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Abstract. Truncated pair functions for free random surface models and
Bernoulli ensembles are examined. In both cases, the pair function is shown to
obey Ornstein-Zernike scaling whenever various correlation lengths of the
system satisfy a nonperturbative criterion. Under the same conditions, the
transverse displacement of surfaces contributing to the pair function is shown
to be normally distributed. A new type of transition, which concerns the width
of typical surfaces, is introduced and studied. Whenever the system is below the
melting transition temperature of a related lower-dimensional model, the
width of typical surfaces is shown to be finite. A thermodynamic formalism for
free random surface models is developed. The formalism is used to obtain sharp
estimates of the entropy of surfaces contributing to the pair function.

1. Introduction

The stochastic geometry of random surfaces has recently become a topic of
considerable interest (see [1] and references therein). The correlation functions of
lattice gauge theories, three-dimensional spin systems and models of crystalline
interfaces have natural expressions as weighted sums over surfaces. However, such
expressions are difficult to analyze due to both the combinatoric problems
introduced by the large number of surfaces, and the intractability of explicit forms
for the associated weights. It is therefore of interest to study models of correlation
functions which are defined as sums over restricted classes of surfaces with
relatively simple weights.

In this paper, we analyze the beahvior of correlation functions of the form

QAβ)= Σ *~m, (i.i)
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where β~gό2 is the inverse temperature or the square of the inverse coupling, £f
denotes some preprescribed class of surfaces on the lattice Tίd, and \S\ is the area
(i.e., the number of plaquettes) of the surface S e £f. We also study the analogue of
Qc? for a system of Bernoulli plaquettes. In this case, the weights in (1.1) are
replaced by the probabilities of (disjoint) events which correspond to the surfaces
\ΆSe.

Our principal results, some of which were announced in [2], concern truncated
pair functions (i.e., glue-ball propagators), QyL(β) = QL(β) Here £* = ̂ L denotes
some set of tubular surfaces which have as their boundary two plaquettes
separated by a distance of L lattice units along a particular axis. These surfaces
may be generated by the time evolution of a ring obeying certain constraints. The
result is a class of self-avoiding surfaces with a solid-on-solid (SOS) character in the
"time" direction.

The quantity QL(β) serves as an approximation to the low temperature
expansion of the truncated pair correlation in a three-dimensional ferromagnet.
[By duality, QL(β) also models the strong coupling expansion of the correspond-
ing, Ising-type gauge theory.] Such random surface approximations are expected
to be quite accurate in the low temperature regime. Indeed, the analogous two-
dimensional path expansion has been solved exactly [3]. It quantitatively
reproduces all known results for the Ising pair correlation in d = 2.

Random surface phenomena in a system of Bernoulli plaquettes have been
studied in [4]. Our analogue of QL(β) for such a system is defined in terms of the
probability that a configuration containing a surface in ίfL occurs. We expect the
quantity so defined to approximate the actual truncated pair correlation for the
entire range of the parameter in the Bernoulli system.

Analogues of QL(β) may be defined for classes of surfaces other than £fL. For
example, if the sum is performed over planar surfaces, the resulting function is
expected to model the propagator of SU(JV) theories in the large N limit. Such
models have been studied in detail by Durhuus, Frόhlich and Jόnsson [5, 6].

Our first results, established in Sect. 2, concern the long-distance scaling of
δzX/O We show that, for β sufficiently large,

as L->oo, (1.2)

where M(β) is the glue-ball mass or inverse correlation length. Two ingredients are
necessary for the proof of (1.2). First we demonstrate that M(β) exists and is strictly
positive above some melting point βc. We then develop a random surface Ornstein-
Zernίke equation which enables us to establish the power law corrections indicated
in (1.2). We also show that the Ornstein-Zernike equation allows us to obtain
monotone approximants to the mass M(β).

In Sect. 3, we define a truncated pair function for an ensemble of Bernoulli
plaquettes at density p. It is shown that this pair function obeys the scaling (1.2) for
p sufficiently small.

The properties of typical surfaces which contribute to the pair functions are
investigated in Sect. 4. We first note that the motion of tubes is normally

distributed, so that the typical tube wanders as j/L. Next, we consider fluctuations
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in the width of typical tubes. It is shown that whenever β is larger (p is smaller) than
the melting transition point for a related lower-dimensional model, the expected
width of the tube is finite.

