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Convergence of the Quantum Boltzmann Map
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Abstract. We consider a non-linear map on the space of density matrices,
which we call the Boltzmann map τ. It is the composition of a doubly stochastic
map T on the space of n-body states, and the conditional expectation onto the
one-body space. When Tis ergodic, then the iterates of τ take any initial state to
the uniform distribution. If the energy levels are equally spaced, and T
conserves energy and is ergodic on each energy shell, then iterates of τ take any
initial state of finite energy to a canonical distribution.

1. Introduction

(1.1) This paper is the quantum version of [1]. Let Jf be a Hubert space with
dimJ f = N ̂  oo. A (normal) state ρ is then a positive operator with unit trace. We
denote the set of trace-class operators by ^(^f)1 and the normal1 states by σ(J f).
A stochastic map is a linear map T from USffl) to @β(2P} mapping σ(2tf ) to itself and
preserving the trace: Tr(Tρ) = Trρ, ρe^S^)^ A doubly stochastic map is a
stochastic map T such that TIN = 1N, where 1N is the identity on ffl [4].

A unitary or anti-unitary conjugation ρ\-+Tρ=UρU~1is doubly stochastic, as
is any convex combination of such maps.

(1.2) Let Jf be a Hubert space, the one-particle space, and

(1.3) let Jf = Jf (x) . . . (x) Jf (n factors) be the rc-particle space.

We shall be interested in a doubly stochastic map T: J>pf)->^(Jf) that
preserves the symmetry under permutations of the factors JΓ. To such a T we
define the corresponding Boltzmann map τ to be the composition of maps:

(1.4) ρ h-> ρ® . . . ® ρ i— » T(ρ(x) . . . ®ρ) h-> Tr2 MT(ρ(x) . . . ® ρ) = τ(ρ) .

Here, Tr2 „ means the trace over the second, third, ...,rcth factors Jf. Obviously,
(1.4) defines a non-linear map τ : σ(Jf )->σ(Jf ).

* Present address: Department of Mathematics, Kings College Strand, London WC2R2LS,
England
1 Normal in the sense [2] of linear functional on the VF*-algebra &( 2tf ), not in the sense of [3]
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(1.5) Alicki and Messer [5] have suggested a similar map for continuous time,
where the analogue of T is completely positive. Our choice is motivated by the
following result :

(1.6) Theorem. Let ρeσ(Jf) have finite entropy: S(ρ) = — Trρlogρ<oo. Then

(1.7)

Proof.

nS(τρ) =

by symmetry, where f means j is omitted

by [6, Proposition 2.5.6]

by [4, Lemma 2-5, Corollary]

= nS(ρ). D

(1.8) To show that τmρ converges to the uniform distribution if JV< oo, we must
postulate some ergodic properties. Now, Γis a linear operator on the Hubert space
of Hubert-Schmidt operators on Jf . Let us say T is ergodic if 1N is the only fixed-
point of T in &(Jjf). Let us say that T has a spectral gap A, 0 < A < 1 if it is ergodic
and the spectrum of T* T is contained in [0, 1 — zl]u{l}.

2. Entropy Gain Under a Doubly Stochastic Map

We give a sharp estimate which will imply the convergence of τmρ when T is
ergodic.

(2.1) Lemma. Let 3? be a Hilbert space with dim 34? = N<oo,and denote by @(2tf )2

the Hilbert space of operators on ffl with scalar product (A,By = Ύr(A*B). Let
T:^(^f)2~^^(^)2 be a doubly stochastic map, ergodic with spectral gap A. Let
A E σ(Jf ) and let B = TA. Then

(2.2) S(B)-S(A)^\\A-N-*lN\\l

Proof. Let {φi9 at} and [φi9 bj} be the orthonormal eigenvectors and eigenvalues of
A and B, respectively. Then 0 ̂  ai9 bj ̂  1 . Let /(x) = x logx, ctj = <φf, ip^)^. Then, as
in [6, 2.5.2] we have

<φ;, {/(A) -f(B) -(A- B)f'(B) -±(A-i

= Σ\cίj\
2{f(at)-f(b

Now, in the range of αi; b} we have
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where 0 ̂  ξ£ 1 and /"(£) = - ̂  1 . Thus

/(«,•) -f(bj) - (at - bj)f'(bj) -ifo - bj)2 ϊ 0 .

Summing over i gives the following sharper form of [6, Proposition 2.5.3] :

.e.

(2.3) Tr {A(logA -logB)} ̂ iTr(^ -E)2 .

