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Munemi Miyamoto
Yoshida College, Kyoto University, Kyoto, Japan

Abstract. Consider the 1/2-Ising model in Z*. Let o; be the spin at the site
(i,0)eZ? (j=0, +1, +2,...). Let {X,},=° be a random walk with the ran-
dom transition probablhtles such that

P(X, 1 =jx 11X, =))=p; =1/24v(0;—p)/2.

We show a case where E[p; ]2 E[p; ], but th =—o00 as. or X, is
recurrent a.s.

Let {0;};~, be an ergodic random sequence of +1 spins with the mean
E[¢;]=m. Considering —o¢; if m<0, we may assume 0<m< 1. Let {X,}, 5 be a
random walk with random transition probabilities such that

P(Xn+l=j+1|Xn=j)=pj 51/2"“’(0;'_#)/2,
P(Xn+1=j_1,Xn=j)=pj_E1/2—v(aj_:u)/29
where v and p are constants with

M +u)<T1.

We are interested in the recurrence of the random walk {X,},;®. Since the
recurrence is trivial if v=0, let us assume v+ 0. We apply Chung’ sresults which are
summarized in the following

Lemma 1 (Sect. 12, Part I in [1]) Let {X,},/% be a random walk with non-random
positive transition probabilities pF (p; +p; = 1) which depend on j, i.e.,

+ 00 0
) If X pipz b /0705 p)= X P PAa Do [P P Po) = F 00,

then {X,},/.5% is recurrent a.s.
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+ o0
i) If 3 pip2 Py /P{P3 ... D)<+ 00 and

0
X PP Po /By Priy - Po)=+00, then lim X,=+o0a.s.

n—>+ o
+ o0
iii) If 3 PPy - b /({7 - p)=+ 0 and
0
> oot pe /P Pt Po)<+ 0, then lim X,=—o0a.s.
r=-—oo n—+ o0

In a case when transition probabilities are random as in ours, Lemma 1 shows
that the condition

E[log(p; /p;’)1=0 (1)

is critical [5,6]. If pf* =1/2 +v(o;— p)/2, it is easy to see that

p; /i =A,(W'*B, (W)~
=exp[—{o;—log4,(w)/log B (1)} log B,(1)/2] ,
where
AW ={1+vw)* =Vl —vp)* —v?},
B, (W= {(1+v)*—v*u?}/{1—v)?=v?u?}.
Concerning condition (1), we have

Lemma 2. The equation for u

A,(w)=B,(W", @
which is equivalent to (1), has a unique solution p=p,(m) in an interval
(=PI LM =1).

For this p,(m), it holds that
p(m)=p_,(m),

1,(0)=0,

O<p,(my<m, if m>0,

u,(m) is strictly monotone increasing in m.

We say that the sequence {7} ;-
almost surely

i=2 o generates weakly recurrent partial sums, if

lim 3 (-m), lm ¥ (o,-mgco,

n—>+o j=1 n—>—o j=n

lim Z(o —m), 11_131 i (6;—m)2 — 0.

n>+o j=1

Our aim is to prove the following

Theorem. Assume that {0} ., generates weakly recurrent partial sums.
i) If 1—v|~ 1<u<uv(m) then hm X, =(sgnv)o a.s.

ii) If p=u,(m), then X, is recurrent a.s.
iii) If p(m)<pu<|v| ' =1, then lim X,= —(sgnv)oo a.s.
n—+oo
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Remark. Assume m>0, v>0. Then, u,(m) < p<mimplies E[p; ]>E[p; ], 1ie., the

probability p;” that X, steps to the right is greater in the mean than the probability

p; to the left. But, our Theorem says that in this case X, is recurrent or
lim X,= — oo according as u=p,(m) or u(m)<p<m.

n—+oo
Let ¢; be the spin at (j,0)e Z¢ in the ferromagnetic Ising model in Z* with
the nearest neighbour interactions. Let the probability measure P be the limiting

Gibbs distribution with the + boundary conditions. Then, all the assumptions on
{0;};=2 ,, in our Theorem are satisfied by this {o;}.2 , i.c., we have

Proposition. The sequence of the Ising spins {o;} > , stated above generates weakly
recurrent partial sums.

Let us prove our results. At first we carry out

Proof of Lemma 2. In case m=0, u=0 is the unique solution of (2). Since A _ ,(x)
=A,(w ', and B_,(u)=B,(u)" !, we may assume v>0 and m>0.
Put

Fy () ={(1=v)*=v*u*}"/{(1 —vp)* —v?}
—{(L+v)* =2} {1+ v —v?}
= =v+v)"{(1=v—y)' ""(1—vu+v)}

— (L) =Y v =
Equation (2) is equivalent to F,(u)=0. It is easy to see that F (u) is monotone
increasing in pe[0,v~!—1) and that

F(0)<0, FOG '=1-0)=+ow0.

Therefore, (2) has a unique solution in (0,v~* —1). Since 4,(u) < 1 and B () > 1 for
1 <0, (2) has no negative solution.

