmetry with massless
fundamental representation fermions cannot be spontanecously broken. Our
methods are applicable for all values of the bare coupling and in all possible
dimensions. However, our bounds on the critical temperatures are obviously
crude. In particular, they behave poorly in the weak coupling (or continuum) limit
where the physical critical temperatures [in units of (a,) ~ '] are expected to vanish
like exp(—c/g*) with ¢>0 [23]. Proving a bound on any physical quantity
which has the correct weak coupling behavior is a major unsolved problem in non-
abelian gauge theories. This is the basic stumbling block which currently prevents
the actual construction of the continuum limit.

Extending our methods to gauge groups other than SU(2) should be possible
but will be technically more involved. For example, to generalize the Peierls
argument of Sect. IIl it appears necessary to introduce a set of projection
operators which controls the individual eigenvalues of the twist (instead of
merely controlling the trace of the twist). Furthermore, although our proof of the
absence of chiral symmetry breaking is essentially independent of the pure gauge
dynamics (and thus yields a bound independent of the bare coupling) this will no
longer be possible for groups larger than SU(2) or for fermions in representations
other than the fundamental. (The difficulty arises in controlling the probability of
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fermion zero modes in the partition function.) Finally, it should be possible to
prove the convergence of the fermionic cluster expansion for sufficiently large
chemical potential at any temperature. However, the fact that a non-zero
chemical potential destroys reflection positivity (with respect to timelike planes)
frustrates the obvious extension of our proof.*!

Appendix I. Confinement Criteria Inequalities

In this appendix we discuss the inequalities relating Wilson loops, 't Hooft loops,
the static quark potential, and the electric and magnetic flux free energies which
may be derived using reflection positivity. (Similar inequalities have been derived
using other methods in [10].)

A. Wilson Loops

The Wilson loop W[C] for any closed loop C is defined by the expectation (in the
pure gauge measure),

W[C]= <g tr <l[£ U[l]>> (AL1)

(where the product is understood to be ordered around the loop). For simplicity we
will restrict our attention to rectangular loops whose side lengths do not exceed the
length of the lattice. At zero temperature, the static quark potential may be
extracted from Wilson loops [11],

V4(r) =t1im — %ln W, (A1.2)
where W, , is the expectation of a loop of length ¢ in the time direction and r is space.
(This relation is false at non-zero temperature.)

Let W, , denote the expectation of a rectangular loop of size IxJ in a
particular plane of the lattice. First note that reflection positivity implies that W}
is non-negative. This follows since any rectangular loop may be written in the form
{AB(A4)), where O is a reflection bisecting the loop. Next, applying reflection
positivity to the 1 x 1loop with the plane of reflection perpendicular to the plane of
the loop and containing one of its sides yields

1/2
I/Vl,1<VVl,2 ! .

[To derive this, one considers one of the links of the 1 x 1 loop to be on the opposite
side of the plane of reflection from the other three links, applies (2.5), and then
applies the Schwarz inequality to the sum over color indices linking the two pieces
of the loop together.] Generalizing this argument, one may easily prove

W, SW, W (AL3)

for J less than or equal to the length of the lattice in the chosen direction. [If J is not
a multiple of 2, then after reaching the largest power of two smaller than J, one

11 This fact was overlooked in [1b] where it was incorrectly claimed that the extension to non-
zero chemical potential was straightforward
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must choose a reflection which yields the 1 x J loop times a smaller loop, both to
fractional powers. Repeatedly applying this procedure to the leftover pieces
eventually yields (A1.3).]

Reapplying this technique using perpendicular directions produces the well
known area law bound

Wi sW 1. (Al4)

This implies that the zero temperature quark potential cannot rise faster than
linearly. (This result was first derived in [24].)

This argument based on reflection positivity actually yields the stronger result
that (W, ,)'/"’ is monotonically increasing in I and J.

B. Static Quark Potential

The static quark potential is determined by the two point function of the trace of
the twist (also called a Wilson line).

e FHIT = G(x, x)= G tr Qx5 tr Q[x ] 4. (A1.5)

We will restrict our consideration to the case where the separation x — x”is directed
along a lattice axis, and use G, to denote the two point function at a separation J.