For analysis of the entropy of random surfaces, it is convenient to write

QL(|S)=Σ TOe-'" , (1.3)
k

where Γk(L) is the number of surfaces with exactly kL plaquettes. Thus k may be
viewed as a covering factor.

In Sect. 5, we establish that the number of tubes grows exponentially in L for
fixed k. Moreover, for k sufficiently close to its minimum value, we determine the
power law corrections to exponential growth:

as I^oo. (1.4)

The significance of the covering factor k and the corresponding entropy ζ(k) for
(general) random surface models of the form (1.1) is discussed in some detail. It is
shown that the covering factor is canonically conjugate to the inverse temperature.
Moreover, the mass M(β) (or its analogue for other random surface correlations) is
related to the entropy ζ(k) by a Legendre transform. This enables us to characterize
critical properties of the model in terms of the behavior of ζ(k). In particular, we
use estimates on ζ(k) to show that our pair function QL(β) undergoes a
catastrophic "phase transition" at some β>0, in such a way that the model ceases
to exist for β<β. Moreover, we establish that the mass M(β) approaches its
limiting value M(β) continuously as βlβ.

Finally, we show that the mass M(β) is analytic for β sufficiently large. The
power law corrections indicated in (1.4) are then obtained by exploiting the
relationship between the mass and the entropy.

Many of our results follow, either directly or indirectly, from the random
surface Ornstein-Zernike equation established in Sect. 2. It is worth noting that
such an equation is nonperturbative. Thus the region of validity of our results,
alluded to earlier (i.e., "β sufficiently large;" "/? sufficiently small;" "fe sufficiently
close to its minimum value"), is characterized by a nonperturbative criterion
involving the relative size of various correlation lengths in the system.

2. Asymptotic Decay of SOS Pair Correlations

In this section we study a truncated pair correlation of the form (1.1) for the classes
of surfaces ̂ L and <9£ defined below. The principal result of this section is a proof of
Ornstein-Zernike scaling [cf. Eq. (1.2)] of the pair function.

For clarity of exposition, throughout our analysis we restrict attention to the
three-dimensional cubic lattice Z3. (See, however, the remark following the proof
of Theorem 2.7.) The surfaces in ̂ L and £f^ will be constructed from plaquettes on
the dual lattice. We denote by p0 the edges of the plaquette centered at (1/2,0,0),
and by pL the translation of p0 through L units in the x-direction. The plane x = k
will be denoted by Pfc.
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Definition. 5̂  is the set of all connected, self-avoiding surfaces S with boundary dS
=p0u/?L, satisfying the condition that the intersection of S with each of the planes
Pfc, 1^/c^L, is a single, closed ring rk = SnPk (see Fig. 1).

Fig. 1. A tube in

For convenience, we will actually study the subclass ^L C «9^ of surfaces for
which the rings rv and rL are required to be elementary squares. In other words, the
tubular surfaces in £fL begin and end on open boxes of four plaquettes surrounding
the points (1,0,0) and (L, 0,0), respectively. Such boxes will be called "elementary
chimneys." The restriction to ^L causes no loss of generality, since the pair
correlations QL= Σ e~β^ and Q'L are related by

QL+2 = e-SβQ'L (2.1)

We shall also be concerned with surfaces in OL C ̂ L which satisfy the additional
restriction that each of the rings rk surround the origin of Pfc. For obvious reasons,
this subclass will be called the set of constrained tubes. The associated constrained
pair correlation will be denoted by qL.

Observe that the definition of 5̂  restricts us to surfaces which have no
overhangs in the x-direction. For this reason, we shall call these surfaces solid-on-
solid (SOS) tubes. However, it should be noted that our SOS tubes may have
overhangs in the yz-planes.

We now establish some elementary results on the asymptotic behavior of QL(β)
for L large.

Proposition 2.1. For all β,

limlogQL(β)/LEE-M(β) (2.2)

exists (in IR*/

Proof. This follows from subadditivity. Indeed, those surfaces composed of a tube
in ίfLί joined to a tube in ί̂ 2 (which has been translated L^ units in the x-direction)
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form a subset of

π (2.3)

Corollary. — M(β) provides a uniform upper bound on logQL/L, i.e.

