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Abstract. A method is developed for reducing the formulation of massless
models with several independent couplings to a description in terms of a single
coupling parameter. The original as well as the reduced system are supposed to
be renormalizable and invariant under the renormalization group. For most
models there are, if any, only a finite number of reductions possible including
those which correspond to symmetries of the system. The reduction method
leads to a consistent formulation of the reduced model in any order of
perturbation theory even in cases where it is difficult to establish a symmetry in
higher orders. An example where no symmetry seems to be involved is the
interaction of a spinor field with a pseudoscalar field. For this model the
reduction method determines the quartic coupling constant uniquely as a
function of the Yukawa coupling constant. The Wess-Zumino model is an
exceptional case for which the reduction method admits an infinite number of
solutions besides the supersymmetric one.

1. Introduction

Symmetry considerations provide a natural method of reducing the number of
independent parameters in models of quantum field theory. If a symmetry is
imposed, otherwise unconstrained coupling parameters become related among
each other so that the number of independent parameters is decreased.
Renormalizability of the model is maintained provided anomalies are absent and
the symmetry can be implemented in all orders of perturbation theory.

In this paper a more general approach for reducing the number of coupling
parameters is taken which is based on the principles of renormalizability and
invariance under the renormalization group. It turns out that these requirements
severely limit the possibilities of constraining the coupling parameters to a single
independent one. The method is developed for the reduction of massless models
from n+1 coupling parameters Ay, A, ..., 4, to a description in terms of 4, only.
Any symmetry requirement leading to a renormalizable formulation is certainly
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included by this treatment. In fact, hidden symmetries could be detected in this
way. On the other hand there are cases where the general reduction is possible and
unique, but no symmetry is known to be involved. It is also conceivable that a
symmetry can only be implemented in low orders while the general reduction
method leads to a unique prescription in all orders of perturbation theory. In such
a case a renormalizable formulation of the reduced model is obtained for which,
however, the relevant symmetry is only realized in low orders.

In Sect.2 the general conditions are studied under which a reduction is
possible. For the coupling parameters 4; as functions of 4, the ordinary differential
equations

di;
130‘_‘1 =ﬂj (1~1)
g
with
lim ;=0 (1.2)
lo"O

are found. #; denotes the B-function corresponding to 4; Equation (1.1) can be
derived either from the Callan-Symanzik equations [1,2] or the evolution
equations of the effective couplings. An interesting possibility is the special case
that the p-function of the reduced system vanishes identically®. Then, after
inserting the functions A//,) the f-functions of the original system also vanish

identically B,=0, i=0,1,...,n (1.3)

and the system (1.1) is trivially satisfied.

Renormalizability for the original as well as the reduced system implies that the
functions A44,) allow for power series expansions in 4. In lowest order one finds a
system of quadratic equations for the constant lowest order approximations gf’ of

the ratios 1
= +0(2o)- (1:4)
0

These are the eigenvalue conditions proposed by Chang for the ratios of coupling
constants [4]2. They form necessary conditions for the possibility of reducing the
system. But without further restrictions they are not sufficient. For sometimes
higher order effects prevent the extension of (1.4) to power series solutions of (1.1).

In Sect. 3 the case of two coupling parameters g2 and A is treated in detail by
applying results from [6] and [7]3. The B-functions are assumed to be of the form

Bo=bog*+..., Bi=ciA2+crAg*+cigt+.... (1.5

1 For some models arguments have been given indicating that the f-function vanishes to all
orders of perturbation theory. See for instance [3]

2 Chang et al. applied the eigenvalue conditions to grand unification in order to build
asymptotically free models with only one coupling constant. Unfortunately this program turned
out to be too ambiguous due to the freedom in introducing heavy particles. See [5] which contains
further references