From A_,(u)=A,(w)”"* and B_ (1) =B,(x) ", it follows that u,(m)=pu_ (m).
Differentiating log 4,(u,(m)) —mlogB (u,(m))=0 in m, we have

Av{1=v2(p® + 2mp+ D /T{A +vw)* =2} {(1 —vp)* —v?}] =log B, (u) .

du,(m)
dm

Since v(1+|u[)<1 and vlogB,(1) >0, we have >0, ie., u,(m) is strictly

monotone increasing in m.
Let us prove u,(m)<m for O<m<1.If m=v~!—1, then pu(m)<v ' —1<m.
Assume m<v~'—1, ie, v<(m+1)~ ! Let us introduce a function
G(v)=log{A,(m)B,(m)"™} for O<v<(m+1)~1.
We have
dG(v)

2, = sm(=m* {1 +ym)* = v} {(1—vm)* —v*}]>0,

O<v<(m+1)71).

On the other hand, G(0)=0, hence G(v)>0, ie., A,(m)>B,(m)". Therefore,
F (m)>0. Since F,(u) is monotone increasing, we have u,(m)<m.
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Proof of Theorem. Assume v>0.
1) Let u+p,(m). We have
pipy -y [(P{P3 .. 1))
=exp[—{logB,(1)/2} ,;1 {o;—logA,()/log B,(W}].

Since 3. {0;—log4,(w)/logB (W} ~r{m—logA(w)/logB, (1)} as r—+oo by
j=1
the point-wise ergodic theorem, we have

< +o0, if m—logA,(u)/logB,(1)>0,

- — JfpF ot +
E P1Ds - Dy /(p1p2 Sy 2 ){=+w’ if m—lOgAv(,u)/]Ong(/J)<0.

r=1

Our results in case p= u,(m) follow from Lemma 1.
2) Let u=u,(m). We have

pipz - Py [(PY'P2 ~--p,+)=e>tp|:—{long(u)/2}j=i1 (aj—m)]-

r
Since {c;} generates weakly recurrent partial sums, the sequence Y. (o;—m) hits a
j=1

bounded set infinitely often as r— + oo. Therefore

+

L pip: 0 [(p{p3 -.p))=+c0 as.
Our results also follow from Lemma 1.

Let us proceed to the

Proof of Proposition. Let § and h be the reciprocal temperature and the external
field, respectively.
1) Case f<f. and h=0. In this case, m=0. Suppose

p( lim i aj=+oo> >0.

n>+oo j=1

Since { lim 3 o;= +oo} is a tail event, P< lim 3 o;= +oo> =1[4] Itis

n—+oo j=1 n—>+o j=1

well known that the Gibbs measure P is invariant under the transformation

o, —0, (xe€Z?). Therefore, P< lim Y o;=— oo) =1, which is a contradic-

n—+ow j=1

tion. Hence, lim i 0;<+0o0 as.
n=>+o j=1
2) Case > f. or h=0. Since the correlations decay exponentially in this case,
condition (3) in the following Lemma 3 holds for {¢,} in place of {&,} ([2]).

Therefore, our result in Proposition is a corollary to
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Lemma 3. Let {&,},7° , be a stationary sequence of bounded random variables with
E[£,1=0. For n<m, let )’ be the c-algebra generated by {{;;n<j<m}. Put

a(n)=sup{|P(AnB)—P(A)P(B)|; Ac #° ,,Be B, *}.
If
g a(n) < + o0, 3)

then Tim Zé + 00 and lim Z.f:—ooas

n—>+ow j=1 no+w j=1

Proof. The central limit theorem holds for this {¢£,} [3], ie.,
n + 0
lim P( > fj/(d]/ﬁ)>z> =1/)/2n | e *dx,
n—+ o0 j=1 z

+ o0
where > =E[{5142 ¥ E[¢4¢;]1< + co. Putting z=1/5, we can find N, > 1 such
j=1

that for any n=N,

< > & >V_) “"z/zdxsé.

21r 1/0

Let c=1 be a constant such that |£,|<c. Put n;=N,. A sequence {n,, m};=3 is
defined recursively in the following way;

mk=nk+k,
nk+1=mk+(cmk+k)2.

Remark that |/m, ; —m=cm+k2=N,. Put

Ek={ "'il ‘f>|/nk+1 mk}

jEme+1

+ o0 +
P<ﬂ E;)=P<E;m N Ek>
k=K K

+

+1
©

We have

< P(E, )P(k > E;>+a(K+1)

+1
©

§(1—5)P< Ek> ta(K+1).

k=K+1

+ o + o0
Letting K— + o0, we have lim P( Ef,) <(1-9) lim P( Ei), hence
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+0 +©
Therefore, P < U Ek> =1, ie, infinitely many E,’s occur a.s. If E, occurs, then

K=1k=K

Pk +1

mp B+ 1
&= 6+ Y Lz—emt )/ —m=k.
j=1 j=1 j=me+1

Thus, Ilim > ¢=+oas.

n>+ow j=1
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