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Abstract. Numerical studies of the initial boundary-value problem of the
semilinear wave equation utt — uxx + u3=0 subject to periodic boundary
conditions u(t, 0) = u(t, 2π), ut(t,0) = ut(t,2π) and initial conditions u(0,x)
= MO(X), ut(0,x) = vo(x), where uo(x) and vo(x) satisfy the same periodic
conditions, suggest that solutions ultimately return to a neighborhood of the
initial state uo(x), vo(x) after undergoing a possibly chaotic evolution. In this
paper an appropriate abstract space is considered. In this space a finite measure
is constructed. This measure is invariant under the flow generated by the
Hamiltonian system which corresponds to the original equation. This enables
one to verify the above "returning" property.

0. Introduction

During the Sixth I. G. Petrovskii memorial meeting of the Moscow Mathematical
Society in January 1983 Professor V. E. Zakharov proposed the following
problem. Numerical experiments demonstrated that the equation

«tt-wΛχ + " 3 = 0 (0.1)

with periodic boundary conditions u(t, 0) = u(t, 2π), ut(t, 0) = ut(t, 2π) possesses the
"returning" property, i.e. solutions appear to be very close to the initial state w(0, x)
= MO(X), wf(0, x) = yo(x), where the initial functions satisfy the above boundary
conditions, after some time of rather chaotic evolution. The problem is to explain
this phenomenon. According to the classical Poincare theorem every flow which
preserves a finite measure has the returning property modulo a set of measure zero.
The aim of this paper is to build such a measure for the flow

Φ(t)(uo(x), vo(x)) = (u(r, x), υ(t, x)),

where u(ί, x) is the solution of (0.1), v(t, x) = ut(t, x), where the solution u satisfies
the initial data M(0, x) = MO(X), wf(0, x) = vo(x). The Eq. (0.1) can be rewritten as a
Hamiltonian system e τ τ / c ^

vt=-δHlδu\ K '
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with the Hamiltonian

H(u, v) = f (v2/2 + u2j2 + u4/4)dx. (0.3)
o

Our starting point is the desired formula

J F(u, υ)dμ(u9 v) = ί F(u, v)e ~ H(u>v) Π du(x)dv(x) (0.4)
xeS1

for some class of "good" functionals F.
The right-hand side of (0.4) is the partition function. It can be determined by

finite dimensional approximations (2.3). Roughly speaking the measure dμ is the
"canonical symplectic measure" Y\dudv multiplied by the function e~H of the
Hamiltonian and is invariant under the flow (0.2). However, the correct definition
of the dμ involves some technical problems and the expression Y\dudv does not
have any meaning without the factor e~H. The Hamiltonian H is the sum of

1 ) \ J /) and H2(v) = ? (v2β)dx,
0 0

so the measure dμ is the Cartesian product of the measures

dμ1=e-H'(u)Udu(x) and dμ2 = e-H*v)Y\dv{x).

T h e dμγ is c o r r e c t l y defined b y finite d i m e n s i o n a l d i s t r i b u t i o n s p(xl9...,xk;

ξu-'ξk)- dμ1{u(x):(u(x1),...,u(xk))eM}= ί p(x,ξ)dξ
M

which are proportional to partition functions

j e-Rί(μ)Πdu, (0.5)
ξj = U(Xj)

which are calculated in Sect. 2. In order to formulate the result we introduce some
notation. Let x<y be two real numbers. U(x, ξ; y,η; z) is the solution of the
equation Uzz = I/3 in the segment [x, y] with the boundary conditions U(x) = ξ9

^ξ; y9η)= { ίU2(x,ξ; y,η; z)/2+ U\x,ξ; y9η; z)/4]dz

= min j ί (uz

2/2 + W

4/4)dz|u(x) = ξ, u(y) = f/1,

and let D(x, 1; y, ̂ ) be regularized determinant of the operator, see [4],

-d2/dz2 + 3U2(x,ξ;y9η;z), (0.6)

in the segment [x, y] with the Dirichlet boundary conditions. The operator (0.6) is
the operator of second variation of the functional

](u2

z/2 + u4/4)dz; u(x) = ξ, u(y) = η
X

in the neighborhood of the extremum U. Then

p(x, ξ) = C{X) = = e x p { - Σ h t i x j , ξj; xj+ uξj+,)} (0.7)
yUD(χξ;χξ)
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The function c is determined from the condition

and is equal to

k

. 7 = 1

(0.8)

with some constant σ. The measure dμι is absolutely continuous with respect to the
classical Wiener measure; so its support belongs to the space Lipα, 0<α<l/2.
After replacing the functional H^u) with \{ulβ)dx the construction will lead us
exactly to the classical Wiener measure. The dμ2 is a realization of the abstract
Wiener measure and it will be described in Sect. 3.