3 The purpose of [6] was to find all asymptotically free solutions of the evolution equations
with two coupling parameters. In this context the solutions of (1.1-2) were constructed by
asymptotic expansions. Among the solutions found only the power series solutions are relevant
for the present paper
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A reduction to a renormalizable description in terms of g* is only possible if the

quadratic equation
105 +(ca—bo)go+c3=0 (1.6)

has real roots, i.e. if the discriminant
A=(62—b0)2—46163§0 (1.7)

is non-negative. For asymptotically free gauge theories with a Higgs coupling (1.7)
coincides with the condition for asymptotic freedom found by Gross and Wilczek
[8]. It is always satisfied for supersymmetric gauge theories where A= h? with h
describing a matter or Higgs interaction. In lowest order the ratio of the coupling
parameters is given by one of the roots g, of (1.6)

!
g—2=ei+0(92)- (1.8)
Unless

€=—Z—:}(@+—@-) (0+20-) (1.9)

is an integer the lowest order term (1.8) can be completed to a power series
expansion in g2. The precise conditions under which an expansion for integral ¢ is
possible are stated in Sect. 4. It is further shown that by a reparametrization it can
be arranged that the lowest order of a power series (1.8) becomes exact

V=0sg* if 040 (1.10)
and
N=0,9"%% if A=0(g*""?) (1.11)

with a suitably defined new coupling parameter A’.

In the remainder of the paper the reduction method is applied to two models of
special interest: Sect.4 concerns the interaction of a spinor field with a
pseudoscalar field. For a consistent formulation of the renormalization it is
necessary to introduce a quartic selfinteraction of a scalar field since the Yukawa
interaction alone would not render the four pseudoscalar vertex part convergent.
The model thus involves two independent coupling constants, g for the Yukawa
coupling and 4 for the quartic interaction. No symmetry is known which would
relate the two coupling constants. While the bare scalar coupling constant cannot
be dropped, one might think of setting the renormalized coupling constant A equal
to zero in order to eliminate the additional parameter. However, formulations with
different normalization points would then be inequivalent. On the other hand, the
general reduction method leads to a unique power series expansion

A=0.9*+0.9%+... (1.12)

of 4, thus providing a consistent renormalizable description with one coupling
constant g only. The two values ¢, and ¢_ correspond to different signs of A.
Finally the reduction method is discussed for models which become supersym-
metric by imposing relations among the coupling constants. Special problems may
occur for models which are not asymptotically free. In Sect. 5 the massless Wess-



214 W. Zimmermann

Zumino model* [9] is treated with independent coupling constants g for the
Yukawa and A for the quartic coupling. A peculiar situation is found due to the fact
that £ is a negative integer

E=-3. (1.13)

This leads to an asymptotic expansion of 4 in the form®
A=0,9*+0.19* +0,9°+039° +dg®Ing*+.... (1.14)

The coefficient g5 is arbitrary and d is determined uniquely by lower orders
including the order gb. For d=0 logarithms are absent and (1.14) represents a
power series with arbitrary g;. Without using supersymmetry, calculations of
order g® would be required to check whether or not d =0. But the existence of a
renormalized supersymmetric formulation excludes the occurrence of logarithms
so that d=0. With suitable supersymmetric normalization conditions one has

A=0.g* (1.15)
for the supersymmetric solution and

A=0:9*+0:0°+ T ™"’ (1.16)

with arbitrary g5. Thus the general reduction method is not unique in this special
case, but also admits infinitely many asymmetric reduced systems®. Even the
relation (1.15) is not characteristic for the supersymmetric case since by an
asymmetric redefinition of A the relation (1.15) can always be restored.

No such problems seem to occur for supersymmetric models where the
primary p-function is negative or vanishes in lowest order. For the N=2and N =4
super Yang-Mills theories it was found that the relevant lowest order solutions can
indeed be uniquely extended to power series expansions in the primary coupling
constant [11]. General statements can be made about two-parametric models with
p-functions of the form (1.5) and b, <0. If b, =0 and 4 >0 two power series can be
constructed for 4 with uniquely determined coefficients [7]. One of the expansions
corresponds to the supersymmetric case. This includes a variety of models, in
particular those which may have vanishing f-functions in any order of pertur-
bation theory. If by<0 and 4>0 the model is asymptotically free. Usually
supersymmetric models with asymptotic freedom are unstable against pertur-
bations of the symmetry [ 7, 12]. In the unstable case a unique power series for 4 can
be constructed [6,7]. Thus in all these cases the general reduction method
provides a unique formulation of the reduced model in every order of perturbation
theory even though the symmetry may have been established for low orders only.