Exactly the same procedure of successively applying various reflections that
was used for Wilson loops may be applied to the two point function (A1.5) to show
that (G,)!” is monotonically increasing in J (for 1<J<Ly/2). In other words
F4()x —x')/|x — x’| is monotonically decreasing.

In addition, the expectations of timelike Wilson loops may be related to the
two point function of Wilson lines. Consider a rectangular Wilson loop which
extends a length L,/2 in time and an arbitrary distance J ( < L,) in space. This loop
may be written in the form

Wey2,0 =G UVUTYT)),

where U and U’ are the timelike legs of the loop, and Vand V" are the spacelike legs.
We wish to get rid of the spacelike legs. To do so consider the spacelike reflection
O which leaves invariant a pair of planes containing the spacelike legs Vand V’ (see
footnote 3). We may consider the spacelike legs of our loop to be on the opposite
side of the planes of reflection from the timelike legs and apply reflection positivity.
This yields

Wenas3 X (U0U)ULOWUDN PV ViV V2.

i,j.k,1

Applying the Schwarz inequality for sums gives
Wia, 0= <Z U,;0Uy) 3 UO (U > 12=2G,"2. (AL6)
i,j k,1
Combining this result with the monotonicity of Wilson loops yields

Wy <G ) (A1.7)

for timelike Wilson loops with time extent I<L,,.
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C. Electric Flux Free Energy
The electric flux free energy is defined by

exp(—F5*/T) = (1 —[So1 ) 4>
where 7[ Sy, ] [defined in (2.8)] is an operator which flips the coupling on a coclosed
stack of plaquettes which we may choose to be
So1={Po1(W)lno=n,=0}.

In order to relate the static quark potential to the electric free energy, one may
begin with the two point function at a separation of half the lattice length, G; _,,
and insert one in the form,

Hence 1=3(1 =[S0, 1) +3(1 +[So1]).

Gp,2= G trQLOIH1 —<[So; D3 trR[x1 4 + <G tr QLOTH(1 +7[So D3 tr 2[xD) 4,
where x = (L,/2)e,. In the part of the second expectation involving z[S,, ], we may
make a change of variables which flips the signs of the set of timelike links,
Lo={l,(#)|ny=n, =0}. This yields

G2 = GtrQLO1(1 —<[So, D3 trQ[x1> + <G tr Q[015(1 — 1[5, Dz tr [x1>
=24z tr QLOTH(1 — <[ So; D tr [x1> 4,
where S§; ={po:(#)lny=0,n,=—1}. We may now apply reflection positivity
using a reflection which leaves invariant timelike planes containing Q[0] and

Q[x]. Considering both traces of the twist to be on opposite sides of the lattice
from 7[S,,], we find

Gr,2 = 2{ (G trQL01)*G tr 2[x1)* )31 — [ S0 1y3(1 — <[ So: D>
S2(G(=1[S01 D) 4+ G(e[S011e[S0: ] —7[So DY )2
In the second expectation, we may once again flip the signs of the links in the set

L,. This change of variables transforms the second expectation into the first.
Therefore, we find

GLS/Z §2<%(1 “'C[S01])>1/2 =2 eXp(“%Filec/T) . (A1)

Combined with the precious monotonicity of the static quark potential, this
result implies that

Fii(x —x')/lx = x| 2 F§**/L,— (2T/L,) In2 (AL9)
for |x —x|<Ly2.

D. ’t Hooft Loops and the Magnetic Flux Free Energy
The 't Hooft “loop” B[S] is defined for any set of plaquettes S as [5,9]

B[S]=<[SD 4, (A1.10)

where the operator t[S] flips the sign of the coupling on each of the plaquettes in
the set S [see Eq.(2.8)]. If S and S’ are sets of plaquettes which differ by the
coboundary of a set of links, S —S’= 6L, then B[S]= B[S"]. In the infinite volume
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limit, this means that B[S] only depends on the coboundary of S (i.e., the coclosed
set of cubes C=48). In a non-confining phase the 't Hooft loop is expected to
decrease exponentially with the minimal size of the set S, B[S]~exp—«|S],
whereas in a confining phase B[S]~exp—u|dS] [S, 9].

