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Abstract. We display irreducible representations of the Virasoro algebra
(group of diffeomorphisms of the circle) for any value of the central charge c
(central extension defined by a cocycle) and of the highest weight ε, where the
Kaδ determinants do not vanish. The construction is done in terms of a simple
bosonic free field. The unitarity of the representation is discussed, and it is
realized with non-trivial hermiticity properties of the free field if ε<(c—1)/24.
In the particular case of the central charge (c = J) corresponding to the Ising
model, the three unitary irreducible representations (ε = 0,^,J) are realized in
terms of the anticommuting oscillators of the free fields of the Neveu-Schwarz-
Ramond model.

A decade after they were introduced in string theories [1], the representations of
the conformal group in two dimensions are the subject of a growing interest in
physics as well as in mathematics. In this communication, we discuss a general
form for the irreducible representations of the associated Lie algebra with central
charge, the so-called Virasoro algebra:

( n - m ) L n + m + ^ ( n 3 - n ) < 5 n , - m , (1)

with the hermiticity condition

Ln=Ltn, (2)

where n, m are integers, c is a real number. For a given c, the irreducible
representations are characterized by the ground state (highest weight vector) |ε>
such that

LM|ε> = 0, n>0, L0|ε> = ε|ε>. (3)

All states can, in principle, be obtained by repeated applications of L_π(n>0)
to |ε>. Past experience has shown that this way of building representations is often
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cumbersome, especially in dealing with the product of operators, because the
matrix of inner products of such states is complicated. It proved much more
convenient to express the Ln's as quadratic forms of creation-annihilation
operators. So far, only particular cases of such quadratic realizations are widely
known. In this communication, we obtain quadratic expressions for Ln for general
values of ε and c following our earlier discussion of the Liouville field theory in two
dimensions [2, 3].

There is a well-known irreducible representation of (1), (2), and (3) with c = 1 in
terms of a set of harmonic oscillators [1]. Introduce creation-annihilation
operators an, απ

+ with positive integer indices:

Define further a zero mode a0 such that

[flo>tfJ = [tfo>fl«+]==0, "o = aZ (4)

Since a0 commutes with an and απ

+, we take it to be a number. These commutation
relations can be summarized as follows. If one defines an for negative n to be equal
to αίΛ, one can write Eq. (3) as

[απ, α j = θ(ή)δny _m, απ

+ = α_n,

000= ±1 for ^O

In dual models [1], one introduced the operators

+ί.= i Σ iV(αrαn_,)j/|r(n-r)|, (6)

where JV means normal ordering (all an with n^0 to the right). These operators
satisfy the Virasoro algebra [Eq. (1)] with c = l , ε = αo/2. Checking this is
straightforward. One must only be careful with the normal ordering; otherwise
one finds the classical value c = 0.

Next, we move to other values of c. Adding a linear term to (6) is a simple way to
change c. Let us try

One obtains immediately

[L'n, ΠJ = (n-m)Ππ+m + [ (£ + A)n-n]<5n, _m.

This is not quite of the form (1), but the last term can be changed by an
additional shift of Lo. If one lets

]/ λ2, (7)

one verifies Eqs. (1) and (2) with

c = l + 12Λ2, (8)

(9)
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All is well so far. However, the reality condition Ln = ULn together with
αM

+ = α _ π implies that λ is real, and hence c> 1. Moreover

λ 2 c ~ ι

so that the simple modification (7) does not work for all values of ε and c.
The whole problem is due to the reality condition (5). For n + 0, it holds by

construction. For n = 0, it is necessary in order to ensure that Lm = lλ.m for all m.
We now discuss the extension to more general values of ε and c. First introduce

a compact notation by letting
1 / 2 / 3 V / 2

+ 0 ( ĵ
Equations (5), (7), and (9) can be rewritten as

(12)

L.= ^-[T.N(pj>.-r)-inpn~\

1—1. it' JL ΐli—M 1 f * 5 fit '

This structure already appeared in our quantum solution of the Liouville field
theory [2], and our general study gives us hints on how to extend it to arbitrary
values of ε and c. The following discussion is already implicitly contained in our
earlier papers [2, 3]. Consider the pw's as the Fourier modes of a field P(σ), by
writing

P(σ). (15)
n

If we identify L o with the Hamiltonian, we have at time τ#=0:

P(σ,τ)=ΣP«e-in{σ+τ), (16)
n

and P is thus a simple free field. Equation (13) can be rewritten as

In [2], we have derived a canonical transformation from P(σ) to another free
field P(σ) which is defined by the implicit equation

where P(σ) has a Fourier decomposition

-inσ, (19)
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with

Po=— Po> (20)

and where N means normal ordering with respect to the modes of P (all pn with
positive n to the right). If 2ip0 is not an integer, we showed that Eqs. (18) and (19)
perturbatively relate P and P in a well-defined way, such that if (12) holds, P and P
satisfy the same commutation relations:

[ft, Pml = [ft,, AJ = ̂ Γ ί A -« (21)

From Eq. (18) we can thus obtain another equivalent expression for the Lπ's:

~ < 5 Π , O
(22)

Therefore, we now have two ways to satisfy the hermiticity condition Ln = Iΐ_n. We
can let

PΪ=P-n> Po=Po> (23)

or

Pn=P-n, Po=Po=-Po- (24)

In the creation-annihilation language which we used above, the first choice is
the obvious one. It leads to real values of p0. The second choice is new and defines
an unusual hermitian structure. It forces p0 to be pure imaginary, and allows us to
cover the remaining regions of the (ε, c) plane.