By [4, Theorem 2-2], there exist unitaries l/α and non-negative numbers wα

with Σw«=l and B=!T4=I>a,4a, A^U^U'1. Then for each α,
α α

Tr^4α(log^4α — log5)^^Tr(y4α — B)2, so multiplying by wα and summing, and
noting that Tr>lαlog^4α = Try41og>4 and Σ w

α =l:

- s(A) ̂ xy - <AX, βy -

Now 1N is a simple eigenvalue of T*T, and we may write the orthogonal

decomposition A = — ΪN® I ̂  — — 1N . Hence

A

since A is the smallest eigenvalue of 1 — Γ*Γ apart from 0. D

(2.4) Corollary. Let A = ρi2 on H1®H2, and B = ρ1®ρ2, where ρί =Tr2ρ12, etc.
Then —Tr^logyl = S12, — ΎrA\ogB = S1+S2 in the sub-additive entropy in-
equality [4, Proposition 2.5.6] gives a quantitative estimate

(2.5) Theorem. The microcanonical limit. Let dimK = k<co, and Ta symmetry -
preserving ergodic doubly stochastic map on K® ... ®K. Then for any ρeσ(£),
τmρ^>k~llκ as m-»oo.

Proof. The entropy S(τmρ) is increasing and bounded above, and so converges.
Hence the increment S(τm+1ρ) —S(τwρ) converges to 0. In finite dimensions A >0,
so (2.2) implies that

τmρ® ...®τmρ-

and so τ^ρ^/c"1!^, as w->oo.
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3. Energy Conservation

(3.0) In order to discuss the canonical Gibbs state, we must introduce an energy
operator H on Jf (jf can be oo-dimensional in what follows). Thus let H have
spectrum 0,1,2,... and suppose that the multiplicity m(j) of the energy-level; is
finite and that for some K > 0 and integer r,

(3.1) m(/)^fc/, J-1,2,....

These conditions ensure that e~βH,β>0, is of trace class. The equal spacing of the
energy levels limits the theory to a rather special class; but it does allow thorough
mixing to take place by scattering that conserves energy. This would not be
possible if, for example, the energy levels were not commensurate.

(3.2) Let H=Σj(Ej-Ej_ί) be the spectral resolution of H, and let
M 1

HM=ΣJ(Ej-Ej-ι)' Then #MeJ>(jf). We say that a state ρ on J>(JΓ), not

necessarily normal, has finite mean energy $ if

lim
M-»oo

(3.3) We again consider a doubly stochastic map T on (x) Jf = jjf. We require T to
mix up states in $C of the same energy, but not to mix up states of differing energy.

n

Thus let I) be the generator of (X)βίHί; then I) is an operator on 2tf with spectrum
0,1,2,... and having finite multiplicity. Let J ̂ , η = Q, 1,... be the subspace with
energy η. έ%(*tf?η), called the "energy-shell η" is a finite-dimensional space that can be
identified with the subspace of &( ffl)2 consisting of operators mapping ̂  to ̂
and being zero on J f^1. In the scalar product of (2.1), we may write J*(jf )2 as a
direct sum of orthogonal subspaces

where JS? is orthogonal to all energy shells. We consider doubly stochastic maps T
that mix up each energy shell

(3.4) Γ maps &(Jlfy to itself, 77 = 0,1,2,... and maps JS? to itself. Restricted to
Λ(Jffη)9 T is ergodic. T commutes with permutations of the n factors 3t(tf\

This class of doubly stochastic maps is the quantum analogue of the classical
version [1]. Our assumption (3.4) leads to the conservation of mean energy under τ
(but not the mean of functions of energy, such as its variance):

(3.5) Theorem. Let T map each &(J^η) and <£ into itself, and commute with
permutations. Then the mean energy is invariant under τ.

Proof. Let ρe^(J-Γ)ι be such that

Tr(ρ#) = lim Tr (ρHM) = £<ao.
M-»oo

We note that

Ϊ)M = HM®I ••• ®1+ ... +1® ... ®ί®HM.
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Then by the symmetry of T

This is a finite-dimensional trace and it can be evaluated in any basis, e.g. in a basis
of eigenvectors of f)M. Then it involves only the block diagonal terms of ρ(χ) . . . (x)ρ,
which are in 3t(3tf^ η = 0, . . ., nM. On each of these subspaces, I)M is η - I#η9 and so
commutes with T. Hence

as T is trace-preserving

Hence lim Ίr(HMτρ) = £>, so τρ has finite mean energy, δ the same value as ρ.
Λf-*oo

(3.6) Remark. It has been pointed out by the referee that it is not enough to
suppose that T commutes with the time-evolution A\-^ei^tAe~ll)t of density
matrices A^Λ(X}^\ the mean energy fails to be conserved in general unless T
maps St(3^^ and & to themselves. As a counterexample in two dimensions, let

) and TV ] = I V Then T commutes with [ , t)], but does not
0 O/ \b* c/ \0 α/

leave the diagonal blocks invariant. Average energy is not invariant under T.
Physically, such transformations T are "too stochastic" and do not lead to the
canonical ensemble.