Consider “rectangular” sets of S; of the form

S‘;E {pol(ﬁ)|0§nu§‘]u} >

where J,=J;=0 (and J,<L,). Applying reflection positivity in essentially the
same manner that was described for Wilson loops directly yields the bound

B[S5]1 < B[S7]'7, (A1.11)

as well as the stronger statement that B[S7]'//? is monotonically increasing in
each component J, (for 2Su<d).

Next, note that when J, = L, for 2 < u<d, the set Sjis identical to the coclosed
set S, defining the magnetic flux free energy [see Eq. (2.8)], and hence for this set
B[S;]=exp(—F™%#/T). Combined with the monotonicity, this means that

B[S7]1'/57 <exp(—F5*8/(TLS ™). (A1.12)

This shows that non-confining behavior of the magnetic flux free energy
(Fm28~ kL !, k>0) implies non-confining behavior of ’t Hooft loops.

Finally, all of the bounds in this appendix immediately extend from SU(2) to
any other gauge group (with a non-trivial center). The only changes involve the use
of fourier transforms over the center of the group in the definition of electric and
magnetic flux, and the replacement of factors of two by the dimension of the
fundamental representation and/or the dimension of the center.

Appendix II. Contour Sums

The following procedure may be used to construct all possible contours (i.c.,
connected coclosed sets of links intersecting a given path C) of a given size.

1. Order all plaquettes of the lattice in an arbitrary fashion.

2. Pick a link of the path C to be contained in the contour y.

3. Build the remainder of the contour y by choosing successive links so as to
always remove the lowest ordered plaquette from the coboundary of the
previously chosen set of links.

If the final set of links is a valid topologically trivial contour, then in order for
y[C] to equal 1, y must enclose one of the endpoints of the path C. The minimal size
of a contour which intersects a link of C at a distance k from the endpoint it
encloses is 2(d—1)k+2. Therefore at step 2, no more than 2(|y|—2)/2(d—1)
choices can lead to a valid contour. If the final set is topologically non-
trivial contour, then the number of valid choices at step 2 equals the length of the
path C. The minimal size of a topologically non-trivial contour is (L,)? !, and the
maximal length path we ever consider is L,/2. Therefore, provided L,>4 (which
we will henceforth assume), |C|< (L' —2)/(d—1) so that the number of valid
choices at step 2 is always bounded by (|y|—2)/(d—1).
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Each succeeding link of the contour is determined by selecting one of the links
in the boundary of a particular plaquette (the lowest ordered plaquette in the
coboundary of the partially chosen contour). Since at least one of the links in the
boundary of the plaquette has already been selected, one has at most 3 choices for
each successive link. Furthermore, in order for the resulting set of links to be a
coclosed contour, the final d — 1 links must be chosen in a unique way. Therefore,
the total number of choices satisfies

N(yh=

(= )) 3i=a, (A2.1)

d—
Appendix III. Transfer Matrix Bounds

Propagation in euclidean “time” is described by the transfer matrix T whose
matrix elements are given by

TL({U (03, UL} B BI=I H H du 1]
H eXp{ﬁt > w(U,UL- 1[l]—1)+ﬁspEZA tr(Ut[ap]-l)}- (A3.1)

Here the link variables at the initial and final times are fixed, Uo[I]1=U[[], U.[]]
= U[]]. For later convenience we assume that L is an integral power of 2, [- =2%.
A. Upper Bound

To derive an upper bound, we may simply set 3, to zero. Then, in the absence of
spacelike couplings, one can exactly integrate over every other spacelike link
variable (i.e., U,[I] for ¢t odd). Thus,

r,0=11 {1 T av0 [T espp w001 (0D

ledAg t=2
teven teven

= H{f H au ] H 1U 1], U, -,[1]; ﬁz)}

where
IU,U; B)=fdU" expftr(U(U+U) —2)=exp[ 4B+ fBIU+U’|)].