QL(β)^e~M(β)L VL. (2.4)

In particular, since QL^e~4βL,

(2.5)

It can be shown, using standard methods, that the upper bound on M(β) is
exact as β->oo. In subsection (iii) we will outline a simple nonperturbative method
by which one can obtain monotone approximants to the mass M(β\ thereby
improving the bound (2.5).

Proposition 2.2. The mass M(β) is a concave, nondecreasing function of β.
Furthermore, 30<jβc<oo such that M(β)>0 Vβ>βc and M(j8)<0 Vβ<βc.

Proof. That M(β) is nondecreasing is obvious. To establish concavity, let λ e [0, 1]
and observe that VL

QL(λβl + (l-λ)β2)^Qλ

L(βi)Qi-λ(β2) (2.6)

by the Holder inequality.
To demonstrate the existence of βC9 observe that by a simple Peierls argument,

if ]8>logll

(2.7)

On the other hand, using (2.4) for L = 3, we have

6β, (2.8)

where the second inequality is obtained by considering only the five simplest
surfaces in ^3. The lower bound exceeds 1 for β sufficiently small. D

Remark. The concavity of M(β) implies that it can have at most a single jump
discontinuity. Should this occur at some β, then M(j8) = — _oo for all β < β. This
means, of course, that the model does not exist for β<β. In Sect. 5, we will
establish that such a catastrophic "phase transition" does indeed occur at some
β > 0. Moreover, we will show that M(β) = lim M(β) - a result which is not implied

β l β
by concavity alone. It is probable that β = βc; however, we do not yet have a proof.

We note that Propositions 2.1 and 2.2 are basically a consequence of the form
of the pair correlation (1.1), and are not sensitive to the class of surfaces under
consideration, provided they are subadditive. In particular the results obviously
hold for constrained SOS tubes.
(i) Pure Exponential Decay for Constrained Tubes. We will now establish that the
pair correlation qL(β) for constrained tubes decays via a pure exponential, i.e. for β
sufficiently large there exist constants κv(β), κ2(β)>Q such that

*WL. (2.9)
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In the above expression, m(β) denotes the mass for the constrained tubes [cf. Eq.
(2.2)]. The quantity κ2(β) corresponds to the "upper gap" in the particle spectrum
of the associated field theory.1

We observe that pure exponential decay of qL is consistent with the scaling in
Eq. (1.2), since the constraint of encircling the x-axis forces the tubes in OL to be
effectively one-dimensional.

In order to prove the result, we introduce a notion which is well known in
theories of continuum fluids [7]: the direct correlation function. Recall that the
surfaces in OL must begin (and end) on an elementary chimney. We may classify the
surfaces in OL according to the location of their next elementary chimney, i.e. the
earliest point at which they pinch down. These equivalence classes may be
represented graphically - the location of the earliest chimney being indicated by a
node in the corresponding graph. Consider, then, the correlation function cL(β)
obtained by summing over surfaces έL C OL which contain no elementary chimneys
other than the first and last:

cL(β) = Σ e-^, (2.10)
SeJL

/L = {Sed L | | r k |>4Vfc except fc = 0,L}. (2.11)

Clearly CL is represented by the graph without nodes. Thus, by analogy to the
treatment of the low density Mayer series in [8], we may identify CL as an Ornstein-
Zernike direct correlation function. According to the ideas of Fisher [9], CL should
have a shorter range (i.e., a larger mass) than qL.

Proposition 2.3. For all β,

\imlogcL(β)/L=-mc(β) (2.12)
L-> oo

exists. Moreover, for β sufficiently large, mc(β)>m(β).

Proof. That the limit exists follows from another subadditivity estimate of the
form

cLί+L2(β) * (const)cLl(/OcL2(/0, (2.13)

where the constant is independent of the lengths Lί and L2.
We may bound mc(β) below by, say, a Peierls argument which gives

mc(β)^6β- const (2.14)

for β sufficiently large. Comparing this with the a priori upper bound on m(β) given
by (2.5), the result is seen to hold for β large enough. D

Theorem 2.4. Whenever mc(β) > m(β)9 there exist constants κ±(β), κ2(β) > 0 such that

\q^)e+m(^L-

uniformly in L.