In Sect. 1 we investigate the determinant of the operator (0.6). In particular, we
prove the formula

det (A o + F(x)) = det (A 0) det (I + A^1 F(x)), (0.9)

where Ao is the operator —d2/dx2 with the Dirichlet boundary conditions and
F(x) is a nonnegative smooth function. The determinants of Ao + F(x) and Ao are
equal to exp(-£'(0)), where ζ(z) is the C-function of an operator; det(/ + zlo 1F(x))
is well defined because the operator A$ιF is nuclear, AQ1FE<51. The formula
(0.9) is not used in our constructions but we think it is interesting by itself. In
Sect. 2 we calculate the partition function (0.5), in Sect. 3 we give the correct
definition of the measure dμ and finally in Sect. 4 we prove the main result:

Theorem. The measure dμ is invariant under the flow (0.2).

1. The Determinant of the Sturm-Liouville Operator
with the Dirichlet Conditions

We investigate properties of the functional determinants by finite dimensional
approximations. The key lemma is

Lemma 1. Let F(x) e Cρ[0, α], ρ>0, and let Aobe the operator —d2/dx2 with the
Dirichlet conditions. Consider (N—l)x (N—l) matrices

and fN=\\fN;ij\\,
N2

a2

2

- 1

0

- 1

2

0

0

- 1

- 1

0

0

2

where

Ί+iJ

if
if
if

if

i=J+l,

»•-;!> l

α + 2/?=l and

lira max|r|f| =
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Then

7V-»oo

Proof. Consider the orthonormal basis Ek(x) = ]/2/ά sin (πkx/a) of the eigenfunc-
tions of the operator Δ 0 : A 0Ek = λkEk with λk = π k2/a2, k = 1,2,... . Denote by H^
the scale of Sobolev spaces which are generated by AQ1/2: \\Ek(x)\\s = λs

k

12. The
operator δN is defined on C ^ " 1 ; its eigenvalues

{N) 4N2 . 2 πk

the corresponding eigenvectors

e(Λf) = (4Y,..., 4N }- I) w i t r i 4^} = l/2/^sin(πks/N), fe, 5 = 1,..., N — 1.

We normalize e[N) by the condition

\JN)\2_ u

Tϊ L

Let Zjv be the space (£N~x with the norm | | and let hs

N be the same space with the
norm |y|sH<Sjv2y|. Now we introduce the interpolation operator ίN: /^->L2[0,α]
and the restriction operator jN:L2[0,ά]^>lχ:

f̂c n /C— 1, . . . , i \ 1 ,

if k>N.

We split the segment [0, a] into Λ̂  equal parts by the points 0^=xo<xί

< ... <xN_1<xN = a; Xj=ja/N. The iN is the operator of trigonometrical
interpolation of the values at Xj'JN = rNPN, where PN is the ortho-projector onto
the subspace spanned by Eί9 ...,EN_1 and

First of all we notice that the norms of ίN andjN as operators which map hs

N into H^
and Hsχ onto hs

N correspondingly are bounded by constants which do not depend
on JV because

1 ^ λk/λk

N) = (πk/2N)2/sin2 (πk/2N) ^ π 2 /4 fc=l,...,ΛΓ-l.

Consider the finite-dimensional operator

^ ^ A ~ 7 ώ : L 2 [ 0 , α ] - L 2 [ 0 , α ] .

Clearly,
det(/+ΓN) = det(/ + (5;1/N).

