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Abstract. We study the effective actions S(fc) obtained by k iterations of a
renormalization transformation of the U(l) Higgs model in d = 2 or 3 space-
time dimensions. We identify a quadratic approximation 8$ to S(k) which we
call mean field theory, and which will serve as the starting point for a
convergent expansion of the Green's functions, uniformly in the lattice spacing.
Here we show how the approximations S^ arise and how to handle gauge
fixing, necessary for the analysis of the continuum limit. We also establish
stability bounds on S$\ uniformly in k. This is an essential step toward proving
the existence of a gap in the mass spectrum and exponential decay of gauge
invariant correlations.
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1. The Model

We study the Higgs-type model of a U(l) gauge field u coupled to a complex scalar
field φ with a quartic self interaction. The total action functional is given on the unit
lattice as

S(u,φ)=Σe^Γ2(^-^u(p)) + ̂ Σ\(Duφ)b\
2+ΣP(Φx) + E. (1.1)

p b x

The relation between the ε-lattice and unit-lattice actions is described in the
Cargese lectures [1], as well as a general introduction to mass generation in this
model. This approximation with Rew is called the Wilson approximation to the
continuum action.

The lattice points x e Zd are endpoints of directed, unit length lattice bonds
b = (b-.,b+) which bound unit squares (plaquettes) denoted by p. The gauge field u :
bonds -»U(1), and

u(p)= Π ub.
bedp

Furthermore, we assume b~ί = (b + ,b-) and ub

l=ub-ι. The co variant derivative
Duφ is defined by (Duφ)b = ubφb+—φb_, and the coupling constant e(s) is
e(ε) = eε(4~d)/2. We consider a = 2 or 3 space-time dimensions, in which case the self
interaction is

= λ(s) \ξ\4 - i(m2 + (5m2) ε2 \ξ\2 , (1 .2)

where λ(ε) = λε4~d. The mass shift is consistent with perturbation theory with

~*-{K' ί:l:
The constant E = E(e,λ,&,Λ) is chosen to include vacuum energy normalization
and renormalization counterterms from perturbation theory.

The continuum limit of the model with the action (1.1) has not yet been proved
to exist, but our methods should lead to that result. The continuum limit of
another action, the so-called Gaussian action, has been extensively studied. The
Gaussian action is obtained by replacing Rew(p) in (1.1) with its quadratic
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approximation in Lie algebra variables. In two dimensions the existence theorem
for the Gaussian action was established in [2]. In three dimensions and with a
massive gauge field, the fundamental stability bounds were proved in [3] and the
existence theorems based on these bounds are deduced in [4], The infinite volume
limit in these papers was analyzed using correlation inequalities, a method which is
well suited for establishing existence theorems but which has not yet led to results
on the nature of the spectrum in the resulting model. A lattice cutoff version of our
spectral results is given in [5], where we also discuss the connection between
Gaussian and Wilson actions on a lattice.

Our program is to study the Wilson action using a cluster expansion method.
In this way we expect to both prove the existence of the theory and to establish
properties of the particle spectrum. We expect that the Wilson action yields the
same limiting continuum field theory as the Gaussian action. Hence the resulting
invariance properties of the ground state and the properties of the particle
spectrum which are consequences of the cluster expansion will also extend to the
Gaussian model constructed previously. The Wilson action furthermore gives a
natural setting for a possible generalization of these results to a nonabelian gauge
model.

The basic strategy to gain control over the spectrum is to establish exponential
decay of gauge invariant correlations. We develop a method of steepest descent to
study integrals of the form

J ιpe~s@u@φ/$ e~s@u@φ, (1.4)

where ψ is a gauge invariant functional of u and φ. Thus we need to define an
expansion S(u, φ) = S(ucb φcl) 4-... in terms of a classical field (ucl,φcl) and a
fluctuation field (uu~t

 1,φ- φd). We obtain this expansion in a sequence of steps, by
studying block spin renormalization transformations of S(w, φ).

For most of this paper, we are concerned with identifying S(ucl, φcl) and
determining its properties. In particular, we find a quadratic action SQ which is
close to S(ud,$d). The transformation S->SQ is an approximation to our
renormalization transformation. We study the quadratic terms which arise by
iteration of the renormalization transformation, yielding SQl,Sβ2, .-,SQk, and
establish uniform stability estimates (strictly positive lower bounds) on the Sβ's.
These quadratic forms dominate the action in the "small field" region. In other
papers we estimate the corrections due to large fields and show that they do not
affect the basic picture. The end result is exponential decay of gauge invariant
correlations, and a mass gap for both the Higgs particle and the photon.

Let us return to the action (1.1). The formal picture depends upon relating the
action S to quadratic actions SQ. Note that we can define the plaquette field

/p = (fe(ε)Γ1lntι(p),

so for small fp,

ΣΦΓ2(1 -Re«(p))= ΣU2 + 0(e(ε)2).
P P

The error term vanishes pointwise as ε-»0 for d <4, and shows that the action (1.1)
is the formally correctly scaled unit lattice action to study the continuum limit
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β->0. In this paper we establish stability properties of various quadratic ap-
proximations to S. We use these later to establish properties of integrals (1.4).

2. Block Fields and Scaling

We study block spin renormalization of the Wilson action. This involves defining
averages of u and φ in lattice blocks, and performing the integral (1.4) conditioned
by the block averages taking given values. In physics terminology we integrate
high momentum degrees of freedom while fixing low momentum degrees of
freedom in each block. If the blocks have side length L, a small positive integer,
then we obtain functions on an LZd lattice. Repeating this process leads us to study
lattices Zd, LZd, L2Zd, ..., LfcZd, .... Since after each step it is often convenient to
scale the LZd lattice back to the unit lattice, we consider lattices with spacing α,
with

α = ε,...?L-fc,...,L-M,L. (2.1)

The natural L2 inner product for spacing a comes from the norm (for scalar
functions on the α-lattice),

\\Φ\\2

a= Σ \Φi\2ad. (2.2)
ieΓα

Here Ta denotes a lattice with spacing a and periodic (toroidal) boundary
conditions. Generally we take α=l, L, or L~fc, the latter arising from fc-fold
scalings of an L-lattice to a unit lattice, following a block spin transformation. We
also use lattices

T^=TaL-knaZd. (2.3)

Averaging operators map functions on the Ta lattice to functions on the TLa

lattice. We specify the map from the unit-lattice to the L-lattice, but this definition
extends naturally from an α-lattice to an Lα-lattice. We assume this extension in
dealing with powers of averaging operators, etc.

Consider the example of a scalar field. Imbed the unit lattice in an L-lattice of
block B(y). Here y — Ln denotes a corner of a block, and n e Zd. Then B(y) consists
of points x = (x1? . . ., xd) such that

+ϊ)9 j = l,2,...,d. (2.4)

Let Γ denote a path (contour) composed of bonds, and define

u(Γ)=Uub. (2.5)
beΓ

Contours Γl9 Γ2 can be composed if the endpoint of Γ2 coincides with the starting
point of Γ19 so u(Γ1oΓ2) = u(Γl)u(Γ2).

We require a set of standard contours Γyx from corners y of blocks B(y) to
points x e B(y). Define Γyx as the path obtained by following the coordinate axis
one, then axis two, ..., etc., in going from x to y. For example, if xeB(y), then

d
x-y= £ ntei9
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where et denote unit vectors in the iih coordinate directions [and n^ 0 as x e B(y)'].
The path Γyx is the path of length nί in the direction —eί followed by n2 bonds in
direction — e2, etc. Let Γ~ 1 denote the reverse of the path Γ. For a point / which is
a corner of an adjacent block, let Γyy, denote the L-lattice bond from y to y'.