1 The relationship between our bound (2.9) and the upper gap was pointed out to us by
J. Frδhlich
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Proof. Partitioning the set OL according to the scheme outlined above, it is seen that
the contribution from all surfaces which do not pinch down until the AΓth step
(2^N^L— 1) is given by

1 L-*, g = e-'. (2.15)

We may therefore write

or graphically,

-T Σ cNqL+ί.N9 (2.16a)
9 N=2

(2.16b)

To complete the argument, we will exploit the fact that (2.16) is of form of a
convolution. Consider the (discrete) Laplace transform

«(z)=Σ«ιΛ (2 17)
L

with an analogous expression for c(z). (Here we define q1=cl= g4.) Evidently q(z)
is analytic in the region |z| < em, while c(z) admits the larger region of analyticity |z|
<emc. Taking the transform of Eq. (2.16), a little algebra yields

q(z)=- v ^~y

2-^c(z)

for \z\<em. Note however that the right-hand side of (2.18) makes sense in the
larger region |z|<emc. Indeed, using the bound (2.4), it is easy to show that the

function h(z) = 2 ? c(z) has a simple zero at z = em, and no other zeroes within

some larger disk \z\<em/λ, λ<\. Thus zg4/h(z) defines a meromorphic extension
for q(z) in the region \z\<em/λ with a simple pole at z = em.

We may therefore write

with F(z) analytic for |z| < em/λ. Noting that qL is simply the coefficient of ZL in the
expansion of the above expression, we obtain

qLe + mL = (FQ + Flέ
n+...+FLe?nL). (2.20)
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Finally, recalling the Cauchy bound,

\Fn\^(const)λne-m\ (2.21)

the desired result follows easily. D

Remark. Equation (2.16) is known as the Ornstein-Zernίke equation; it is typically
taken as the defining equation for the direct correlation function CL. The reader
may recognize that the Ornstein-Zernike equation is analogous to the Schwinger-
Dyson equation, which relates the exact propagator to the one-particle irreducible
function. This approach has recently been used by Brydges and Spencer [10] in an
analysis of the self-avoiding random walk.

ii) Ornstein-Zernike Decay for Unconstrained Tubes. We now treat the case in
which the tube is permitted to wander from the x-axis. In order to facilitate our
analysis, we introduce a generalization of the correlation QL(β), which we denote
by QL,(a,b)(β)' The latter function is defined by summing over all SOS tubes which
begin and end in elementary chimneys, and have as their boundary p0vpLί <«,&)•
Here pL,(a,b) denotes the translate of pL by a units in the y- and b units in the
z-direction. Thus QL = QL,(O,O) (The correlation QL,(α>b) will be studied in its own
right in Sect. 4.) Finally, we also define the "master function," QL, to be the sum
over all SOS tubes which begin at p0 and end somewhere in the plane x — L+ 1/2,

.(β,»)08). (2.22)
a,b

All of the above have direct correlation counterparts: CL§(e>fc), CL = CLf (0f 0)
 and <CL

— Σ CL,(a,b)
a,b

As will become apparent, the master functions QL and <CL behave similarly to
the constrained correlations qL and CL discussed in subsection (i). We shall exploit
this analogy to prove the desired scaling for QL(β). First, we note that by the
standard subadditivity arguments (cf. Propositions 2.1 and 2.3), the master
functions have well-defined masses:

Proposition 2.5. The limits

(β)= lim [-logQL(j8)/L]
L-+OO

(2-24)

M(β)= lim [-logQL(j8)/L] (2.23)
ana L-+OO

exist (in R ;.

Remark. Our use of M(β) to denote both the limit in (2.2) and that in (2.23) will be
justified by later results (cf. Theorem 2.7).

