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Periodic Nonlinear Waves on a Half-Line
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Abstract. Nontrivial solutions of the equation u,, = u,, — g(u) which are 2z-
periodicin ¢t and which decay as x — oo are shown to exist if g(a) = 0 and g'(0) > 1.
Breather-like solutions, which also decay as x — — oo, can be interpreted as
homoclinic solutions in the x-dynamics; their existence is still in question for
general g.

I. Introduction

Let g:R—R be a C? function with g(0)=0. We consider the nonlinear wave
equation

Uy = Uxx — g(u) (1)

for xe[0, c0) and teR, where u is real-valued. J.-M. Coron [3] has shown that, if
g'(0) < 1, then any solution of (1) which is 2z-periodic in ¢t and which decays as
x— oo in the sense that

© 2n
[ dx [ |u(x,t)|dt < o0, )
0 0
2n
lim | (uf(x,t) + u2(x,1))dt =0, 3)
x—ow 0
lim max |u(x,t)| =0, 4)

x— oo te[0,27n)
must be independent of ¢.
The purpose of this note is to show that, if g’'(0) > 1, then there do exist solutions

of (1) which are non-constant and 2z-periodic! in ¢t and which decay exponentially
fast as x — oo in the sense that

2n
[ @2(x, 1) + uZ (x, 1) + ud(x,1))dt < Ce™**for some A > 0. %)
0

1 By scaling g, x and t, one can reduce the search for periodic solutions of arbitrary period to the case of
period 27
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By the Sobolev inequality, such a u admits a pointwise estimate of the form
lu(x, )| < De™** (6)

as well.
The main idea of our proof is implicit in the second-to-last paragraph of [3],
namely to rewrite Eq. (1) as

Ugy = Uy + g(u) (1’)

and to consider (1') as a dynamical system in the “time” x, while thinking of the
“space” variable t as ranging over the circle R/2nZ. (I would like to thank John
Rawnsley for suggesting that I take this idea to heart.) We then apply the stable
manifold theorem.

If g(u) = asinu for oo > 1, then there is an explicit solution to the sine-Gordon
equation (1) which satisfies the specified periodicity and decay conditions, namely
the “breather” (see [7]):

ux,t)=4tan” 1<HM>.
cosh /o? —1¢

This solution has the property of being defined for all xeR and decaying as x —» — oo
as well as for x — co. It has been remarked [1] that the existence of such periodic
solutions might imply that g(u) is a multiple of sin u, while evidence suggesting the
contrary has been given in [2] and [4]. At the end of this note, we shall present some
thoughts on this question based on the interpretation of breather solutions as
homoclinic orbits at 0 for Eq. (1').

II. Existence of Periodic Waves

We work in the Hilbert space # of pairs (u,v), where ueH(R/2nZ) and
veL,(R/2nZ). Eq. (1') is equivalent to the system

Uy =0, 0y= 1, +gu) (1)

The vector field determined by (1”) is defined only on a dense subspace of #, but the
corresponding local flow is defined on an open subset of # x R. In particular, there
exists [8] a neighbourhood U x I of (0,0,0) in 2 x R and a C? family of maps
¢: U— # such that ¢y(u,v)=(u,v) and (u, v)— ¢ (u,v) is a solution of (1”). The
stable manifold of ¢, for x>0 in I will provide the decaying solutions we seek.

We must analyze the linearization T,¢, of ¢, at the equilibrium point (0, 0).
The maps Ty¢,, are determined by solving the linearized equations

U =0, vy=u,+g0Ou. (17)
Let L be the linear operator defind by L(u,v)=(v,u, + ¢g'(O)u). Then E is
decomposed into L-invariant subspaces E, for k=0,1,2,..., where E, is two-

dimensional and spanned by (1,0) and (0, 1), while E, for k > 0 is four-dimensional
and spanned by (sin kt, 0), (0, sin kt), (cos kt, 0), and (0, cos kt). The eigenvalues w;f of
L on E, are the solutions of the dispersion relation w? = — k? + ¢/(0). Each E, is also
invariant under T ¢,, with eigenvalues e*“* It follows that T, ¢, is elliptic on the
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infinite-dimensional space E¢= kz@;),(o) E, and hyperbolic on the finite-dimensional

space E"= @ E,; moreover, E" splits into expanding and contracting subspaces
k<g'(0
E* and E*® of gc(ll:al dimension.

By the stable manifold theorem (see [S] for a version which applies in the
present context), there is a piece of submanifold X* = 5# tangent to E* at 0 such
that ¢,(2%) =« 2* for x>0 sufficiently small, and hence for all x > 0. Since the
differential at 0 of ¢,|%X* has norm < 1, for (u,v) sufficiently close to 0 in Z* we
have the inequality || ¢.(u,v)|| < e *||(u,v)| for some k>0, where the norm is
that in J#. In particular, if u(x, ) is the first component of ¢ (u, v), then u satisfies
Eq. (1) and inequalities (5) and (6).

If g'(0) < 1, then E® and hence X* consists of at most the functions constant in ¢
(and not even these, if ¢’(0) < 0). This is essentially the case considered by Coron [3].
On the other hand, if g'(0) > 1, then E° has dimension at least 3, and so there exist
solutions decaying in x which are not constant in t. In fact, there are solutions
asymptotic to e ** sint as x —» 0, similar to the sine-Gordon breathers.

II1. Are There Solutions Decaying as x - + c0?

The argument in Sect. II may be applied just as well to Eq. (1) on the half line
— o0 < x £ 0, yielding solutions 2n-periodic in t which decay as x > — o0. As stated
in the introduction, it is interesting to know whether there are periodic solutions
defined for all xeR and decaying as x - + co. In terms of the dynamical system (1”),
there is a stable manifold X* and an unstable manifold X* through (0, 0), and the
question is how they intersect.

For simplicity, assume that 1 < ¢'(0) <4, so that X and X* are three-dimen-
sional. (If g'(0) is larger, 2* and X* have higher dimension, but the general picture
should be the same.) It seems to me highly unlikely that these manifolds should
intersect in the infinite-dimensional space s, except possibly along the one-
dimensional manifold corresponding to the functions independent of t. (This one-
dimensional intersection may be considered, in a sense, “forced” by the symmetry
of the equation under translations in ¢, for which the functions independent of ¢
are the fixed point manifold. It occurs, for example, in the case g(u) = a(u — u>).)

The intersection of X* and X£* corresponding to the sine-Gordon breathers may
be attributed to the complete integrability of that equation. (For the sine-Gordon
equation, the solutions independent of ¢ are not homoclinic at (0,0) but are rather
heteroclinic, connecting (0, 0) to the equilibria at (+ 27, 0).) It seems likely that the
intersection will disappear along with integrability for all but very special
perturbations of g(u) from asinu. To check whether this is actually the case, a
“Melnikov” integration with respect to x (see [6]) along breather solutions of the
sine-Gordon equation may be instructive. I hope to carry this out in the near future.

Meanwhile, one is left with the question of interpreting the numerical and
asymptotic results in [2] and [4]. For the asymptotic results, the simplest
explanation may be that the series obtained do not converge. The numerically
observed solutions, on the other hand, may not be truly periodic in ¢ but only
approximately so, so that they would represent long-lived rather than permanent
bound states.
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