The average Qφ of φ is defined by

Γyx)φx. (2.6)

An important property of the average is that Q commutes with gauge trans-
formations. In other words, let h denote a map from the unit lattice to
Then h defines the gauge transformation

lub = ti. (2.7)

Clearly

(Qφ)h = Qφh. (2.8)

A further property of Q is that

QQ* = I, (2.9)

where g* is the adjoint in the scalar product (2.2). Thus Q* maps functions on the
α-lattice into functions on the L-1α lattice. Furthermore g*β is an orthogonal
projection. In other words Q is a partial isometry.

One choice of gauge is especially good for algebraic operations, namely axial
gauge. In axial gauge we choose h in order to set ub = l for every b which occurs in
some Γyx. In other words, we specify a maximal tree T(y) in each block B(y)
composed of bonds in any ΓyX9 xeB(y).

In the axial gauge, Qφ reduces to the ordinary average of φ, and Q*Q is the
projection onto φ which are constant on blocks B(y).

Let us next consider the average of a gauge field u. If b/ = yy/ is a bond on the
L-lattice, then Γyy, = b' and we average over contours Γxx, which are translates of
Γyy,9 i.e.x — x'=y — y'. More specifically, define Q on gauge fields on the unit lattice
by

(2.10)
_ xeB(y)

In (2.10) choose the logarithm so that

- π ̂  arg In w < π . (2.11)

With this choice, the discontinuity of Inw occurs at u— — 1, namely the region of
largest action. This is also the region of maximum suppression of probability, and
hence the discontinuity will be seen not to affect integrals (1.4) in an important
manner.

The average (2.10) is highly nonlinear. We also desire a linear average, defined
on Lie algebra variables. Suppose that we can define

Ab = (ie(8)Γl^ub. (2.12)
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Fig. 1. Block variables for gauge fields, drawn in d = 2. Four blocks are illustrated. Let B(y) denote
a block with L=4. The L-lattice bonds illustrated are b' = yy', //, y"yf", and /"/. These four
L-bonds bound a plaquette p'. The corresponding edge plaquette Be(p') is indicated. The bond b'
has associated surface bonds Bs(b'} which connect B(y) and B(y'). A few bonds connecting distinct
blocks are indicated by wavey lines

For b'=(b'_,b\) a (directed) L-lattice bond from b'- to b\, we define the average

ί f \ λ\ Γ ~ ( d + l ) V ~ l V ^ / i /Ό 1 Q\\\iΛh' — ̂  2^ 2^ Ab, (z.lj;
xeJ5(ft'-)beΓxx'

where ΓXJC. is the special contour from x to x' and xx' is the parallel transport of the
bond 6" to start at x. Thus the bonds b which enter the sum (2.13) range over the
interior of the two L-blocks #(&'_) and B(b'+\ as well as the (surface) bonds
connecting these blocks.

The natural inner product on functions on bonds is

b

We do not explicitly compute the adjoint Q*. However, we now study related
averages on surface bonds which connect adjacent blocks and on edge plaquettes
which intersect four blocks.

Define the set of surface bonds Bs(b") for an L-lattice bond b' as follows:

)} (2.15)

(2.16)

(2.17)

(see Fig. 1). Associated with the surface is the average

beBs(b')

Then
'LAb,9 if b

0, otherwise,

using the inner product (2.14). Also

(2.18)
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where Ps is the projection onto configurations which are constant on surface bonds
and zero on interior bonds. Furthermore, by (2.13),

ββs* = / (2.19)

Finally, we define an edge average Qe associated with lattice plaquettes. The
natural scalar product for functions on lattice plaquettes is

</,#>« =ΣαdΛ0p, (2.20)
p

where p is a plaquette on the α-lattice. Let p' denote an L-lattice plaquette. The set
of edge plaquettes Be(p'} are defined as those unit plaquettes p which (i) are parallel
to p', (ii) whose bonds touch four distinct L-blocks, and (iii) such that these
L-blocks contain the corners of p' (see Fig. 1). The edge average Qe is defined by

(2.21)
peB(p')

O, otherwise.

QeQe*=L2I, Qe*Qe = L2Pe, (2.23)Also e e 2 e e 2 e

where Pe is the orthogonal projection onto configurations which are constant on
edge plaquettes and zero elsewhere.

We also need the fc-fold averaging operators Qk = (Q)k, etc. Especially
important are Ql = (Qe}k and Qs

k = (Qs)k which satisfy

= LkI = η-*I9 (2.24)
where η = L k.

Finally we consider a scale transformation SfL- 1 which maps L-lattice fields to
unit lattice fields. The canonical scaling for scalar fields

. (2.25)

For gauge fields, the L-lattice action

P

can be written in terms of a unit lattice action with

(^L-,f)p = Ld'2fLp, (2.26)

so for a quadratic form σ,

Σ L"</p, σfpy = Σ <(*L- '/)„ σ(^L- !/)„> (2-27)
peTL peΓ!

Then the ε-lattice action

SE= Σ e-V'4(l-Reu(p)) + i Σ εd\Duψ\2+ Σ ^(ΦJ + E, (2.28)
peTε beTε xeTε

where 0>ε(ξ) = λ\ξ\4-$(m2 + δm2)\ξ\2 is related to the unit lattice action (1.1) by

εu). (2.29)
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3. The First Renormalization Step

The renormalization transformation R defines a mapping

R:S-+S(1), (3.1)

where S, S(1) are both unit lattice actions. This transformation involves two steps:
(i) Integrate high momentum degrees of freedom while fixing block spin

averages.
(ii) Rescale the resulting L-lattice action to the unit lattice.
Thus we can write

(3.2)

where y is defined by

(Γe-*) (v, φ) = f e-s^δAx(u)δ(v/Qu)δH(ιp - Qφ)9u9φ . (3.3)

In (3.3) we specify the axial gauge with δAx(ύ) which sets ub= 1 on the set of
bonds chosen as follows: Within each L-block £(y) with corner 3; in the L-lattice,
let T(y) denote the tree composed of unit bonds in Γyjc. Here x ranges over β(y),
and Γ(y) is maximal - in the sense that adjoining any additional unit bond b in

to T(y) makes T(j ) multiply connected. Then

= Π Π δ(ub). (3.4)
beT(y)

Let ̂ o denote the subgroup of gauge transformations which are specified by ή's
in (2.7) which are constant on each L-block B(y). These gauge transformations
preserve the axial gauge and affect only bonds on the unit lattice which connect
different blocks. They generate the gauge group of the integral <^(exp — S).