Next, following the arguments of Eqs. (2.15)-(2.16), we observe that the
correlations are related by an Ornstein-Zernike equation:

1 L-!
QL,(a,b)=^L,(a,b)^ 4 Σ Σ Qv,(α,&)δL+ 1 -N,(a-a',b-b') ' (2.25A)

Q N = 2a',b'

QL = <CL+^V<C*QL+I-*. (2.25B)
9 N = 2

Equation (2.25B) may be obtained simply by summing (2.25A) over a and b.
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The relevant transforms are given by

Qβ(z,(ωι,ω2y)= Σ Q^aM^e^'e1"*, (2.26A)
L,a,b

Q/,ω = Σ Qι.08)̂  = Qβ& (0,0)), (2.26B)

and similarly for C. In the above, z is a complex number (presumably of modulus
smaller than eM(β\ and — π < ω l5 ω2 ?g π. As before, we use the convolution form of
(2.25A) to write 4

β(z, K, ω2)) = - ^ -—ϊ. (2.27)
2-C(z,(ω1?ω2))/z04

The corresponding equation for the master functions is obtained by setting
ω1=co2 = 0.

We may regain the quantities QL by means of the inversion formula

QL== 2^7^ j/ωιrfω2βfe K, ω2)). (2.28)

However, in order to analyze the above integral, we must establish that Q and C
have certain continuity properties. In this context, it is convenient to regard eίωι

and ei(°2 as complex variables, ξ1 and ξ2, restricted to the unit circle. Although a
weaker result would suffice for the purposes of this section, we show below that for
those values of z at which the transformed master functions are regular, the
corresponding transformed correlation functions are (separately) regular in ξ^ and
ξ2 in a neighborhood of 1̂  | = 1 and \ξ2\ = 1. We state and prove the lemma for the
direct functions; the analogous result also holds for the β's.

Lemma 2.6. Take \z\<eMc(β\ β>β. Then, provided that \ξ^\ and \ξ2\ are sufficiently
close to one, the function

Cfati>t2)= Σ CL<(a,b)(β)zLξ\ξ»2 (2.29)
L,a,b

is regular in ξί(ξ2) for fixed £2(£ι)

Proof. If \z0\<eMc(β\ β>β, then for /y>0 sufficiently small,

\z0\<eMc(β~η}. (2.30)

(We remind the reader, cf. remark following Proposition 2.2, that β is the only
possible point of discontinuity oίM(β). Since Mc(β) ^ M(β) VjS, and since Mc(β) is
concave nondecreasing, it is clear that Mc(β) is continuous whenever M(β) is.)

Using the definition of CL>(α>b), we have

cL,M(β-n)= Σ e-we

+iw
Se^Ί,,(α,b)

^CL.(..wOΪ)^|β| + l"), (2-31)

since each 5e^,>(β>(>) has at least 4(|α| + |fc|) plaquettes. This implies that Vα, b

CL,(βf6)OJ-ι/)^Ct,(β>t)(/Olί1IΊξ2|
6, (2.32)

provided that \ξ,\, \ξ2\,\ξJΓ\ |ί2Γ<β4*.
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Also note that, for fixed L, we have the subadditive bounds

(rΌt"lθt\/9 ™C\P '" ^ f| (fί /IΊ\ X ( f~* ( R *Λ\ /"O '^'3^consije ^vLLψ — η)= 2^^L,(a,b)\P~rl)^ (£.33)
a,b

where the constant is independent of L.
The bounds (2.30), (2.32), and (2.33) imply that the power series (2.29) for Cβ is

absolutely convergent. D

We can now establish the Ornstein-Zernike scaling:

Theorem 2.7. Whenever M(β)<Mc(β), QL(β) has the asymptotic form

(2.34)

Remark. The standard arguments (cf. Proposition 2.2) show that the hypothesis of
the theorem is satisfied for β sufficiently large.

Proof. The proof, which reduces to asymptotic analysis of the integral (2.28),
is straightforward but tedious. Some of the details have been relegated to
Appendix B.

The first step is to demonstrate that the master function QL has pure
exponential decay in the sense of Eq. (2.9). This is done by following step for step
the proof of Theorem 2.4. In particular Q(z) has a simple pole at z = eM and no
other poles in the larger disk \z\< eM/λ.