4. Weak * Convergence

(4.1) The set of all states of J*(jf)> not necessarily normal ones, is w*-compact.
The sequence {τmQ}m=o,ι,... therefore has a w*-convergent subnet {ρα}αe/. If ρ has
mean energy δ, then by (3.5)

(4.2) Tr(ρα#) = <ί for α e / .

(4.3) The entropy of a state ρ e ̂ (Jf )ι of finite mean energy is finite and ^ the
entropy of the Gibbs state of the same energy. Since the entropy is non-decreasing
under τ, S(τmρ) converges as m-»oo, and S(ρα) converges to the same limit as α->oo.

(4.4) Lemma. Letρao = w* lim ρα. Let P~ρao(E,)9j = 09 1,2, ... . Then limP,= l.
a-" oo j-*oo

(4.5) Remark. This is tantamount to showing that ρ^ is normal.

(4.6) Proof. Let p^p.-P-.,, 7 = 0,1,2,... and pj[ = Trρβ(£J-EJ_1). Then
^ = Tr(ραjF/)= ΣJPp and p~ lίmpj. Hence pj obeys the conditions of [1, (3.15)],

00 J

and so ΣP/= um P/= l
0 7->oo

(4.7) It does not seem easy to prove that ΣJPj = $ unless, of course, k = dimJΓ < oo.
This might indicate that, for certain initial states, energy can escape up the energy

M M

ladder, say, by "heat solitons". But since for any M, ΣjP?^^ we have ΣJ
o o 1 1

Hence lim ρoo(#M) = ΣjP/ ̂  $ and Λe limit state ρ^ has finite mean energy <Ξ <
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(4.8) We now give an estimate for the entropy in the tail of a state.

(4.9) Lemma. Let H be as in (3.1), and ρ be a positive operator of trace class such
that Ίrρ = q and Ίr(ρH)^g. Then -Ύr(ρ\ogρ) = 0(qlogq) as q-*Q.

(4.10) Proof. The largest value of — Trρlogρ, subject to the conditions
Tr(ρ#)5^<?, Trρ = g is achieved at the Gibbs-like operator ρ, diagonal in a basis
provided by the eigenvectors of H. Then the problem reduces to the classical case:
maximize ^ , N

among sequences of non-negative numbers {pj} obeying the constraints

(4.11) Σ

When the multiplicity m(j) is 1 for all 7, then Lemma 3.19 of [1] shows that

s ̂  - 2q logq + q(l + logrf) = 0(q logq) .

The same method also works when m(j) ^ K. So we have proved the lemma when
the index r of (3.1) is zero. We proceed by induction on r. Suppose the lemma is true
for all sequences {PJ} obeying (3.3) with m(j)^κjr~l

9 7 = 1,2, ... . Now let {PJ}
satisfy (4.11) with m(j) ^ κjr. Write {p7 } together with repetitions for multiplicity as
the union of sequences {pjα)}, α = 1,2, ... defined by

(4.12)v ' Vj (0 otherwise.

In the sequence {pf}}j=o, i, ... we repeat pf} with multiplicity ra(αj) which might be
0 or as large as m(j)/j^κf~l. It is possible to do this so that m(f) = Σ

Then

Now, the induction hypothesis implies that s(α) = 0(— ̂ (α)log^r(α)) uniformly in
α. Also, the condition (4.12) implies

(«J)pf^ΣM/>, =<^
J « j

Thus {q(a}} itself obeys the conditions of [1, Lemma 3.19], namely Σ<?(α) = 4>

Σαg(α)^<f. So by [1, (3.19)]: α

-Trρlogρ^s = θfΣ-g(α)log<2(α)^| =0(-^flog^f). D
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The main point is that s->0 as g->0. This result gives an extension of the classical
theory [1] to the case with multiplicity m(j) as in (3.1).

5. Convergence to a Gibbs State

(5.1) Suppose now that T maps & to itself and each ̂ (J )̂ to itself, and is ergodic
on each &(3tfη). Let σm = τmρ® . . . (x) τmρ and let σm(ή) be the diagonal block matrix
obtained from σm by restricting to J^η. Then, as in Theorem (2.5), we see that the
component of σm(η) orthogonal [in the sense of 3&(2tf )2] to multiples of the identity
1̂  , converges to 0 as m-> oo. In particular, the off-diagonal elements converge to 0.
This does not (yet) show that σm(η) converges, as we have not controlled the trace.
But along the convergent subnet ρα we also get convergence of σα and of σa(η): this
must converge to a multiple of 1̂ . To see clearly why this implies that ρ^ is
diagonal in the energy basis, first take n = 2. Write, in Dirac notation

where i,j are energy labels and l^μ^m(i), l^v^m(/); μ,v label the multiple
states of energy i,j9 respectively. Then σ = ρ®Q has the off-diagonal terms

including the case i ή=j or μ =f= v where i' =/, i =/, μ' = v, μ — V. Thus the coefficient
ρ?/ρ]f = |ρf/|2 converges to 0 as w-» oo. This is the general off-diagonal element of ρ.
Thus ρoois diagonal in the energy basis.