The factor δ(v/Qu) is a delta function which specifies that the average gauge
field in each block B(y) is v. Thus for bf an L-lattice bond,

δ(vlQu)= Π <S(tV/(β"V) (3.5)
b'eTL

The factor δH is an approximate delta function which specifies that the block
averages of the scalar (Higgs) field equal ψ. In particular, if y denotes an L-lattice
site,

v-β(uM2)]. (3.6)

The integral (3.2) therefore has the normalization property

(3.7)

where 2v2\p is a measure corresponding to (3.3) but on the L-lattice.
Having defined the renormalization transformation, we now analyze its

behavior for small fields. This will yield a Gaussian approximation to the integral
(3.1) and a corresponding quadratic form for S(1). The quadratic form has the
structure

(3-8)

which we now derive and analyze. In particular we will establish strict positivity of
σ± and ^ι(wι) in (3.8).
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We begin the study of (3.1) by rewriting the Wilson action contribution to
S(u, φ). First define a unit lattice field ub with block averages equal to 1. In this way
we can write the resulting ub in terms of a vector potential which fluctuates about
zero. Let

if
I V 1 , if

be given in terms of the averaging operator Q of (2.10), where

vv = (Qu)v. (3.10)

It then follows that

(Qu')b,= l (3.11)

for all L-lattice bonds V. Now define Ab by

(u')b = exp(ίe(ε)A'b). (3.12)

Then the Wilson action can be written

Here we define the L-lattice field F(p/) in terms of uQ/)> where

v(p")= Π ^exp[fe(Lβ)F(pO]. (3.14)

The factor lrrf/2 in (3.13) then arises from combining the factor L~ 2 from (2.22) with

The quadratic form in (3.13) can be reexpressed by translating to its minimum.
By the Appendix, with α = δ and B = L~dl2Qe*F, we have

Acl= -L~dl2Cd*Qe*F. (3.15)

Here C = (d*d)~ί, restricted to the subspace of A satisfying both QA = Q and the
axial gauge condition. Then by Corollary A2, and

A' = A + Acl, (3.16)

i Σ \dA + L-d/2Qe*F\2 = ± Σ l^|2 + i<F,Σ^>, (3.17)
peTί peTί

where

Σ=L-dQe(I-dCd*)Qe*. (3.18)

The fluctuation field ̂  lives on the unit lattice, and will be integrated. For small
fluctuations we use this Gaussian approximation to yield a perturbative ex-
pression for the integral. Large fluctuations will lead to small probabilities.

The quadratic form <T,Σ^) provides the formula for the background field
and it will come outside the integral, since the average fields v and hence F are fixed.
This form will be scaled to the unit lattice. This scaling absorbs the factor L~d, so

</(1W(1)>, (3.19)
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where

(3.20)

Here Qe* maps the unit lattice to the L~l lattice, and 3Cδ* is an L~l lattice
operator.

Define the unit lattice field

w{1) = wexp(-zXεM), (3.21)

with A the fluctuation field defined by (3.16). Then after scaling back to the L"1

lattice,

is the gauge field on the L~ 1 lattice on which the unit lattice renormalized action
depends.

Let us now direct attention to the boson part of the integral (3.1). We expand

a\\ψ-Q(u)φ\\2 (3.24)

to identify the quadratic terms in φ. Using (3.23), we also expand u about its
background value u l 5 yielding additional contributions from A which are
accompanied by (small) factors 0(e(ε)). Thus the leading terms in the Higgs action
are

ϊa\\Q(u^)φ-ψ\\2 + ̂ φ,Au(ί)φy, (3.25)

with all corrections included in the potential Vί(A, φ,fι) which have coefficients
0(8).

Define

»ΓQ(u(1))Γ1 (3.26)

The quadratic form (3.25) is minimized by

φcl=-aGQ(uγψ. (3.27)

See Appendix A. Writing Φ = φcι + φfι, expand (3.24) into background and
fluctuation parts, yielding

ί<^,,G-V/ι> + iα<V,[/-αQGQ*]V>. (3-28)

In (3.28) the field φfl is a unit lattice field but φ is an L-lattίce field. The scaling to
the unit lattice will rewrite the second term in (3.28) in terms of a unit lattice field
V>(1) = y*Ψ Let G! = 9>ζGSfL = G^u^ denote the scaled Green's function, which is
expressed in terms of the L"1 lattice gauge field u±.

4. Form of the kth Effective Action

In this section we state the quadratic or mean field approximation to the action
which is produced after k renormalization transformations. We define the basic
objects and give some detailed formulas for the quadratic action. Basically the
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action is the sum of two parts: a gauge field action and a scalar field part which is
quadratic in φ and depends on an average value of the gauge field. There are further
interaction terms between the gauge field and the scalar field, but these interactions
yield small corrections to our mean field action and are not considered here.

We begin with a discussion of the gauge field terms. The scalar field is more
straightforward and is postponed to the final subsection. The formulas which we
give here are justified in Sect. 6, when we show that renormalization of the kih

effective action yields the quadratic form for the (k + l)sί effective action. The action
has the form

Sk(v, ψ) = i</(fe), σkf
(k)y + i<ψ, Ak(uk)ψy + interaction terms, (4.1)

where the interaction terms will be considered in detail in a later paper.

4.1. The Axial Gauge Propagator and Mΐnίmίzer

We require an axial gauge propagator to express the effective action. Define GktAx

by the functional integral

exp(i<J,Gfci^>) = Z£iJ^
(4.1.1)

Here the normalization factor ZktAx can be computed by setting J = 0. The
averaging operator Qk is the fc-fold composition of the 1-step averaging operators
Q for bond variables, Qk = (Q)k It follows that Qk is given by the formula (2.13),
where L is replaced by Lfe. Finally, the axial gauge is fixed by the delta function

δk.A*(A)= kUδAx(QjA). (4.1.2)
7 = 0

The/h factor in the product acts on the Ljη = Lj~k lattice. It sets bond field averages
QjA to zero on contours Γyx defined in the Ljη lattice in the same way that the axial
gauge was fixed in Sect. 3 on contours in the unit lattice.

The reader may wonder whether d has zero modes on the subspace of gauge
fields satisfying QkA = 0 and satisfying the axial gauge condition. Such zero modes
do not occur, and as a consequence the integral (4.1.1) is convergent also for
noncompact gauge fields. A proof of this fact for k = 1 follows by considering on
each plaquette in a lattice block the condition dA = 0 and the axial gauge
condition. This shows that A can be nonzero only on bonds connecting different
blocks, and it must be constant on the bonds connecting two given blocks. The
condition QA = 0 then ensures that A is everywhere zero. Similar, elementary
reasoning yields an inductive proof for k > 1, but we leave out the details.

The propagator Gk Ax itself is the second moment of the measure
exp( — 11| 3^41|2), restricted to the space of gauge fields which satisfy the /cth axial
gauge condition and condition on the fcth average fields vanishing. We do not know
a simple operator theoretic definition of Gk Ax, and we generally establish the
properties of the propagator by appealing to the definition (4.1.1).

Another aspect of the action SG(A) = \\\dA\\2 concerns what configurations
minimize SG(A) subject to the constraints of a gauge condition and a condition
that the average field QkA equals a given value B. We introduce a transformation
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Hk Ax which maps B into such a minimizing configuration for axial gauge, and we
call Hk Ax the axial gauge mίnίmίzer. Explicitly,

tffe,^ = Zfc^(β)-M^^ (4.1.3)

where

Zk<Ax(B)=$®Aδ(QkA-B)δk,Ax(A)exp(-±\\dA\\2). (4.1.4)

Note that by definition

QkHk,AxB = B. (4.1.5)

4.2. The Quadratic Action and Plaquette Fields

We begin with the definition of the basic quadratic form σk. Again we use a
functional integral definition

(4.2.1)

Here / is any real (Lie algebra) valued field defined on unit lattice plaquettes.
Clearly σk is related to the propagator Gk Ax of Sect. 4.1. Comparing (4.2.1) with

(4.1.1) we find

σk = Qk(I-dGk>Axd*)Ql* = η~2I-QkdGk)Axd*Ql*. (4.2.2)

Here we have used QlQl* = η~2, see (2.24). Note that if k= 1, then Gk Ax = C and
(4.2.2) agrees with (3.21).