4  For the renormalization of the massless model see [10]

5 There is also a power series for A which is not related to supersymmetry

6 Recently it has been shown by O. Piguet and K. Sibold that there is only one realization of
supersymmetry in the perturbative treatment of the massless Wess-Zumino model [17].
Therefore, the additional reduced systems do not seem to be supersymmetric
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2. General Method of Reduction

We consider a massless model of quantum field theory described by n+1
dimensionless coupling parameters A, 4, ..., 4, and a normalization mass k. The
model is supposed to be invariant under the renormalization group. Our aim is to
express 44,...,4, as functions of 4, so that a model involving a single coupling
parameter A, is obtained which is again invariant under the renormalization
group. Accordingly we write each 4; as a function of

A=A Ao)s 2.1)

independent of the normalization mass x. The functions Af4,) should be
differentiable in the domain of 4, considered and vanish in the weak coupling

limit? .
lim 7,(30)=0. 2.2)

For the Green’s functions of the original system the invariance under the
renormalization group implies the Callan-Symanzik equations

0 0
2 —_— §— =
<K 8K2+Zﬁ’6/1j +v>r 0, (2.3)
while for the Green’s functions of the reduced system the equations
0 0
<’€ a2 TP V) =0 (2.4)

follow. The - and y-functions depend on the coupling parameters only. f” and y’
are functions of the single variable A,. y and y” are additive in the contributions
from the field operators occurring in the Green’s functions. 7 is a function of the
momenta, the coupling parameters and the normalization mass x. 7’ is obtained
from © by substituting the functions (2.1) for the parameters 4;. Accordingly,

oo g 0 d
Gho Ok | F100; Ay’

Linear independence of the Green’s functions and their derivatives leads to the
relations

/ __ ’ __ /dlj —
ﬁ—ﬂo,)’—% d/IO _Bj'

Hence the functions (2.1) must satisfy the following system of ordinary differential
equations

d; _
Bod_% =B;. 2.5)

On the other hand, if the functions (2.1) satisfy (2.5), the reduced form (2.4) of the
Callan-Symanzik equations follows. Thus the system (2.5) forms a necessary and
sufficient condition for reducing the original system by the functions 4,(4,).

7  The condition of renormalizability requiring that the functions 4; can be expanded with
respect to powers of 4, will not be used for the time being
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It is instructive to use an alternative method for the derivation of (2.5) by
eliminating the scale variable from the evolution equations of the effective
couplings. At a normalization mass x> we impose on the coupling parameters that
the values 1} of 4; are given functions of the value 4; of 4,

X=Afk) at K*=KZ (2.6)

We want to investigate under which restrictions on the functions the same
dependence holds at other normalization points:

)’,l = )']'(A'O) at Kz . (2.7)

If the normalization mass is changed from x? to x? the field operators ¢; of the
system undergo a transformation of the renormalization group,

Of%X, Agy ooy Ay K2) =2} 20X, Ay, ..., Ay K'%)
with positive z;®. The new values of the coupling parameters are given by
Ao= Ao, Aoy A1, vvs A7), 2.8)
2= Tyt By Koy o0 ) 29)
u=x*/x? j=1,..,n.

The functions ,, 4; denote effective couplings suitably defined as analytic
functions of u which are regular at any positive value of u°.