So the convergence of TN to T = ΔQ 1F in the space S t of nuclear operators
implies the assertion of the lemma, see [5]. We split the proof of convergence
into the following steps. The operators

(i) TN are uniformly bounded in the space ^f(L2, HSJ of linear operators
L2H°
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(ii) TN^T in the space Jέ?s(L
2,L2) with the strong topology. Let φ be a

trigonometrical polynomial. Then

TNφ -Tφ = ίNδ

+ (iNδ^jN-A^)PkF(x)φ-A^(I-Pk)F(x)φ. (1.1)

The second and the fourth terms on the right-hand side of (1.1) converge to 0
uniformly with respect to N when fc->oo. Operators (iNδ^ίjN — AQί)Pk have
orthonormal basis of eigenfunctions Ej(x). The corresponding eigenvalues are
equal to

a2/(4N2sin2(πj/2N))-a2/(π2j2)-^^ 0 if j^k-l and

0 if j^k;

therefore, the third term in (1.1) converges to 0 when JV-»oo and k is fixed. Let

ίfNrN~rNF(x)Mx) = (yΐ\ , J ^ i)

Then
yf> = βF((j - \)a/N)φ((j - l)a/N) + r$_ γφ{(j - l)a/N)

+ ocF(ja/N)φ(ja/N) + rf}φ(ja/N) + βF(ja/N)φ((j + \)a/N)

+ rfi+ ^((/' + l)a/N) - F(ja/N)φ(ja/N)

and lim max |j;jN)| = 0. Thus K/^r^ - r^ί1)! ->0 in /£. Further, (rN -jN)Fφ->0 when
N^-oo j

N^oo and rNφ=jNφ if JV is sufficiently large. So the first term on the right-hand
side of (1.1) converges to 0 when JV->oo. Combining the results above we obtain
that TNφ^Tφ. The set of TN is bounded and trigonometrical polynomials are dense
in L2; hence TN^T in strong topology.

(iii) TN->T in the space i?s(L2, # 2 ) , by virtue of (i), (ii) and Banach-Steinhaus
theorem.

(iv) TN^> T in the space ^(Hs^ Hi), s > 0, by virtue of (iii) and the compactness
of the imbedding Hs^ c> I2.

The space ^(H%,Hl) belongs to 6 x ( i ί y when s < l , see [6]. Hence TN->T
1 ( ; ) ; D

Lemma 2. Lei F(x) e C2[0, α] am/ Zeί ^L(x) foe ί/ze solution of the equation

A\x) = F{x)A{x)

with the boundary conditions

A(a) = 0, A'(a)=-κ/a,

where A[N\ v = 0,1, ...,N, N = 2,3,..., satisfies the difference equation

(N2/a2) (4Ύ i - 2 A™ + A«H,) = F((N - v)a/N)

with

A[N)=κ/N.
Then

A(0)= lim
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Proof. Let R[N) = A[N)-A((N-v)a/N) and C[N) = R[N) - R^ v Then

(N2/a2)(R™! - 2RW + £<N) J = F((N - v)a/N)R™ + b[N)

and

(1.2)

with #<f} = 0, Rψ} = Cψϊ + O(N~ 3) and 6(

V

N) = O(iV" 2) uniformly with respect to v.
Clearly, C(

V

]V) are bounded by the solutions of the equation of the type (1.2') with
F((N-v)a/N), b(

v

N) and C[N) replaced by d=sup|F(x) | , C2/N2 and CJN\
respectively. Hence R[N) are bounded by the solution of the following difference
equation,

(N2/a2)(rW! - r f + i f j 0 = CxrW + C2/N2 r ^ = 0, r f = C3/iV2 .

The general solution of this equation is

r<*> = - C2/(C! JV2) + α(N)[A(

+

N)]v + i8(N)[/l(N)]v

with A ( £ ) =l±C 4 / iV+ ... and λ^λ^^L According to the initial conditions

Hence

Therefore,

)/ΛΓ3 - C5/N2)/(λ™2 -1) =

and 1 ) . D

Theorem 1. Let F(x)eC 2 [0,α] and Zeί ^4(x) be the solution of the equation

with the boundary conditions A(ά) = 0, A'(ά)=-I/a. Then o 1F) = A(0).