The right side of (4.2.2) involves the combination dGk>Axd* which is invariant
under a change of gauge. Hence the gauge chosen to define σk is irrelevant, and the
quadratic form σk is gauge invariant. We use this property in Sect. 7 when we
derive an explicit momentum-space representation for σk. Using that represen-
tation we also establish a uniform, positive lower bound

0<c^σk. (4.2.3)

The quadratic part of the effective action is obtained by evaluating σk on a
special field configuration /(fe) related to the gauge field after k renormalization
steps. Let v be defined for unit lattice bonds, with values in the group U(l). Define
the plaquette field /(fe) on the unit lattice by

f), where ek = e(Lkε)(4-d)l2. (4.2.4)

The quadratic part of the action for the gauge field is then

i</"W(iί)>. (4.2.5)

We also use a field fk which lives on the η = L~k lattice and is defined by

fk = (I-dGk,Axd*)Qe

k*fW. (4.2.6)

Thus fk(p) is a function with peTη. The action (4.2.5) also can be written

. (4.2.7)
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This identity is a consequence of the fact that dGk,Axd* is a projection operator.
Alternatively, we compute from (4.1.1) and (4.2.1) that

from which (4.2.7) follows.

4.3. Quadratic Action for Curls

The quadratic form σfc simplifies on curls, namely for fields / of the form / = dB. In
particular

(B,ΔkBy, (4.3.1)

which defines an action Ak. To give a functional integral representation for Ak, we
note that

(4.3.2)

Here we have performed a translation of A on surface bonds A-^A + Qk*B. We use
the fact that the axial gauge condition is independent of the surface bonds, we use
dβί* = βk*d, and we also use (2.19).

The action Ak yields the unit lattice propagator C(k\ defined as follows:

exp(i<J,
(4.3.3)

The actions Δk and propagators C(fe) were studied by Balaban [611] who
established that C(k) is well defined and is bounded in norm

||C(fc)||^c (4.3.4)

uniformly in k. Furthermore C(fc) has a kernel which decays exponentially,
uniformly in k.

b\X-y\). (4.3.5)

4.4. Landau Gauge Propagator and Minimizer

The axial gauge has many useful properties, especially in providing convenient
definitions of Green's functions, and for establishing many algebraic identities in
Sect. 5. However, the axial gauge does not provide either good regularity or good
decay properties for the Green's functions. These are much better in Landau
gauge.

Landau gauge is defined for our lattice theory in a complicated way, because of
the restrictions on gauge transformations. We introduce a gauge fixing function
$(d*A). The exact form of ^ is important for the proof of estimates. An
appropriate choice is

)? (4.4.1)
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where Q' denotes the ordinary average over fc-blocks. Such a Faddeev-Popov type
choice leads to the formula for the Landau gauge minimizer

, (4.4.2)

where
Zk(B)=$@Aδ(QkA-B)y(d*A)Qxp(-±\\dA\\2). (4.4.3)

We could define a well-behaved, Landau gauge propagator Gk by a formula
similar to (4.4.1), but with &(d*A) replacing δktAx(A). However, we do not use this
propagator in our consideration of the Higgs effect. Rather, we define a propagator
3)k in terms of minimizers Hj and the covariance operators C0) of Sect. 4.3. Let

@k= Σ HjCΦHf. (4.4.4)
j=o

Here the transformations Hj are now defined by the same formulas as (4.4.2);
however, they act on the η = L~k lattice instead of the L~j lattice and they involve/11

order averages Qj. Similarly the propagators C0) are defined by the formula (4.3.3)
but on the Ljη = Lj~k lattice, rather than on the unit lattice. They still involve one-
step averages Q.

We remark that ®fe, Gk Ax, and Gk are related by change of gauge formulas,
some of which we establish in Sect. 5.

4.5. Bond Fields

The first renormalization step in Sect. 3 yielded an effective action S(1\v,ψ)
depending on a unit lattice field t?, through the IT1 lattice field u1. We need to
generalize this picture to the k-step action S(k}. After k renormalization steps we
again have as independent variables the gauge field v defined on the unit lattice. We
introduce a generalization of the configuration u± denoted uk. To begin, we have to
define a transformation Qk* from unit-lattice, group-valued configurations v to
^/-lattice, group-valued configurations.

We can represent an arbitrary v as

(4.5.1)

where Bb = (ie^'1 Inf b9 and the branch of the logarithm was chosen in (2.1 1). Then
we extend the definition Qf from the Lie algebra to group variables v by the
definition

beTη. (4.5.2)

This raises the question of what happens if we choose another branch of the
logarithm. The independence of the resulting transformation on this choice follows
from the equivalent definition:

1 if b is strictly contained in a /c-block

(both endpoints belong to the block)

υc if the ^-lattice bond b belongs to the corridor (4.5.3)

of bonds connecting the two blocks Bk(c_) and

Bk(c+). Here c is a unit lattice bond.
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Now we define

(uk)b = (QTv\ exp [ - iekη(®kd*Q3*fM)ά . (4.5.4)

This field configuration uk is the minimal configuration for the approximate action,
up to a gauge transformation. It serves as the background field (external gauge
field) in the expressions for the scalar field action and propagators.

4.6. The Scalar Field Action

The fundamental propagator Gk(uk) for the scalar field in this theory can also be
defined by a functional integral,

Zk^ (4.6.1)

Since no restrictions on φ occur in the Gaussian integral (4.6.1), we can also write

GΛ^C-Λfc + βtβffaύ&fakXΓ1 , (4.6.2)

where

-AUk = DϊkDUk. (4.6.3)

The coefficients ak are produced by iterating one-step renormalization trans-
formations which use a constant a in the Gaussian. This yields
ak = a(l— L~2)(l — IT2*)"1 in the /c-step transformation [3].

The quadratic form which arises for the scalar field is <φ, zlfc(tίfc)φ>, where ψ is
the unit lattice scalar field and where

Muk) = akI-alQk(uk}Gk(uk)Qt(uk) . (4.6.4)

The scalar field action depends on the unit lattice field \p through the ^-lattice
minimizer φfe, where

The other propagators such as C(k\uk) are defined as in [3] with the only change
that the background gauge field is uk.

5. Relations Among Minimizers and Propagators

5.1. Change of Gauge for Minimizers

In this section we discuss relations among the operators H and G. We begin by
relating Hk Ax and Hk. Recall that HkB is the configuration which minimizes the
action \\dA\\2, subject to a gauge condition as well as the restriction QkA = B on
field averages. We claim that Hk AxB and HkB differ by a gauge transformation,

Hk,AxB-HkB = dλ. (5.1.1)

We show that λ is an explicit, linear function of HkB. In order to specify λ, we
choose a sequence of points x0, ...,xfe, where x = x0? y = *&> an^ where

xe&(xj)9 XjETft,, (5.1.2)
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that is

Y <= R(\ ϊ (*> 1 TlA; tr JL/\^V;_|- ]_) . {J.L.JJ

The contour Γx. x runs from x to x1 in £(*i)? from xx to x2 in 5(x2), etc.

Proposition 5.1.1. The relation (5.1.1) holds with

k-l

λ(x)=— Σ LJ \(QjHkB) (Γ +ltX)— Σ (L QjHkB) (Γ +ltX ) \ .
7 = 0 \_ x'eB(xj+ί) J

(5.1.4)

Here we use (QjHkB)(Γ)= Σ (QjHkB)(b), with no factor of the lattice spacing
beΓ

forΓ.

Proof. The definition of Hk AxB is

Hk,AxB = Zk>Ax(BΓΊdAδ(QkA-B)δk>Ax(A)exp(^ (5.1.5)

where k-i

Furthermore,

where ^(3*^4) is a gauge fixing term, and where both integrals are normalized so
that without the final factor A they equal 1. We use a variant of the Faddeev-Popov
procedure and insert the factor 1 in the integrand (5.1.5), expressed as

1 =Zk~
1 f dλδ(Qίλ)y(d*A-Aλ).