In order to determine the constraints on the functions 4; we take a fixed initial
value 1540, and first discuss the case where

Bo(Aos A1 -5 M) £0. (2.10)
Expression (2.10) equals the value of 1y/0u at u=1, A,=215, A;=A4}. Since 1, is
regular analytic at u=1 the derivative d1,/0u is continuous near u=1 so that

04, , ,
o W 2y B, M) 0 @.11)

in a neighborhood of u=1. Therefore, Eq. (2.8) can be inverted with respect to u.
Inserting the inversion , ,
u=u(ﬂ-o; 05 1a--~3’1n)

into (2.9) we find that the A; necessarily become functions of i, which are
independent of the normalization mass x. By definition they represent the
functions 4; in (2.6-7):

A’j(/lo)=2_'1(u(ﬂ’0) 63 --~9/1:1)5 %, ’)';1) . (2'12)
With the help of the evolution equations
u%%=ﬁi(zo,}-1(20),--',A:n(IO)), i=0, 1,...,1’1, (2.13)

8 For the concept of the renormalization group used here see [13]
9  For the possibility of defining effective couplings as analytic functions see [14]
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the scale variable u can be eliminated near u=1. We thus obtain (2.5) in the form

dj'o ﬁo(lo, 11, ""/In),

valid in the neighborhood of A,=A4;.
We next discuss the case where

Bo(Aos A1 -5 ) =0. (2.14)
In this case the function By(Ag, A1(4o)s ... 4,(A0)) has a zero at A, =415 Then (2.13)
implies ol

+2=0 at u=1 (2.15)

. Ou
for the function

To =Tty oy Aoy oy A1) .16)
Since 1, is regular analytic in u at u=1 it is

o7,

73;4:0 for u#1 near u=1 (2.17)
or .
0 _
7 =0 (2.18)

Hence the function (2.16) is either variable in u and stationary at u=1 or it is

constant . ~
In case (2.17) of variable A, we may invert (2.8) for u<1 as well as u>1,

obtaining u=u_(h gy Xy s i) for u<l, 2.19)
u=u,(4,45,4%,...,4) for u>1. (2.20)

If J, has an extremal value at u=1 the inversions u_ and u, denote different
branches of u both defined for 1, < 4 in case of a maximum or 4, > A in case of a
minimum. Inserting (2.19) and (2.20) into (2.9) we find two sets of functions 4; of 1,
which must be identical to (2.6) and thus to each other. For 4, A; again (2.5)
follows. Equation (2.5) can be extended to A,=A; by taking the limit 4,— Aj.

We now turn to the case (2.18) of constant 4,. Equations (2.7) and (2.8) imply
that 4; does not depend on u either, so that by (2.13) also the other f-functions
vanish. The system (2.5) is then trivially satisfied.

We summarize the results as follows: In all cases the functions satisfy the
system (2.5) of ordinary differential equations in agreement with the derivation
given in the first part of this section. If A, is a zero of one of the f-functions — with
the other coupling parameters expressed as functions (2.6) of A, — the system (2.5)
implies that A is a zero of all S-functions. It follows that the effective couplings are
either variable in u and stationary at u=1 or they are all independent of u.

We provide some further information on the zeroes of the p-functions
considered. Zeroes of the first type with variable effective couplings are always

10 For a discussion of zeroes of the f-function which correspond to stationary values of the
effective coupling see [14]
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isolated. For it is _
- - oA -
Ao, 1aTo)swoes TN = S 240 for To+
in a neighborhood of 1. We further observe that a zero must necessarily be of the
second type with constant effective couplings if all derivatives

a
anm

exist at A, =A;,. For then all derivatives of /1, with respect to u vanish at u=1 as
follows by differentiating the evolution equation (2.13) of Z,. Sufficient for the
existence of the derivatives (2.21) is the existence of all partial derivatives of §*1.
The functions A(/,) were assumed to be differentiable and the existence of their
higher derivatives follows by differentiating the system (2.5).

Zeroes of the f-functions with the effective couplings independent of the scale
variable need not be isolated. In fact, arguments have been given for some
supersymmetric models that reduced forms exist with f-functions vanishing in any
order of perturbation theory. If this should prevail independent of perturbation
theory the relations

ﬂi(ﬂ‘()’ )'1(10)5 ...,An(lo))=0, l=0, 1, ey, (2.22)

ﬁ(j'o’ )'1()“0)’ (AR An(lo)) (221)

would vanish identically in A, for some functions 44).