Proof. Let fN = dmg(F(a/N)9 ...,F((N- l)a/N)) be the diagonal matrix. By
Lemma 1

1 i 7 ) = lim

= lim
iV^oo

det

2 - 1 ... 0

- 1 2 ... 0

•det

0 0 ... 2

2 + a2F(a/N)/N2 - 1 ... 0

0 - 1

0 ... - 1 2 + a2F((N-l)a/N)/N2

= lim N~1detDN.
JV-+oo
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Above we have used the relation

2 - 1

. - 1 2
det

0 0

= N,

which can be proved easily.
By elementary transformations the matrix DN can be transformed into

- 1 0

υ2 - 1

0

0

0 0 0

with

υj = 2 + a2F(ja/N)/N2 -l/vj^,

O u r aim is to find N~1vι ••• vN-v Let

vx = 2 + a2F(a/N)/N2. (1.3)

It follows from (1.3) that

(JV2/α2) ( 4 5 i - 24*° + 4"- i) =

The value

- v)a/N)Am,

Dconverges to ,4(0) when JV->oo by Lemma 2. The theorem is proved.

Now we shall prove the formula (0.9). Let us recall the definition of the de-
terminant of a positive unbounded operator Λ. Assume that A~σ e (Zι for some
positive σ. One can define the function ζA(z) = Ύr(A~z) which is regular in the half-
plane Rez > σ. In some cases (e.g. if A is a pseudodifferential operator) this function
has the meromorphic continuation. It may happen that 0 is a regular point of this
^-function. In this case we say that A has a determinant and det/ί = exp( — ζ'A(0)).
This definition is a generalization of the finite-dimensional determinant.

Theorem 2. Let S ̂  c0 > 0 be a positive operator in a separable Hubert space Jf, let
S~σe&ι for some σ, 0<σ< 1 and detS be defined. Let T be a bounded operator.
Then there exists a constant C which depends upon c0 and \\T\\ only, such that
det,4(ε) = det(S + εT) is defined when \ε\<C and is equal to detSdetil + εS'1!1).

Proof. One has the following integral representation on the strip 0<Rez<l,
see [7]:

= S~Z

π o

sinπz

k=l
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If ε<co/| |T| | we can change the order of summation and integration:

sin Tίz °° °°
A-%S)-S-*= Σi-ΦΊr'ίiti+sy'Tfiti+sy'dt. (1.4)

π k=i o

Let us show that all terms on the right-hand side of (1.4) are nuclear operators and
estimate their Si-norms which will be denoted by ||| |||. One has

s\\\s~σ\\\ \\ί(tnsy1τf(ti+sy1sσ

Therefore,
III oo

Π ί

Thus the series (1.4) is S^convergent when ε<co/\\T\\ and it defines the Sj-val-
ued regular function on the strip σ — 1 < Rez < 1. Hence ζA{ε){z) has the meromor-
phic extension to the half-plane Rez>σ— 1 and 0 is a regular point of this func-
tion:

α(β)(θ)-Cs(θ)= Σ ( - i
k=l

Note that

dt

Hence

k dt

and
00 gk 00 ^

k=i k o dt

= Σ (-l)kskk'1TT(S~1Tf=-Trlog(I-hsS~1T).
k=l

Thus

det4(ε)/det S = exp {- [G(ε)(0) - C (̂0)]}
-expTrlog(/ + εS-1T)-det(/ + εS-1T). D

Corollary. Let S be the same operator as in Theorem 2 and let T be a non-negative
bounded operator. Then det(S-h T) is defined and
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Proof. Note that S + εT^c0 for every ε^O. So we can apply Theorem 2 N times if
N is sufficiently large and obtain

The product Π i n the last formula is equal to the det (/ + S ~* T), as follows from the
identity

ε 2)5- 1T). (1.5)

In order to prove this identity we introduce R = S~λT and obtain

Now (1.5) follows from the well known formula

with Au A2 E ®i, e.g. see [5]. D

Formula (0.9) follows from the Corollary. Note that

ζΔo(z) = (π/ay2zζ(2z) and detA0 =

where ζ(z) is the Riemann (-function.