Therefore,

^

Making the gauge transformation A->A + dλ, and using QkA
= QkA + dQ'kλ = QkA, on account of the δ function yields

= Z,1Zk(B). (5.1.8)

If we perform the same steps leading to (5.1.8) in (5.1.5), we obtain by (5.1.8)

• Sdλδ(Qkλ)δk.Λx(A + dλ)(A + dλ) . (5.1.9)

In order to evaluate (5.1.9), we solve the system of linear equations for λ which
result from the delta functions δ(Qkλ) and δktAx(A + dλ). Using this value of
λ = λ(A), we have
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We now study the equations which determine λ(A). The axial gauge fixing
conditions in (5.1.9) entails

(QjA) (Γ,.,,) = - (Uη) ~ 1 [(βμ) (zO - (Q λ) (z)] ,

where z and z' are endpoints of a bond in B(x./+ι) which lies on an axial gauge
fixing contour. Since every point in B(xj+ x) lies on some such contour, we can sum
these identities to show that for all x'eB(xj+1)9

+i)] . (5.uo)
Summing over x'eB(xj+1) yields

(QjλH^+ί>(Qj+^(xj+ί) + UηQ\QjA)(ΓXj+^). (5.1.11)

We use the fact that (Qfi) (xj+ J is constant in this sum, and the final Q' acts on " ".
Substituting (5.1.11) in (5.1.10) with x'=Xj then gives

(QjX) (xj) = (β}+ ιA) (x,+ 1) - I/if [(β )̂ (ΓXJ+19X) - Q'(QjA) (ΓXj+ 1§ .)] . (5.1.12)

The identities (5.1.12) hold for j' = 0, 1, ...,fe-l. Setting j = 0 we have

AW = (βόA) (x0) = (β'4) (xj ~ ί D4(ΓX1, ,) - (Q'A) (ΓXί9 •)] .

Furthermore, summing (5.1.12) from;' = 0 toj = k- 1, the factors (βμX x/) cancel
except for 7 = 0 andj = fc. Thus

Using the 5 function for gμ, and η = L~k gives

We now notice that λ = λ(A) is a linear function of A. Thus we can write
λ(A,x) = λ(HkB,x)-λ(A-HkB,x). The term λ(HkB,x) is independent of A and
comes outside the A integral. Thus

exp(-^\\dA\\2)dλ(A-HkB). (5.1.14)

Since HkB minimizes the quadratic form || dA \\ 2 subject to the restrictions imposed
by δ(QkA - B) and 0, the term in (5.1.14) involving dλ(A - HkB) is linear in A- HkB
and hence its integral vanishes. Thus HkίAxB=HkB + dλ(HkB), and the proof of
Proposition 5.1.1 is complete.

5.2. Decomposition of Axial Gauge Green's Functions

Let C(fc) denote the unit lattice propagator defined in (4.3.3). Here we give a simple
relation between C(fc) and the axial gauge propagator GktAx of (4.1.1). This relation
is similar to the definition (4.4.4) of the Landau gauge propagator ®fc in terms of the
C0). The algebraic identity for Gk Ax will be very useful, especially in computing the
form of the action after renormalization, even though the axial gauge propagator
has poor regularity and decay properties.
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Proposition 6.2. The Gk Ax satisfy the recursion relation

1,Ax, (5.2.1)

with the solution:

Gk,Ax=
kΣoHj,AxC<J>HlAx. (5.2.2)

Proof. Clearly (5.2.1) and (5.2.2) are equivalent. We prove (5.2.1) starting from the
definition of GktΛx, namely (4.1.1). Write Qk = QQk-ι, and expand the integrand of
(4.1.1) using

δ(QkA)δk>Ax(A)=ίS>Bδ(QB)δ(Qk,1A-B)δAx(B)δk.lιAx(A).

Then translate the integrand with respect to A to the minimum of the quadratic
form j\\dA\\2 — (A,jy, under the restriction Qk_1A = B and the appropriate axial
gauge. The minimum is achieved at Hk_1 AxB, so we write

A = A'+Hk.1>AxB. (5.2.3)

Inserting this and using (4.1.5) gives

exp(i<J, G^J»=Z- 1 \9Bδ(QB)δAx(B)

• exp(-i \

(5.2.4)

The A' integral yields Zk_1 Axexp(j(J, Gk-ltAxjy), while the B integral gives

(5.2.5)

Thus (5.2.2) holds and the proposition follows.
Now that we have related Hk and Hk tAx9 we can find the relation between 3tk

and Gk Ax. In fact we need only the compositions @kd* and Gk^Axd*9 since only
these products occur.

Proposition 5.2.2. There is a gauge transformation D such that

Gk<Axd*-@kd* = dD. (5.2.6)

Explicitly

D= ΣWHjCMHfd*), (5.2.7)
j=o

where λ 3 is the function of Proposition 5. LI with k set equal toj. Here we write the
operator identity, rather than the identity GkfAxd*B = @kd*B + dDB for
configurations.

Proof. We use three facts: the formula (5.2.1), the fact that

HftAj* = Hfd*, (5.2.8)
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is gauge invariant, and formulas (5.1.1), (5.1.4) for the factor HJtAx — Hj in the
expression

GktAxd*-®j* = *Σ (Hj<Ax-Hj)CV>Hfd* . (5.2.9)
J = 0

Substitution then yields (5.2.7).

Remark 1. A consequence of the proposition is

SGki^* = 30kδ*. (5.2.10)

Remark 2. The gauge field quadratic form </(k), σfc/
(k)> can now be written entirely

as a function of the ^-lattice gauge field uk. In fact

</(V*/w>= Σ ίfΊΛ(p)l2, (5.2.11)

where

Λ(p) = (ίe4»/2)-1lnιιt(ap). (5.2.12)

This follows from the definition (4.5.4) of uk, giving

uk(dp) = π

From this and (5.2.10) we get

(iekη
2Γ 1 In

coinciding with (4.2.6).

5.3. Minimizers and Green's Functions

To help define the fluctuation field in the (k + l)st step, we need one more identity,
namely

Hk,AxB=Ql*B-GktAxd*Ql*B. (5.3.1)

This identity follows by inspecting the definition (4.1.3) after the translation
A = A'+Ql*B. Use the facts Qkffk* = 1 and dQfB = Ql*dB to obtain

Hfe,^£:=Zfe^(β)-M^m^

The second term yields Qs

k*B. In the first term we translate to the minimum of the
quadratic form which is Gk,Axd*Ql*dB. We see this by integrating.

6. Renormalization Transformations Produce the Effective Action as Claimed

In this section we study the renormalization of the quadratic part of the fcth action
Sk in (4.1). This action depends on the plaquette field f(k\ the (background) bond
field uk and the scalar field ψ. Under renormalization we prove that Sk^Sk+ί. We
exhibit this transformation by writing Sk as a sum of two terms: the first is Sk+15 but
scaled from the unit lattice to the L-lattice. The second term is the contribution of
the fluctuation field on the unit lattice. The fluctuation field will be integrated in
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performing the renormalization transformation, while the remaining terms scale
back to give Sk+ ± on the unit lattice. In (4.1) we ignore the small corrections due to
interactions and concentrate on the quadratic terms. Hence the result of this
section is to justify our (otherwise ad hoc) choice of σk and Δk(u^ as the mean field
quadratic forms for the feth effective action.