If n > 2 we note at least one diagonal element ρgf does not converge to zero, by
(4.4). Then if (n — Ί)k+ i+j = η, the off-diagonal element of σ(η\

(ff ^eWHeffM
converges to zero for any i, λή=j, v; then ρf/->0. Thus ρ^ is diagonal in the energy
basis. The argument now reduces to the classical case [1]: in order for
<joo = ρoo(g)...(x)ρ00tobea multiple of the identity on each Hη, ρ^ being diagonal,
we obtain the result: ρ^ is a Gibbs state, ρβ. From (4.7), its energy is ^S>. To be
precise, we have shown that ρ^ coincides with ρ^ as a state on

j
Recalling that {£,-} is the spectral resolution of H, we have for any j and A e

ρ^A) = ρao(EjAEj) + ρao((l-Ej)

By Schwarz' inequality for states,

and by (4.4), ̂ ^(ί—E^O as '-xx), the other factor being bounded. Similarly, the
other terms converge to 0 as;-> oo. But ρ^EjAEj) = ρβ(EjAEj\ and this converges
to Qβ(A) as j-> oo, as ρβ is normal. Hence ρao(A) = ρβ(A) for all Ae 3S(tf).

(5.2) The same argument shows that any other w* convergent subnet {ρβ}βej of
{τmρ} converges to a Gibbs state of energy ^ δ, but (so far), it could be different
from ρ^. We show they are the same by showing they have the same entropy,
namely limS(τmρ).
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(5.3) Theorem. Under the above conditions, S(ρα)-^S(ρ00), α-»oo.

Proof. Choose ε>0. Write ρα = £J ραEJ + ̂ 4, A = ρa — EjρΰLEj^O and

00 00

(5.4) q
k=j k=j

Choose jo large enough so that q is small enough so that, by (4.9), S(A) < ε for all α
and all J^JQ. Then, by the subadditivity of the entropy [7],

(5.5) S(ρα) ̂  S(EjρΛEj) + S(A) ^ S(EjρolEj) + ε

for all α and allj^/Ό. Since EjQaEj (j fixed) has finite rank, S is continuous on this
subspace. Taking limits of (5.5) gives for j^j0:

(5.6) s = lim S(ρα) ̂  lim S(E$aEj) + ε = S(Ejρ00Ej) + ε .

Taking the limit ;'-> oo gives [8, Appendix] s ̂  S(ρ^) + ε. Since this is true for every
ε>0, we get s^S(ρao). Now let; be so large that

This is possible [8, Appendix].
For this j choose α0 so large that for all larger α,

Then

S(ρJ ^ S(Ejρ^Ej) + |g S(EJρaEJ) + ε ̂  S(ρ J + ε

for all larger α,

Since this is true for every ε>0, we have S(ρ00)^s. This gives S(ρ00) = s. D

(5.8) We can now put together the results.

Theorem. Let H be a self -adjoint operator on Jf with spectrum 0, 1,2, ..., and the
finite multiplicity w(/) of eigenvalue j obeys m(/)^/c/, 7' =1,2,.... Let
f̂ = Jf ®...®Jf, and let T be a symmetry-preserving doubly stochastic map on

$(3? )1? T mapping £? and each 38(3?^ to itself and ergodic on each energy shell. Let
τ be the corresponding Boltzmann map. Let ρ be any density matrix on Jf with finite
mean energy $.

Then τmρ converges asm-*co in trace norm to a Gibbs state ρaΰ=e~~βH/Ύre~βH

of energy ^$, as w->oo.

Proof. Any convergent subnet of {τmρ} converges w* to a Gibbs state (Sect. 5.1).
All such limit states have the same entropy (Sect. 5.3) and are therefore the same.
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Therefore, {τmρ} converges in the w* topology to a Gibbs state. Its energy is ^ δ,
by Sect. 4.7. The convergence in trace-norm follows from

and (5.4), using that τmρ^QσQ when restricted to the finite-dimensional space Ejjf .

(5.9) If T is not ergodic on the energy shells, but is ergodic when restricted to a
smaller slice conserving two numbers (e.g. energy and particle number), we prove
convergence to a grand canonical ensemble in a similar way.

(5.10) If dimjf < oo, then Tr(fίρ) is continuous, and so ρ^ has mean energy δ.
Then limτmρ is the same state for all ρ with mean energy δ.
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