2. Calculation of the Partition Function

S(x,ξ;y,η)= f exp j - {(u2j2 + u*/4)dz\ Π d φ ) . (2.1)
u(x) = ξ I x ) ze[x,y]
u(y) = η

Let us split the interval [x,y] into N equal parts x^xo<xι< ... <x N = y.
Consider the finite-dimensional approximation of S

with a = y — x, ξo = ξ, ξN = rll the definition of the function h is given in the
introduction. The invariance of the equation uzz = u3 under the transformation u(z)
-^N~1u(N~1z) leads us to the homogeneity property

h(a/N, ξj-ί9 ξj) = N3h(a, ξj_ JN, ξJN). (2.2)

Therefore,

j=2

+ h(a9ξN-l9η/N)\\dξ1...dξN-ι. (2.3)
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We can apply the Laplace method to the integral in (2.3). The function
I(ξu ..., ξN- x) in the square brackets has the unique stationary point (£?,..., ξ^_ x)

This point is the point of its strong minimum.

where

By the homogeneity property (2.2)

N3I(ξ°u ... ,ξ°N_ J = N3h(Na, ξ/N, η/N) = h(a, ξ9 η)

and

uN — i\ LN — iv α e i | | j ^ ς 1 ? . . . , ςN-1)\\

with

J= ΣKa/N9ξj-l9ξj), ξj=Nξ°.
7 = 1

Finally,

S N = ( 2 π ) ( A Γ - 1)l2L-N

1/2e-h(a>ξ>η)(l + O ( J V " ' ) )

Proposition 1. When N^co

Corollary.

lira (2πa)a~N)l2NNI2SN = [det(I + 3A^1U2(x,ξ;y,η;z))Tίl2e^h(y-χ ξ 1').

The expression on the right-hand side of the last formula will be called the partition
function S.

Proof of Proposition 1. Let Ltj = J'ξ^iξl, ...,ξjv-i) From the definition of J it
follows that

Lu=0 when \i—j\>\.

a) Calculation of LJJ. By the definition of the function h

d2

J~ΊJ ' + τ \ d z

where u is the solution of the Euler-Lagrange equation u" = u3 for the energy
functional, with the conditions u( — τ) = ξj_ 1, w(0) = ξ, u(τ) = ξ)+1. By the formula
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for the second variation

— τ

where u0 = u{ζ)_x, ξj, ξ)+ A z), v is the solution of the equation

= v(-τ) = 0, u(0)=l.

Integrating by parts and taking into account the relation U'Q = MQ, we obtain

Let us split υ into the sum of v0 and w:

v^ = 3(φ2υ0;

(ξj)2>0; (2.5)

= ô( - τ) = w( - τ) = w(0) = w(τ) = 0, »0(0) = 1.

The first equation in (2.5) has the solution

ί;0(z)=shα(τ-|z|)/shατ, α = |/3|fj |.

The solution of the second equation in (2.5) has the representation

(φ2lvo, (2.6)
7 = 1

where K is the inverse to — d2/dx2 with zero conditions at the points ± τ and 0. It is
an integral operator with the kernel

|x|(τ — |y|)/τ if |x|^|j; |, signx^signy,

bl(τ - \x\)/τ if M > \y\, signx = signy,

[0 if signxΦsigny.

The series (2.6) is asymptotic with respect to τ-»0 because K is of order τ. Hence

Further,

2 2
— [ι/] (0) = 2α cthατ = —h - c

τ 3

Finally,

b) Calculation of LjJ+1. By definition

(f. „. _\2 ..4
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with u(ξ9 η;z) = 1/(0, ξ;τ,η;z). As above one can easily check that LjJ+1 = v'(τ)9

where v(τ) is the solution of the equation υ" = 3ulv with the boundary conditions
u(0)=l, u(τ) = 0; uo = u(ξj,ξ]+1;z). Splitting υ into the sum of vo(z)
= shα(τ —|z|)/shατ and w(z) we obtain that

w'(τ) ~ 3 ί - (u2 - (ξ})2)v0dz = 0 ( τ 2 ) ,
o τ

and finally,
1 1 . ^ o Λ , , ^ ^

Now it remains to apply Lemma 1 with

α = 2/3 and j8 = l/3. D

3. The Measure dμ

Let us fix points x1 <x2< ... <xk<Xi + 2π on the circle. Consider the function

S(x, ξ) = S(x l 9 ξx x2, ί2)S(x2J ^ *3> ̂ 3)... S(xk9 ξk; xx + 2π, ξx).

Propositions Let Xj = (xl9 ...,x</, ...,xfc), ^ = ( ^ , . . . , 4 . . . , ^ ) (the sign "means
that the corresponding variable is omitted). Then

i+1 Xj)(Xj ^ S θ c j . f f ) . (3.1)
X^ + 1 X j_ x

We assume that xo = xk — 2π, xk+ί =x1+2π, ξo = ξk, ξk+ί = ξι.