Here, the function f(z) is defined as
f(z)=In [T ::/—92 sin*6exp[z cos 0]] =In(21,(2)/2) (A3.2)
0
and |U+U’| =G tr (U4 U’ (U 4+ U)H2. From this integral representation, one

may immediately see that f(z) is convex (f”(z) =0) and that f(0)=0. Therefore
fe(1=5)=(1—=s)f(z) for 0<s<1.

Since [|U+U’| =)/tr(1+U'U") £2(1 —gtr(1 - U'U")), we find that
LU, U; pysexp[f(4B)—4B+5f(4p) tr(U'UT - 1)].
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This result has the same exponential dependence on tr(U'U'—1) as does
the original nearest neighbor interaction. Consequently, we find that the length
L transfer matrix may be bounded by a length L/2 transfer matrix,

T>(B, fI=T* (B, 0)exp [2""1 l 4‘% (8ﬁ‘§’~4ﬁt)],

where the “renormalized” coupling fY =3 f(4p,). Iterating this result yields our
desired upper bound,

T (B, B) < T(BY, 0) exp(AJFE)=exp ¥ pY tr(UTNU" —1)exp(AJFY),

where (A33)
PO=L(pE ) (A34)
with 9=, and a1 d
FO= 3 27H(F(459) - 49) (A35)
k=0

As T— o0,
PO~ 58 V=3 In4pE = lnm/2)~2 %, + O(Ing),

and F@~ — —;(2"‘— 1) In4np? — g;ln&

B. Lower Bound

To prove a similar lower bound, we begin by inserting a set of projection operators
which will force spacelike links at neighboring times (i.e., U,[[] and U, ,[[]) to be

close together. Let 1 i taU>
if U=
(V)= { StrU=cose

|0 otherwise,
where the constant ¢ will be chosen later. Note that the condition P, (U)=+0 is

equivalent to the requirement that the rotation angle, or geodesic distance between
U and the identity be no greater than ¢. Now T*(B,, f,) = T*(B,, B,), where

T p)=0 TT 114U 1T (I PUINUL 1)
exp[ . % w(UUL - D+4, 3 (U Lo1= 1]}

peds

The condition P,(U’U")+0 implies that

|U-U'| =)/tr(1=U'UN) <2sin(/2) e

Furthermore, if |U,[[1—U,,,[[]||<¢ for all le A, then |U,[op]—U,.[0p]l
<4e. Therefore

T, B z] LH H dU [1] exp2f, Z Z (tr(Ut[ﬁp]—l) 4¢)

tl_IZ T J{Ueeo0, ULTT: B

teven

J(U", U; By=[ dU"P(U"UNP(U" U exp B tr(U"(U + Ut —2).

where
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Now, given any two group elements, U, U’ e SU(2),let U= (U + U’)/||U + U’| and
note that if
Ltr(UUY) =cos(de/2) and $tr(U"UM)=cos(l—4/2)e

for some A €[0,2], then the triangle inequality applied to the geodesic distances
between U, U, and U” implies that 3 tr(U”U") = cose. In other words, the domain
where P (U"UNP(U’U")#0 contains the region where P, (U'U") and
P _ 12, (U”U") are simultaneously non-zero. Therefore,

J(U,U; Bz P, (UUNexp[ —4B+g,2BIU+ U],
where the function g,(z) is defined as
(1—2/2)¢ de
g(z)=In| | ——sin?Oexp(zcosh) |. (A3.6)
0 TC/ 2
Since g,(z) is a convex function,
9.2BIU+U’1) 2 9.(4B) +2Bg:(4B) (IU + U’ -2)..
Furthermore, P,,(U'U")#0 implies that
[U+U'|=)/tr(1+U'U") 22— (2cos(4e/4) "> tr(1-U'UY).
Combining these bounds and noting that gi(z) <1, we find that
J(U, U; B)z P, (U'U")exp[g,(4B) — 4B+ p(2 cos® Ae/4) ™! tr(U'UT - 1)].