In accord with the notation of Sect. 3 we denote the variables in Sk as u and φ
which take their values on the unit lattice. Thus we study

v/Qu) δAx(u) exp [ - \a || ψ - Q(uk}</> \\ 2 - Sk(u, φ)~] . (6.1)

In this integral we perform a preparatory translation (the first translation in
Sect. 3) to isolate the average gauge field on the fcth length scale. Let v denote the
average gauge field on the L-lattice, and on the unit lattice let

u = u'Qs*v, u' = exp(tekB')' (6 2)

The plaquette field

/w(p) = (ίe»)-1lnu(δp), pel;, (6.3)

then decomposes as

f(k}(p) = (fe*) " 'In ιι'(3p) + (feO - Mn(e**i;) (dp) = (dB^(p)^L-d'2(Qeψk+^(p),
(6.4)

which is valid as long as u'(p) and (Q^υ) (p) are close to 1. The new field f(k+ υ is an
L-lattice field, but Qk* maps it back (to edge plaquettes) in the unit lattice.

The integral (6.1) will be studied in detail in later papers by dividing it into small
and large field regions, defined by some restrictions on the range of φ and u. In this
paper we are concerned with the small field regions which give the dominant
contributions to the integral. In this region the identity (6.4) holds.

We will also see that the perturbative terms in the action are unaffected by the
restriction to small fields, since these restrictions become trivial in the limit of zero
coupling constants. In particular, this means that in the calculation of leading
terms in the action Sk+ 1 we can assume that the integrations over fields in (6.1) are
restricted only by the delta functions which appear in the definition of the
renormalization transformation.

6.1. σk = σk + 1 + Fluctuation Form

The goal here is to show that

<f(^σjWy = yL-\f*+ί\σk+J*+Vy + (B,AkBy. (6.1.1)

In other words, the quadratic form σk in Sk which occurs in the integrand (6.1) can
be decomposed into the sum of two independent forms: the (fc+ l)-step quadratic
form scaled to the L-lattice and the quadratic form for the fluctuation field B.
Hence the fluctuation field can be integrated and, after rescaling to the unit lattice,
we obtain the desired (fc+ l)-step gauge field quadratic form. Using (6.4),

<f(k\ σfc/
(fc)> - <3B', σkdB'y + 2L~d/\dB\ σkQ

e*f(k+ υ>

. (6.1.2)
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Use definition (4.3.1) of Ak and the representation (4.2.2) for σk. In addition, note
that QeQe

k = Qe

k+1. Then
), σkf^y = <*', AW + 2L-d'\(I-dGk>Axd*)Qe

k*dB\ βίt ι

(6.1.3)

By (5.3.1), HkίAx = Qf-GkίAxd*Ql*d. Apply d to this identity, and use the gauge
invariance statement

dHk,Ax = dHk (6.1.4)

and the identity dffk* = Q$*d. It follows that

dHk = (I-dGk<Axd*)Ql*d. (6.1.5)

Substituting (6.1.5) in (6.1.3) gives

<f(k\ σ*/w> = <B', ΔkB'y + 2L-"l\B', H$d*Qe

k*+ ί f
(k + 1)>

Consider the quadratic form (6.1.6) as a function of B' and subject to the axial
gauge and averaging restrictions of the integral (6.1). The minimum of the form is
given by Proposition A3 of the Appendix, namely

B'= -L-dl2C(k}H%d*Qe

k*+J(k+v. (6.1.7)

The proposition is applicable with #f§ the subspace of axial gauge configurations
defined by the /cth axial gauge delta function δkt Ax(B") and the delta function δ(QB").
The covariance C of the proposition then agrees with C(fe) defined in (4.3.3), and this
is also the covariance in (6.1.7).

Furthermore, the translation

(6.1.8)

and the decomposition (A 16) yield

(6.1.9)

Using (6.1.4) and the representation (5.1.15), we can rewrite (6.1.9) as

where the scaling ̂  absorbs the factor L~ά and where

^+ι = βiUισ-δGfc+1>^*)βΓ+ι.

This verifies the inductive hypothesis.

6.2. uk = uk + ί - Fluctuation (Modulo Gauge Transformation)

We now investigate the effect of the two translations defined in Sect. 6.1 on the field
uk. This allows us to separate a fluctuation field and a gauge transformation which
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then leave uk+l. Rewrite the definition of uk (with u in place of ί;), so

uk = Qfu exp( - iekη®kd*Qϊ*f(k>). (6.2.1)

By (6.2) we have Q^U = (Qί*+ ±Ό)e**»ιQ*»', (6.2.2)

so substituting this and (6.3) into (6.2.1) we obtain

uk = βft ,vexpliekηQs

k*B'-iekη(@kd*Q*k*dB')-z^L^2W*βΓ+1 f(k + υ)] -
(6.2.3)

We have the identity GkίAxd* = 3>kd* + dD to replace ^fcδ* by GkίAxd*. Then we
apply again the identity (5.3.1) to replace the first two terms in the exponential by
iekηHk AxB'. This takes care of the first translation.

The second translation (6.1.5) then yields

ii^βft^expCfe^

-^L-d/2(^*enι/(fe+1))] (gauge trans). (6.2.4)

We make another gauge transformation to replace the axial gauge minimizers by
Landau gauge minimizers, and we combine the second and third term into an
operator ®fe+1. After rescaling, the L~d/2 factor is absorbed and we have

uk = eίekηHkBuk+ i (the gauge transformation), (6.2.5)

where the gauge transformation is generated by

exp[iekD(Qΐ*dB') + iekλk(HkB)- ίekL^2λk(HkC^Hkd^Qr+,/<fc+ »)] .
(6.2.6)

6.3. Scalar Field Renormalization

In Sect. 6.2 we established the general decomposition (6.2.5) for uk9

uk = uk+1 e

ie^HkBeiηdω, (6.3.1)

where ω denotes the gauge transformation (6.2.6). This gauge transformation does
not influence the gauge field quadratic form σk, since this form is fully gauge
invariant. More generally, expressions involving only the gauge field are gauge
invariant, so we must discuss the scalar field part of the action.

In that case, the form Ak(uk) does depend on the gauge transformation ω. Our
procedure for constructing Sk has the general invariance

Sk(uke-^eίλφ) = Sί(ukyφ) (6.3.2)

for a gauge transformation λ. While we do not prove this invariance here, it is clear
in the case of the quadratic forms for which we write explicit formulas.

The scalar field integral has the form

\®φπv{-[Sk(uk,φ) + \a\\v-Q(uk)φ\f }}. (6.3.3)

If we apply the decomposition (6.3.1) for uk, and the gauge invariance (6.3.2), then
(6.3.3) becomes

). (6.3.4)
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Here we use the gauge invariance of the measure 3fφ. The resulting integral still
depends on ω. However, the integral of (6.3.4) over ψ is independent of ω, since 3>\p
is also gauge invariant.

We can either write the new action in terms of ψ' = e~ιωψ, or use this gauge
invariance and the fact that we are only interested in integrals of (6.3.4) over ψ,
times other gauge invariant functions of \p (as observables). We take the latter
point of view and ignore ω.

Now we are in exactly the same situation as [3]. We expand the whole
integrand with respect to HkB and perform the fluctuation field integral over
boson fields as in that paper. It reproduces the (fc + 1) quadratic form for the action.

7. Positivity and Localization of the Effective Action

Positivity bounds on σk and Ak(uk) are a necessary step in proving that the
renormalization transformation preserves stability of the effective action. The
main difficulty centers on the quadratic form σk, which arises from the gauge field
action. In particular, σk comes from the Wilson form of the action. Unlike the
"Gaussian" action for the gauge field used in earlier studies of the U(l) Higgs
model, the Wilson action has rather subtle positivity properties. We study this
question first, yielding the main result of this section, 0 < c ̂  σk. We then finish by
stating minor generalizations of known estimates which apply to the other
operators Hk, S$k, and Ak(uk) introduced in this paper.