The reducibility condition (2.5) allows for a large class of solutions unless
further restrictions are imposed. In a region of non-vanishing f, the Lipschitz
condition can be verified for the ratios f,/B, provided certain differentiability
assumptions on the f-functions are made. With this the Picard-Lindelof theorem
applies according to which exactly one solution A{4,) of (2.5) passes through any
point 4y, 43, ..., 4,. Due to the singular nature of the system (2.5) at 4, =4;=0, the
standard existence theorems cannot be applied there. On the other hand it is
difficult to gain control over the asymptotic behavior in the weak coupling limit for
solutions with prescribed non-vanishing initial values Ag,...,4;. In general,
uniqueness properties do not hold for solutions passing through the origin
Ao=4;=0: For some systems there are no solutions of (2.5) which satisfy (2.2). For
others there are infinitely many such solutions.

Further constraints are imposed if we require renormalizability for the original
as well as the reduced system. Then the Green’s functions of the original system
have power series expansions in Ag,44,...,4, and the Green’s functions of the
reduced system can be expanded with respect to powers of 4,2 This leads to the
requirement that the solutions 4(4,) of (2.5) possess power series expansions in A,.

Itis easy to work out the conditions necessary for the renormalizable reduction
of a system in lowest order of the primary coupling constant. As example we

11 A stationary value of the effective coupling indeed leads to a singular behavior for the
derivatives of the f-function (see [14])

12 We do not consider here expansions with respect to fractional powers or logarithms of
coupling constants which may arise due to infrared singularities of conventional perturbation
theories (see for instance [15, 16])
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consider f-functions with the expansions

Bo=boA5+ 5 Z Y Bt Ay A, (2.23)

n=3 m=0 j1...jm

Bi= Z cPDAA+ Z cPAiho+ VA3

+ z z S Commirn s Ay e A (2.24)

n=3 m=0 ji...jm

where 1, is the square Ao=g? of the primary coupling parameter g. Since all
p-functions are even functions of g it is natural to require that the coupling
parameters A; of the reduced system are also even in g. Renormalizability
combined with the condition (2.2) implies that the coupling parameters of the
reduced system have power series expansions

Ai=0g> + Z oPg 2. (2.25)

Comparing the coefficients of g* in (2.5) we find the quadratic equations [4]

Z cPoPo® + Z (€ —8,,b0) 0 +cP=0. (2.26)

Its solutions o§ represent the lowest order values of the ratios 4;/g*. As such they
should be real and — if required by the model — satisfy constraints like the positivity
of coupling parameters. The equations (2.26) are necessary for the renormaliza-
bility of the reduced system, but not always sufficient. For in some cases the lowest
order approximation based on a solution of (2.26) cannot be extended to power
series expansions. Examples for that will be found in the following section.

3. Two Coupling Parameters

We are going to discuss in some detail the reduction of systems involving two
coupling constants. The notation used is

G
< z+ﬁo(g A3 2+ﬁ(g /1) >~c=0 (3.1)

for the Callan-Symanzik equations. The p-functions are assumed to have
expansions of the form

Bo=bog* + Z Z By, mg> " AT, (3.2)

n=3 m=0

Bi=ciA*+c, A9 +cagt
+ 2 Z Commmd” " A, (3.3)

n=3 m=0



220 W. Zimmermann
which cover a large variety of models. We want to investigate under which
conditions the model can be reduced by

A=Ag? 3.4

to a renormalizable system involving a single coupling constant g. The reducibility
condition (2.5) takes the form "

ﬂo@z =p:. (3.5

Renormalizability and condition (2.2) impose on the solutions that they can be
expanded in the form

/1=Qogz+ '21 Qj92j+2~ (3.6)
=

The first coefficient g, is determined to be a root of the quadratic equation

¢105+(c2—bo)go+¢3=0. 3.7
Qo is only real if the discriminant
4 =(cz—b0)2—4c1c2 (3.8)
is non-negative
420. 3.9

This requirement already precludes the reduction for a large number of models. In
the work that follows (3.9) will be assumed. There may be further restrictions on the
values of the first coefficients g,. For instance, in some models 4 is the square of a
coupling parameter and cannot be negative for that reason. In this case only non-
negative values of ¢, are admissible.