Once again, this result has the same form as the original nearest neighbor
interaction. Consequently, we have the lower bound

T2 (B, B) 2 T2 (B, 2B,) - exp [2‘1_ 1( 2 (g.4B)—4p)— X 88ﬁs>]’
leds pPeAs
where B =(2cos?le/4)” ! p,. Iterating this result yields

T (B Bo) Z T B2, 2B5) exp (| A, FY)
=TT P, (UTNUexp 3 p2 (U TV - 1)
leds

leds
-exp Y 2°Btr(U'Lop] — 1) exp(|4,|F?), (A3.7)
peds
where
BY =(2cos?(Are/4)) L%V (A3.8)
with @ =p, and
a—1
F9=% [2‘1% g (92:(4pY) —4p%)—2%d(d — 1)2ﬁslk8} . (A3.9)
k=0

If we choose A*e~¢/|/ /L, for fixed { as T—co, and 1<4<]/2, then for high
temperature,

/3(5) ~27 kﬂt = 2a"k(ﬁt/Lt)
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and *d_ | (BL) (1—17%
FO_FO~ — 3 S2R(EQR—2) (/2/Y)—2d(d— )¢~ 22
=12 V2 VB/L. =1 (o319

RG)= —ln|:1—[/2/7}0d9026xp(—92/2)] (A3.11)

Given the definitions (2.2) of 8, and B, this result shows that F® — F@ is bounded
as the temperature T—oo with the bare coupling g* and L, fixed. Regretably,
F® —F® does not remain bounded as L,— oo, and consequently our bounds on
confinement criteria do not have uniform L,— oo limits.!?

where

Appendix IV. Partition Function Bounds
A. XY Model Upper Bound

To find a useful upper bound on the xy model partition function,

d()

zpp=] H eng Z B (cos(0(n)—b(n+m)—1),

we will use a simplified version of the Migdal-Kadanoff recursion relations [26].

L
. aA,= Z Z [cos(B(n)—O0(n+ 1)) —cos(B(n+ V) —O(n+ 2 +7))],

Ry even

and define Z[t]=Z"{exp14,),,. Note that

d
5{Z[‘C]It=0=0
and

0>
P —— Z[t]=2Z"{4%exp1d,),,20.
Therefore Z*¥ =Z[0] < Z[f]. Now, in Z[ ] the effect of the operator 4, is to either
double or cancel the coupling on links in such a way that half of the variables
become coupled to only two nearest neighbors. These variables may then be
integrated out as follows.

2= 11 9 xp . % 2pcos(Ol)— 0+ )~1) TT KO, 0a+2e),
where ny even » ny even
K(,0)= f eXpﬁ(COS(B”—H)-i-COS(@” 0)—2)
=exp[—2ﬁ R+ )],
and

h(z)=In [Zf gemﬂ —Inly(2). (A4.1)

12 We thank the referee for drawing attention to this point
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Since h(z) is convex, h(0)=0, and [e? +¢"'| <2 — (1 —cos(0 —0))/2, we find
K(0,0) <exp[h(2p) —2p +zh(2p) (cos(0—0)—1)],
so that
d6(n) 1
zv < ; op SXP ; [(h(Zﬁ) —2f)+ 2 h(2B) (cos(0(n) — 0(n +2e,)) — 1)

nyeven nieven

+ El 23 (cos(0(n) — (n+ ) — 1)] :

Repeating this procedure for the other (d— 1) directions (i.e., inserting e*#42 and
integrating out variables on sites with n, odd, etc.) yields

2o 1 e 3 320

neven heven v

: [h(Tﬁ) -2+ % h(2"B) (cos(0(n) — 0(n +2v)) — 1] :

The anisotropy in the renormalized couplings may be removed by noting that
27h(2'B) = h(2pB)/2. Thus, we find

ZP(B)S Z)(2*h(2p)) exp [L" 2 Q27h(2'p) — ﬂ)] :
If L=2°% then iterating this bound yields

where ZP(B) < (2 (B)™, (A4.2)
zxy(ﬂ)sexpg i 27K (2 BY) - ), (A4.3)

and
pU=21"h2p" D). (A4.4)