In all cases, the ground state |ε> is such that

pπ|ε> = 0, n > 0 , (25)

or equivalently

pn\ε) = 0, n>0. (26)

Excited states can be obtained by applying monomials of L_π's, or of p_w's, or
of p-nS with n>0 to |ε>. In the generic case, each method provides an equivalent
basis for the Hubert space and the representation is irreducible because no
subspace is left invariant. We shall elaborate on this point later.

According to Eq. (14), there are four cases:

c — 1
c>h ε >~24f' Po=Po> Pn = P-n, (27a)

c — \
C < 1 ' ε < ~ 2 4 ~ ' P o = / ^ ' Pn=p-«> ( 2 7 b )

c — 1
c> 1, ε< -24-, po= -P(j\ Pn=P-n, (28a)

c—\
c< l,.β> -24-, Po= - P o , Pn = P-n- (28b)
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Case (27a) was already discovered by the simple modification of the operator
with c= 1. The corresponding Hubert space is automatically positive definite.

In case (27b), on the contrary, one has the usual hermiticity property, but the
commutation relation (21) has the wrong sign and there are ghosts. This was
obvious from the beginning since the state L.Jε) has the norm.

<ε|L1L_1|ε> = 2ε, (29)

which is negative if (27b) holds.
If (28a) or (28b) holds, one has to introduce the new hermitian structure. It is

convenient to write
k

Po=-*2> k r e a l >

zr) \>

β = ^ r θ - f c 2 ) . (31)

According to (29), ε must be positive, and hence there are obviously ghosts
unless

fe2<l if o l , ε < ^ 5 (32a)

fe2>l if c < l , ε > ~ . (32b)

In order to proceed, we recall Kac's result [4] on the matrix of inner products of
the states generated by the L_π's applied to |ε>. This matrix naturally diagonalizes
into submatrices, one for each eigenvalue of Lo. Kac gave the determinant of each
such submatrix. If (c— l)(c — 25) >0, these determinants vanish at some level for

( 3 3 )

where p and q are two positive integers. If (c — 1) (c — 25) < 0, the vanishing occurs
only for

k=±p, p positive integer. (34)

In both cases, k is real, and one has to introduce our non-trivial hermitian
conjugation pn=ptn.

For c>25, Eq. (33) indicates that all kpq are outside the interval [0,1], except
fen which is equal to 1. For 25>c> 1, one sees from Eq. (34) that this remains
trivially true. Thus, there is no zero in case (32a). One can therefore obtain all the
matrix of inner products by continuation [5] from the case c> 1, ε>(c—1)/24,
where we know that they are positive definite, without any change of sign.
Therefore, the matricis positive definite for c> 1,0 <ε <(c —l)/24. The case c>25,
ε < (c —1)/24 appears in the weak coupling regime of the Liouville field theory [3].

Finally, in case (32b), the situation is complicated because the determinants
vanish in the interval. Friedan et al. have shown [5] that there are ghosts except if

r = 2 ' 3 ' 4 ' - '
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and

k=±kpq, qύPύr-l. (36)

This is possible because the vanishing of the determinant is not due to the
existence of a zero norm state, but rather reflects the fact that some of the states
generated by the L_Λ's are linearly dependent. Hence, the space of the representa-
tion becomes smaller than the bosonic Fock spaces we have been using. The only
simple case where we can exhibit irreducible unitary representations is for
c = \ (r = 3), for the three allowed values of s: 0, γ£, | . These representations use free
fermions, and we introduce the following sets of anticommuting operators:

{bm,bH} = δm9-ή9 m , n = ± i ± | , . . . , (37)

R X } = <5m,-n, m,n = 0 , ± l , ± 2 , . . . , (38)

b-m = b:,d.m = d:.

Define by normal ordering:

ϊi (39)

(40)
m

Both Lb

n and Ld

n satisfy Eqs. (1) and (2) with c = \ (see [1]). The ground states |06>
and |0d> of the fermionic harmonic oscillators are defined by

&J0ft> = 0, m>0, (41)

<U0d> = 0, m>0. (42)

The d representation immediately leads to e = 1/16, the highest weight vector
being |0d>. The b representation is trivially reducible, because Ln commutes with

00

G = (— 1) Σ ί>_mbm. It splits into two irreducible representations, depending on

— i
the sign of G. The two highest weight vectors are \0b} and 6-i/2|0δ>> and their
respective values of ε are 0 and \. Thus, we find naturally the only three allowed
values of ε at this value of c [5], which corresponds to the Ising model. The energy
density and spinor operators of the Ising model are built with the pion emission
vertex operator [1] of the Neveu-Schwarz-Ramond model, while the order
operator is built with the fermion emission vertex [6].
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