For the case
bo#+0, ¢;=*0, (3.10)

we may take over the results obtained in [6] concerning power series solutions of
(3.5). The following notations will be used. ¢, denotes the roots of (3.7) with ¢,
being the larger value,

0+20-. (3.11)

A number ¢ is defined by

E=—7rei—e)s  (bo0). (3.12)
(4]

Since usually ¢, >0 positive £ implies asymptotic freedom.
If £<0 a power series solution

Ao=0-g*+ ile_,-g”” (3.13)
P

of (3.5) exists with uniquely determined coefficients. Further the solution

Ay=0.97+ .21Q+j02j+2 (3.14)
iz
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exists if £ <0 is not integral. If ¢ is a negative integer one finds the general solution
of (3.5) as an expansion involving logarithms

1¢]-1 i
Ay=04+97+ b 0497 4 04g0™ P +dg? P Ing® + ... (3.15)
P

The coefficient g ¢ is arbitrary, the coefficient d of the first logarithmic term is
uniquely determined by lower orders. If d=0 no power series solution 4, of (3.5)
exists. In that case a solution with asymptotic behavior g, g* for g—0 can only be
formed by including logarithmic terms which do not correspond to a renormaliz-
able Lagrangian. If d=0 the power series solution (3.15) exists with arbitrary
coefficient ¢, and represents the general solution. Thus for negative integral &
either no power series solution A, exists or 1, represents the general solution of
(3.5) with an arbitrary parameter.

If ¢ >0 a power series (3.14) always exists for A, . The power series (3.13) for A_
exists provided ¢ is not integral. If £ is a positive integer either no power series
solution (3.13) exists or it represents the general solution with arbitrary coefficient
Q-(+1)y

(‘:Fo:r ¢=0 both expansions (3.13-14) coincide and exist with uniquely
determined coefficients.

The case b, =0, ¢, =0 was treated in [ 7]. If 4 >0, there exist two distinct power
series solutions A, and A_ of the form (3.13-14). Although their coefficients are
unique, they may include the general solution. For the difference of two solutions
with the same weak coupling behavior g, g* (or ¢ _g? respectively) is exponentially
decreasing for g—0. If b,=0 and 4=0 no power series solution of (3.5) exists
unless all coefficients of terms g2” in B, vanish. In the latter case A=0 is the only
power series solution.

We now discuss the simplifications which occur for supersymmetric gauge
theories with A= h2, where h describes a matter or Higgs interaction. In that case
all coefficients of the terms g"in B, vanish. As the square of a coupling parameter A
is non-negative. We further assume ¢, >0 which is usually the case.

The absence of a g*-term in B, implies that (3.9) is always satisfied. This
climinates a major obstacle in constructing renormalizable reduced models. The
roots of (3.7) become

b, —
0o=0 and go="% 2 (3.16)

1

Since f, vanishes at 1=0, Eq. (3.5) has the solution A=0. Apart from this trivial
solution we list the following power series solutions of (3.5) under the positivity
constraint A=>0:

(1) by<0, c,<b,, or equivalently £>0, o, >0, o_ =0.

There is the expansion (3.14) of 1, with unique coefficients. If ¢ is an integer
there is further an expansion of A_,

Io=dg?ti Y ol ¥t E=1,2,...d>0, (3.17)

j=¢+1

with arbitrary positive coefficient d.
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(2a) by>0, c,<b,, or equivalently £<0, g, >0, o_=0.

If £ is not an integer there is the expansion (3.14) of 4, with unique coefficients.
If £ is a negative integer either A, does not exist or the coefficient d , | is arbitrary.

(2b) by>0, c,> by, or equivalently £<0, 9, =0, ¢_ <O0.