Proof. Let all ratios (xm+1-xj/(xn + ί-xn) be rational; xm+ΐ-xm = Nmτ. By
Proposition 1

i= lim (2π)/

^ m-> 00

v = i ^ς 7-

where x 1 =x (

1

m ) <x (

2

m ) < ... is the partition of the circle into equal segments of
length τ/m. On the other hand,

S(x;,<$= lim (2π) ( f c - 1 ) / 2 (2π)- ( m / 2 ) Σ N ί Π ( x v + 1 - x v ) 1 / 2

m->oo = 1

The relation (3.1) follows from the last two formulas. In the general case, it is valid
because of the continuity of both sides. D

Corollary 1.

σ-\2π?i2 Π (x v + 1 -x v ) 1 / 2 (3.2)
1
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with some constant σ. Actually,

ίS(x,ξ)dξ'1 = (2πYk-2)'2 Π (x v + 1 -x v )
1 / 2 5(0,^;2^^).

v = l

Simple estimates show that

Corollary 2. The functions

V 2 ξ ) (3.3)

are finite-dimensional densities of a probability measure dμ1. Indeed, they are
continuous and satisfy the agreement and the normalization conditions.

Let dw be a conditional Wiener measure, see [8], in the space of continuous
functions which vanish at some fixed point x0 on the circle: <5(/)=/(xo) = 0, and

dw = dwx(2πyι/2Qxp(-δ2/2)dδ

is the measure in the space of all continuous functions.

Proposition 3. dμx is absolutely continuous with respect to dw and

4 | (/) = σ(2π)" i/2 e x p j _ 1 J f \ x ) d χ + l-/2(χ0) j . (3.4)

Proof. Let us choose a function /, a partition x o < x 1 < ... < x k < x 0 + 2π of the
circle and a set

7 = 0

We assume that \xj+1—Xj\<ε,j = O, ...,/c. By (3.3)

dμ1{Jΐ} = dμ1{u:(u(x0),...9u(xk))eM}

= σ(2π)-<*+1>/2 Σ (xv+1-xvy
llΊS(x,ξ)dξ.

v = 0 M

Using the definition of h and Theorem 1 we can obtain after simple computations
that

j )2
S(x, ξ) = exp j - .Σ(£ + i -ξj)2β(xj+1

when ε->0. Thus

Corollary. The measure dμx has a support in the space Lip", α<l/2 .

For the definition of the dμ2 we consider functionals Aj and Bv:

v = Ao + Σ (Aj cosjy + Bv sin vy).
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Let McR2N+1. Then by definition

dμ2{v:(Aθ9...9AN;Bl9...9BN)eM}

= 2"M cxp\-πA2

0-(π/2) Σ (A2 + B2)} dAdB.

The dμ2 is a realization of the abstract Wiener measure. It has a support in the
space of generalized functions

^ L i p , ε > 0 .
dx

4. Invariance of the dμ

Let Φ(t) be the flow defined by (0.1). First of all we intend to prove its continuity.

Lemma 3. Φ(t) maps continuously the space Lipα(S1) x Lipα~1(51) into itself,
0<α<l/2 .

Proof. Consider two Cauchy problems

ίutt-uxx + u3 = 0,

[u\t=0 = uo(x) e Lipα, Mf|f = o = vo(x) e Lipα~ ι

and

w « - w x x = 0, w\t = 0 = u0, wt\t = 0 = v0.

If 0<ί<π,

uo(x-t) 1 ^ . _
w ( ί , x ) = V + - J υo(y)dy.

Clearly, weLipα, WjeLip*"1, and (w, wf) depends continuously on (uo,vo). Let
r(ί, x) = u — v. Then

and according to the Duhamel principle

τ ) : 0 ( χ - y - t + τ ) [ K y , τ ) + w ( y , τ ) ^ , (4.1)
o 2

where 0 is the Heaviside function. The expression on the right-hand side of (4.1) is a
contraction operator in a ball in C([0, ί],Lipα) when t is sufficiently small.
Therefore, (r, r ί)GLipαxLipα~1 for sufficiently small t, and hence (u,ut)
e Lipα x Lipα~1. Now the assertion of the lemma follows from the group property
of Φ(t) and its invariance under the transformation ί i—> — ί. D