7.1. Positivity of σk

Theorem 7.1.1. There exists a constant c> 0, independent of k, such that

(7.1.1)

The strategy of the proof is to give an explicit formula for σfe, which we then
analyze in detail. Since we study periodic boundary conditions, σk is translation
invariant. Thus it is natural to study σk as a multiplication operator σk(p) in the
Fourier transform representation. (Note that we now use p to denote a momentum
variable, rather than a plaquette variable.) The momenta p have d components pί?

and \pi\ ̂  π.
We introduce a tensor notation with functions fμv on plaquettes given as

antisymmetric functions on coordinate axes μ, v which indicates plaquette
orientation. They also depend on a lattice position. Then

</(*W(fc>>= f ... Γ<7w(p),*t(p)/*>(p)>dp, (7.1.2)
— π — π

where the momentum p inner product is defined by

= Σ »^;μvΛκ(p)/Λκ(p). (7.1.3)
μ, v,λ,κ

In order to study σk(p) we need standard momentum space operations such as
derivatives d or Laplacians A. Since we have two special lattice scales, the unit
lattice leading to momenta |p, |^π and the η = L~k lattice leading to momenta
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\^π/η = πlί9 we require operators on both scales. We use a superscript (1) to
denote the unit lattice scale.

With these conventions, the derivative d can be represented by a diagonal d x d
matrix d(p) with eigenvalues

(7.1.4)

The unit lattice derivative d(1)(p) is a similar matrix with eigenvalues

a<1

1>(p) = exp(φμ)-l. (7.1.5)

The corresponding Laplacians are

4(p) = Tr3(p)*3(p), J<1)(p) = Tr3<1>(p)*δ<1>(p). (7.1.6)

We require the operator V(p) defined by

7(p) = 3(1>(p03(p)-1. (7.1.7)

Here and below we use the notation pj e [ — π, π] and

p'=pmod2π, (7.1.8)

so p' denotes a unit lattice momentum. The eigenvalues of V(p) are
vμ(p} = d(μ}(pr)ldμ(p). In terms of F(p) we also define

ιι(p) = det7(p) (7.1.9)
and

^0= Σ Kp'+O^'+OW+iΓ1. (7.1.10)
ίe2πZd
IM^π/if

In terms of these functions we can express the averaging operators Ql, etc. For
example

The basic object we wish to study is σk, defined in (4.2.2),

δ<W)βί*. (7.1.12)

The axial gauge Green's function Gk Ax has a very complicated momentum space
structure. Thus we use gauge invariance of dGk>Axd* to replace it by the Landau
gauge operator dGkd*. Here we emphasize that Gk is a slightly different operator
from @)k introduced in Sect. 4. The transformation Gk is defined by replacing the
gauge-fixing delta function δktAx(A) in (4.1.1) by the Landau-gauge fixing function
&(d*A) of (4.4.1). The operator Gk was given in the momentum representation in
[61, Eqs. (1.83) and (1.84)]. Starting from this expression, one can derive the
following formulas for σk(p) by straightforward, algebraic manipulation:

We express σk as a sum of two terms

σk = τ,+τ2. (7.1.13)

Here τ1 vanishes on curls. Thus if f=dB, then τ1f=0. Explicitly
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and

Γ

\ ̂ -L ^ κ (7115)

In the formula for τ^//)? each term on the right side is evaluated at momentum
p' + l. In the formula for τ2? the averaging only occurs in

1 " ' ~ (7.1.16)

In both T! and τ2 the expressions inside brackets [ ] are projection operators.
Thus σk has the general form of a sum of projection operators, or tensor products
of projection operators, sandwiched between averaging operators.

The fact that τ1 vanishes on curls can be established as follows: The general
form of τi in configuration space is evident from (7.1.11), (7.1.14) namely

τι = Ql(I-Pe)Qe

k*, (7.1.17)

where Pd denotes the orthogonal projection onto curls. (If Pί projects one-forms
onto gradients, then P1®Pί projects two forms onto curls.) Furthermore

o. (7.1.18)

Let Jtf(p) denote the space of momentum p lattice one-forms B. Write the two-
forms 2C (p) as a sum of curls and an orthogonal complement,

Here we now introduce the scalar product,

and the decomposition (7.1.19) is with respect to this inner product. This
decomposition is natural in the study of σk(p), since τ^δJf (p) = 0.

Remark that there are strictly positive constants c l 5 c2 such that

so the corresponding norms are equivalent. In fact

(P/9 n(/V7/2)'

and since for \x\ ̂  π/2,

2^sinx

π x

it follows that for \pt\ ̂  π,

. (7.1-20)
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Proposition 7.1.2. Suppose there exists ε > 0, and τ0(p) ̂  τx(p) such that for \PJ\ ̂  π,

β^τo(p)Γ(3 *r(p))J β"d ε^τ2(p)^JΓ(p). (7.1.21)

Γ/zen Theorem 7.1.1 holds.

Proof. It is sufficient to show that there is a constant c> 0 such that

^0*(p) (7.1-22)

for all \pj\^π. The inequality

K(p)/Φv(p)1/2l^c2 (7.1.23)

is an extension of (7.1.20). As a consequence,

I|τ2 I I ^Λf, (7.1.24)

where M is a constant independent of p and k.
Let us now decompose σk(p) according to (7.1.19). For f = dB + fλ

write

= </ W^> + </, τ2/> ̂  </\ τ0.Γ> + </, τ2/>

(7.1.25)

Here we use τtd =0 and the hypothesis on T!. The idea is to bound </, τ2/> using
the positivity of τ2. In fact, 0^t2 is evident from (7.1.15). Then for any <Se[0, 1],

(7.1.26)

Note that by (7.1.24) and the positivity of τ2,

</> τ2/) = (βB> τ255) + <δ#, T2/1) + </1, t25B) + </1, τ2f
λy

For any A>0, we then have

</,τ2/>^<a

Use the lower bound (7.1.20) on τ2 \ δJf , and choose λ so (MΛ)2 = ε/2. Thus

</,τ2/>

Inserting this in (7.1.26) yields

(7.1.27)

where the last inequality follows for any δ < (ε/2M)2 ̂  1 . Let <5 > 0 and c = %δε > 0.
Then

as desired and completes the proof of the proposition.
Let us now prove the lower bound (7.1.21) on τ0(p). Introduce the operator

τ0(p) obtained by restricting the sum in (7.1.14) to / = 0. Clearly each term in the
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sum over / is a nonnegative operator. Hence

τoOO^Cp). (7.1.28)

Note that because fL is defined with respect to the inner product (7.1.19b), τ0

simplifies on fL. In particular the d terms vanish and

</Wx>=il«(P)l2 Σ l/»/(»,(pK(P))l2 (7-1.29)
μ,v

From (7.1.20) we then infer

for some ε>0, which with (7.1.28) yields the desired lower bound

ε^Ti f(δjr)1. (7.1.30)

Next we consider the bound on τ2 [dJίf. But since τ1δ = 0,

<d£, τ2δ£> - <d£, σfeδ£> = <B, 4£> , (7.1.31)

using the definition (4.3.1) of Ak. An explicit formula for Δk shows that

Wf/φ,}-1 Σ \(SB\v\
2l(φμΨv) .

/ μ,v

which is bounded below by ε||δB||2 (see also [61, 8]). This completes the proof of
Theorem 7.1.1.