If £ is an integer there is the expansion

Ae=dg?t 4 Y g gt E=—1,-2,..,d>0.  (3.8)

ji=ll+1

(3) by=0, c,<0 implying ¢, >0, o_=0.

There is the expansion (3.14) of A, with unique coefficients.

In all other cases, namely b,=c, or by <0 with ¢, =b,, there are no power
series solutions except =0, which have A>0 for sufficiently small g2.

Finally we remark that the lowest order form A= g,g? of a power series
expansion can be made exact by reparametrizing A provided g,+0. For the

coefficients of
M=A+a;A>+a,A3+ ... (3.19)

N=009%. (3.20)

If 9o =0 the transformation (3.19) in general does not even lead to a polynomial
form of A’. But

can be chosen such that

N =A+bAg>+bAg*+ ...
can be used to transform a power series solution

A=Qn92n+2 +0(g2n+4)
into
2n+2 .

AN=0.9

4. Model of a Spinor and Pseudoscalar Field

We consider the massless renormalizable model of a single spinor field v
interacting with a pseudoscalar field 4. The interaction terms are

o A
igpys Ay — EA4

The model contains two independent parameters g and 4. We try to reduce the
system to a renormalizable description in terms of g only. In lowest order the
p-functions are

Bo=

16n

1

3 4.1
B = 6 <§/12 +4g> —24g4> +

From this the values
0. =3+3)/145>0,

o_=1-11/145<0, 4.2)

f=—%]/%<0
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follow. If A is positive for sufficiently small g there is only one power series solution,

A=3(14+)/145)0> +0419* +0+20°+ ..., 4.3)
uniquely determining A as a function of g.* By a redefinition of 4, the lowest order
can be made exact

A=3(1+)/ 145)g>. 4.4

For completeness we quote the generalization of (3.15) from [6]

A=31+)/145)g> + 01 19* + 04 26°

2 3
ZY145+2 “Y145+4
+dy,9° +0439°+di29°
4
2yiasT2
+04+49"+dy10° Py 4.5)

The terms are ordered according to decreasing magnitude for g—0. ¢, and ¢, ,
are unique. d, , is arbitrary, all other coefficients are determined for given d, ;. The
power series solution (4.3) is stable since the general solution (4.5) has the same
asymptotic behavior for g—0. If 1 is negative for sufficiently small g there is the

Ower series
P A=3(1—)/145)g> +o_1g* +0o_,9°+ ... (4.6)

which is an unstable solution.

5. Wess-Zumino Model

We study the massless Wess-Zumino model with the coupling constants g and 4 of
the interaction terms

y)
gp(A+iysByw—3 (A*+B*)?

treated as independent parameters. In lowest order the f-functions are

1
ﬁoz 16“2 12g4+...
1 (5.1)
b= 15 (2022 48167~ 166%) + ...

From this the values
0+=1, o-=-% (¢(=-3 (52)

follow. The solutions corresponding to the supersymmetric ratio 4/g>~ g, have
the asymptotic expansion (3.15)

A=g>+0419*+0429°+0+39° +dg®Ing* + ... (5.3)

0+1, 042, and d are uniquely determined. g, 5 is arbitrary. The higher order
coefficients are determined for given g, ;. The existence of a renormalized version
of the supersymmetric model implies that a power series solution of A exists.

*  See Note added in proof on p. 225
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Therefore d=0, so that (5.3) takes the form
A=g"+ Y 04,9772 (5.4
j=1

with arbitrary ¢ ;. Only one of those corresponds to the supersymmetric case.
With suitable supersymmetric normalization conditions it is

A=g* (5.5)

for the supersymmetric system and
0
A=g%+0.39°+ Z4Q+j92’+2 (5.6)
=

for the asymmetric reduced systems with arbitrary ¢, ;+0. The solution (5.3) is
stable since its asymptotic behavior is the same as for the general solution (5.6). In
addition there is the power series solution starting with g _g?,

4 e ;
A=—59'+ X 0972,
ji=1

which is unstable and not related to supersymmetry.
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