Now we shall build the finite-dimensional approximation of Φ(t). Let us divide
the circle into 2N + 1 equal parts by the points y} = 2πj/(2N + 1), j = 0,..., 2JV. Let
ξp η.j — 0,..., 2JV, be some real numbers. We denote by uN(ξ, x) the solution of the
equation uxx = u3 which satisfies the conditions uN(ξ,yj) = ξj'9
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is an interpolation trigonometrical polynomial, that is

η. = Ao + Σ (Λcos(2πj/(2N + 1)) + Bv sin(2πj/(2N + 1)). (4.2)
v = 1

Clearly,

Σ ηj = (2N +l)A2

0 + (2JV + l)/2 £ (Aj + Bj). (4.3)
j=o j = i

Let

By ΦN(t) we denote the Hamiltonian flow with the Hamiltonian HN:

ξj = dHN/dηj = ηj ήj=~ dHN/dξj. (4.4)

Let u(x) e Lipα, ι (x) e Lipα~ \ 0 < α < 1/2. For a finite-dimensional approximation
of these functions we take vectors

ξN(u(x)) = (u(y0),..., u(y2N)) and ηN(v(x)) = (η0,..., η2N),

with ^ defined by (4.2); A and B are Fourier coefficients oft;. By rN we denote the
restriction operator rN(u,v) = (ξN(u),ηN(v)); iN is the interpolation operator,
iN(ξ,η) = (uN(ξ,x)9vN(η,x)).

Lemma 4. Let u(x) e C2 and v(x) eC1. Then

iNΦN(t)rN(u9 v) -• Φ(t) (M , ι;) w/zβπ N-+oo

in the space Cι®C.

Proof. Using the formula of the variation of a functional with a free end, we obtain
that

The function u satisfies the equation u^ = u3 = ξ] + O(l/N). Solving this equation
without the term 0(1/N) and estimating the remainder, we can easily obtain that

_ 1 Z
dξj " (2π/(2iV+l))2

Thus (4.4) can be rewritten in the form

{'-* "'-^ί^-β+ww- (44'»
The initial conditions are <̂  (0) = u(yj) and η^O) = i^(iV)(^), where u(JV) is the partial
sum of the Fourier series of v. We have that viN)(yj) — v(y) = O(N~1+ε), ε>0,
uniformly with respect to j because veC1. The system (4.4') with such initial
conditions is a difference approximation for the problem

un — uxx + u3 = 0, M(0, X) = u(x), wf(0, x) = ι (x).
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To finish the proof, we must apply a standard technique, in order to prove the
convergence of the solutions of the difference equation to the solution of the
differential equation. D

Consider a continuous non-linear functional 3F on HaφHaί~1 (H is the
Sobolev space) such that \^(u,v)\^ί. Then

i^(u9υ)dμ= lim dNi&luN(ξ,x),υN(η9x)]exp{-2πHN/(2N+l))dξdAdB.
N-* oo

The coordinates (A, B) and η are linearly dependent, therefore, dAdB = cNdη. From
the invariance of the measure dξdη under the flow (4.4) it follows that

l vN(η)Ώ exp(-2πHN/(2N + \))dξdAdB

υMl exp( - 2πHN/(2N + \))dξdAdB. (4.5)

The expression on the right-hand side of (4.5) converges to \$F(u,v)dμ when
JV-KX). By the same technique as in Lemmas 1 and 3 (the spaces ha and the
Duhamel formula) it is easy to verify that ίNΦN(t)rN are uniformly continuous with
respect to N as operators from L i p ^ L i p " " 1 into / F © # α l , 0<α<l/2 . Taking
into account Lemma 4,

(u, v)]->^[Φ(ί)(«, v)2, (ii, υ) G

By the Lebesque theorem, the left-hand side in (4.5) converges to\tF[Φ{t){u, v)~]dμ
when N-+O0. Therefore, J#"(M, v)dμ = $lF\_Φ(i)(u, v)~]dμ. The last formula means
the invariance of dμ under Φ(ί).

Note. After sending the paper to the publisher, we discovered that the main results
of Sect. 1 - Theorem 1 and the formula (0.9) - were proved simultaneously,
independently and by different methods by Wodzicki [9].
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