The convexity of h(z) implies that

(k) < 9(d=2)k
and Fo= B

B(k) > 2= 2)kﬁ + i 2d- 3(h(2(d4 2)j23) —D@- 2)1'2’3) .
ji=1

Using this, one may show that

a—1 d
Inz,, = [ DINDY —%2"“’_“ln(Z“”"_z"‘Zﬁﬂ)] +0(np/p)
k=0 v=1
=H1 =27 [—-In8nf+(2/—1)"'1n4]
+a(d—2)2"*“1n2+0(In B/B)},

uniformly in L=2%
B. Pure Gauge Lower Bound
To find a lower bound on the pure gauge theory partition function,

Z 4(Bos Bs)=flel_£dU[l] eXP(ﬁs 2 uw(ULop]=1)+B, 2 tr(U[ap]—1)>,

psed pted
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we first write Z in terms of the transfer matrix,

Z (B, By =1 J14uth 11 AQDITH({UL, (UL} B B »

xeds

and then use the lower bound on the transfer matrix derived in Appendix III. This

ield

T Zizf T1de [T AU 11 Pe(@IUIRLT VL)
exp( %, LAULP]- 1)+ ¥ g2 w@LIUIeny Ui’ -1)
explAFY),

where a=1In, L,, 4 and ¢ are arbitrary constants (which will be chosen presently),
and the numbers % and F® (depending on B, B, L,, 4, and ¢) are defined in
Egs. (A3.8) and (A3.9).

We now parameterize the twist and the remaining spacelike link variables as

follows, .
Q[x]=V[x]e™="MV[x]",

ULl =VIyl(cosO[ e + i, sinO[ [Je™ )V [y’

(where [=<{yy">). #[1] and [ 1] range from 0 to 2%, w[x] lies in [0, 7], and O[] is in
[0, 7/2]. Note that
dQ[x]=dV[x]dw[x]sin®*w[x]/(%/2),

and AU =do[1]dg[[dy[[] sin26[1]/(27)?,
tr(QO1UN2L 1T UL = 2(coswy] cosw[y] +cos20[[] sinw[y] sinw[y]).
We now restrict the integration region to the domain
0=n, w[x]=A%,
with 0<#<n/6, and A% < m/2. Therefore ||U[I]—e™**"| =2sin(0[1]/2)<#, and
Ftr(QLYIUINQLYT UL Scos(A%) < 1—4(A%)*.
Consequently,
1 do 4ol [ alasl
Z,= [ i Ez—sinzw] I:(f) do sinZB]
-exp|AP|[FY —dfP(1%)? —4d(d— DL ]
2 2(By, fi; & A M, (A4.5)

=A%)/ /L, (A4.6)

(B B &)= o (sin(EY LB i)
expl—dE(PILB) ~4d@d—DLEn+F2].  (A4T)

where

and

Finally, using (A3.10) note that
2B, Bes E A p)e FE ~cT 312
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as T— oo for some positive constant ¢ depending on g2, L,, &, 4, and #. (In principle,
¢, 4, and 5 could be chosen to optimize this bound.)

Appendix V. One Dimensional Fermions

We wish to compute the one dimensional fermion integral,

L Ly
d(Q) = .[ tl:Il dwtdwt eXp% IZI (1/3: - 1)’091/Ltlp1 - 1/3:')’09 B ”Ltlpt - 1) H

where po,= —vy;, and P, = —1p,, (due to the antiperiodic boundary conditions for
fermions). If Q=ue'u', then by a change of variables yp,—uy,, and a fourier
transform we obtain,

Ly L
d@={ TI dy,df,exp 3. FlivosinG, +ors/LY)w,

Ly
= [ det(iy,sin(v,+wt3/Ly)),
n=1
where v, =(2n— 1)n/L,. Since (for L even)

L-1
TT sin(x+2kn/L)= _(_)L/ZZ_L(eixL+e~ixL_2)’
k=0
we find
d(Q)=det(yo2 M1 + 2 =2""4tr (1 + Q))". (A5.1)
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