7.2. Regularity and Decay of Propagators and Minimizers

We are interested in Landau gauge propagators and minimizers, because they
have good regularity and decay. The key objects are Hk and C(fc), while estimates on
2k follow by (4.4.4). The minimizer Hk can be expressed as an integral kernel. For
xe?;,

(HkB)μ(x)= Σ Hk>μv(x;y)Bv(y). (7.2.1)
yeΓp),v

The kernel Hkifiv(x,y) and its gradient decay exponentially. In particular there
exists δ > 0 and for 0 ̂  α < 1 a constant M = M(α) < oo such that for |x — x'\ ̂  1 ,

«'-*. (7.2.2)

This inequality is a consequence of Proposition 1.2 and the representation (1.103)
of [61].

The unit lattice propagator C(fc) also has exponential decay,

*-*9 (7.2.3)

for x, y e T/fc). This inequality follows from the bound (2.157) in [611] and from the
general theorem on unit lattice operators in [7]. In fact this inequality also holds
for propagators with Dirichlet boundary conditions outside a domain Λ,
uniformly in A.
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The gauge transformation λ in (5.1.1) is bounded and depends on B through an
exponentially decaying kernel Dk:

λ(χ) = (DkB) (x), \Dk(x, 6)| ̂  Me-δάisi(x>b} . (7.2.4)

This estimate follows from (5.1.4) and (7.2.2).
The operators 3ϊk have the same properties as the operators Gk in [61],

Proposition 1.2, with exponential decay but singularities on the diagonal. These
properties follow from (4.4.4) and the above estimates on Hk, C(k\

7.3. Positivity of Ak(uk)

The scalar field quadratic form Δk(u^) depends on the background field uk. Hence
we can only establish stability properties for Ak(Uk) with some restriction on uk. In
particular, let us assume that for the unit lattice field v9

\υ(dp)-l\£ekt(ej, (7.3.1)

where /z(ek) = (1 + lnek

 1)^. Then the stability estimate can be stated in two forms.
For constants y>0, α>0, M<oo,

(φ,Ak(uk)φy^γ Σ \uk(b)φ(b+)-φ(b_)\2-Me2

k-« Σ W*)I2 (7.3.2)
fcei W jceT/Ό

The second form of the inequality substitutes v b for uk(b) in the co variant derivative
of φ. These inequalities can be proved by an extension of the proofs of [7]. The
propagators arising from Ak(uk), under the restriction (7.3.1) on the gauge field,
also satisfy the regularity and decay estimates of [7]. In order to remain within the
framework of this reference, we remark that by change of gauge uk can be
transformed in a local region Λ into a configuration of the form exp [iekηA], where
A is smooth and small. In axial gauge for the configuration v in a domain A' D A we
can substitute 3fkd* = GkίAxd* + dD in the formula for wfc, we use (5.3.1) to replace
this by a minimizer in axial gauge. Then we use (5.1.1) to return the minimizers to
Landau gauge. This is a local procedure since /(fc) can locally be represented as a
curl.

Appendix. Quadratic Forms

In the analysis of this paper we often wish to minimize a quadratic form on a
Hubert space Jf , possibly subject to a constraint. We collect here a couple of
elementary properties which we use, and which could serve as the start of a more
general study of related problems.

Since we work with lattice fields, our space 2tf is finite dimensional and all
forms are bounded. Of course we may obtain limiting unbounded forms as dimJf
->oo (e.g., as in infinite-volume or zero-lattice-spacing limit). Such forms are
analyzed as limits of finite-dimensional approximations.

As a first example, let 0 5Ξ A = α*α be a self-adjoint transformation on J f and let
. Define the quadratic form

. (Al)

Let P denote the projection onto Range (α).



Renormalization of the Higgs Model 327

Proposition Al. Range α* = Domain A ~ \ so P = a A " 1α*. Furthermore

h(A)^h(Acl) = ̂ B,(I-P)By, (A2)

where

Acl=-A~lu*B (A3)

is the unique minimum of (A 1).

Proof. Note that Range α* = (Kernel α)1 and Kernel α = Kernel A. By the spectral
theorem J^ = Kernel (A) ©Range(^), so Range α* = Range A = Domain A'1.
Therefore P = αz!~1α* exists, P2 = P = P*, and Pα = α. Thus P is the projection
onto Range α. Writing

yields (A 2). Since h(A) is convex, the minimum is unique, to complete the proof.
If we translate the quadratic form h, using the change of variables

A = A' + Acl9

then as a consequence of (/ — P)α = 0, and h(Act) = j^B9 (I — P)J5>, h(A) decom-
poses into a sum of independent quadratic forms. We state

Corollary A2. With h(A) given by (Al) and A = A' + Acl defined by (A3),

h(A) = ±(A\AA'y + h(Acl). (A4)

We now specialize to the case where 3Ίf = L2(lRΛr, dx), with dx Lebesgue
measure. We consider the Green's function C of A. Assuming Q<A, then we have
two convenient representations for C. First

C = A~l, (A5)

by which we express C as the operator inverse of A. Secondly, we can express C as a
moment of a Gaussian measure, namely

Z"1 J exp(-i<x, Jx> + <x,J3»dx. (A6)

We are often interested, however, in the case of operators A with zero modes.
Thus A has an inverse only when restricted to a subspace Jf0 C 3tf which does not
contain zero modes. Likewise an integral such as (A 6) converges only when
restricted to such a subspace. In gauge theories it is often natural to choose various
subspaces J«f0, and furthermore A is generally not diagonal under the decompo-
sition ̂  = ̂ Q®^Q. Thus we are led to study quadratic forms Δ constrained to
act on e^J).

Define the transformation C on Jf7 by

. (A7)
^0

Clearly C is self-adjoint in the inner product < , >. Furthermore, define

(A 8)
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In general M^W and C\^^A^1. Thus we ask
(1) How are Δ0 and C related?
(2) What is the minimizer of the quadratic form \ <x, A Ox> — <x, By for x e Jf0 ?
Let us make the following assumptions: Let V be given and

n .ro, (A9)

on jf, (A10)

where Jf0 = Null K With these definitions, define

G = (A + VΓ1 (All)

and let ( , ) be the inner product

(A 12)

Then let P denote the projection of jf onto Jf0, where P is orthogonal in the inner
product (A 12).

Proposition A3. Under the assumptions above,

C = PG, (A 13)

so Range Cc^f0 Furthermore

and CA0C = C, (A 14)

HB = CB = Z~ί J exp(-i<x,^x> + <x,B»xdx. (A 15)
^0

is the minimum configuration of

ΓΛtis wii/ix =

ί <x, Axy - <x, B> = iCMy> - i<B, C5> , x € jf0 . (A 16)

Proof. For x e J^0, note that

Thus (A 7) can be written

Z-1 ί e
Jίfo

, (̂  + V)PGBy)dx , (A 17)
where we have used

<PGB, (4 + F)x> = (PGB, x) = (GB, Px) = (GB, x) = <GB, (J + F)*> (A 18)

Thus (A 17) equals

Thus <β, CBy = <β, PGB>, and (A 13) holds as claimed. To verify (A 14), note that

= P2G = PG = C.
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Next note that (A 17) displays CB as the minimum of y<x,^lx> — <x,£>, since
linear terms in the fluctuation x — PGB do not occur. Also from (A 18) we have for

<B,x>, (A 19)

so the integral in (A 15) equals CB. Finally, for xejffΌ, so by (A 19),
ΞΞ <B,j;>. It follows that

ί <jc, Ax) - <x, By = i<J>, Δyy + <Λ j;, CB> + ±(CB, ΔCB} - <j;, £> -

which is (A 16).
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