Next, a Rouche argument (Lemma B.2) establishes that, when ω± and ω2 are
sufficiently small, the pole structure is similar to that described above. Since
C(z, (ωl5 ω2)) is smooth (indeed analytic) in (ωl5 ω2), the implicit function theorem
may be invoked to show that there is a function eM(ωι'ω2) which describes the
motion of the simple pole for small (ωl5 ω2). This pole is, of course, the principal
contribution to the integral (2.28) for (ωl5 ω2) sufficiently small. Finally, a detailed
argument (Lemma B.I) shows that the relative contribution to the integral from
those (ω1?ω2) outside any neighborhood of the origin is exponentially small. We
therefore have

QL(β)= f dωidω2e-LM^^F(ωl9ω2)ll + 0(e^y]. (2.35)
|ωι|,|ω2 |<(5

In the above, δ is some suitably chosen constant which ensures that both the
Rouche argument in Lemma B.2 and the use of the implicit function theorem are
legitimate. The function F(ω1? ω2) is continuous in (ω1? ω2) and independent of L.
Because all the coefficients CMβ>6) are nonnegative and symmetric in α<->-α,
iκ-> —b, it follows that e

M(COί'ω^ has a quadratic minimum, i.e.

^M(ωι,ω2)__^M + )'(ωι + ω2)+... Q 36)

(That the coefficients of ω\ and ω2 are identical follows from the a<-*b symmetry.)
The standard asymptotic analysis (e.g., Laplace's method) may now be applied to
the ω integrations, from which the desired result follows easily. D

Remark. The analysis above is easily extended to SOS tubes in higher dimensions.
In general, the class Sf^ of tubes is characterized by the constraint that in each
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subspace x = n+l/2, there is a single (self-avoiding) ring of plaquettes. The
plaquette rings in successive subspaces must be spanned by a (self-avoiding,
orientable) surface in the intervening hyperspace. Results similar to those derived
in this section, as well as the generalization of Theorem 4.1, can then be obtained
for d^4. It is easy to see that each extra dimension provides an additional

transverse degree of freedom, and thus another factor of 1/j/L in the general-
ization of Theorem 2.7. One must of course modify the constants in the bounds
which guarantee a region where M(β)<Mc(β).

(Hi) Monotone Approximants to the Mass. Here we outline a simple procedure for
obtaining upper bounds on the mass of the pair correlation function. The
procedure involves little more than an observation on the structure of the
transformed Ornstein-Zernike equation; nevertheless, it seems to be quite useful
computationally. We note that the Ornstein-Zernike equation (2.27) is valid
whenever \z\<eM(β\ regardless of whether Mc(β)>M(β). [Although we use the
master function notation of subsection (ii), the results apply equally well to
constrained tubes.]

Let ί)(z) denote a power series, ί)(z) = Σ DLz
L, with coefficients satisfying CL

L

^DL^0. In particular, £)(z) may be obtained by summing over a subclass of the
tubes contributing to (D(z). Comparing the expression

L (2-37)

to the transformed Ornstein-Zernike equation (2.27), it is easy to see that GL

^QLVL. Thus, if the chosen ί)(z) is such that the first (real, positive) zero of

2 -- zί>(X) is simple, then this zero provides an upper bound on eM(β\ It is easily
zg

seen that the bound improves as one enlarges the subclass of tubes defining ί)(z).

3. SOS Pair Correlations for Percolation

In this section, we generalize some of the results of the preceding section to an
ensemble of Bernoulli plaquettes in d = 3. The relevant plaquette events will be the
formation oϊopen (i.e., unobstructed) SOS tubes which span a preprescribed pair of
loops. The study of such events is motivated by the percolation analogue of the
glue-ball propagator:

p. (3.1)

In the above expression, γί and y2 are planar loops composed of lattice edges,
W y i t m f y k is the event that there is a set of occupied plaquettes with boundary
y i u . . . uyk, and < — >p denotes the probability with respect to Bernoulli measure at
plaquette density p. Expressing the above quantity as the expectation of the
difference of characteristic functions, it is not difficult to see that the only
configurations which contribute are those in which the pair of loops, y x and y2>
form the boundary of an unobstructed tube. This is most easily visualized in d = 3
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Fig. 2. A configuration in Wyίy2\WVίnWy2

where the event that a given plaquette is unoccupied is equivalent to the
occurrence of an occupied (dual) bond. The expression (3.1) is then the probability
of the event depicted in Fig. 2.

Here we study what we believe to be a representative subset of the above event,
namely when (at least one of) the spanning tubes is of the SOS type.

It should be noted that the study of these objects is not only of interest in the
context of percolation. As a model of a correlation function, quantities of this form
do not suffer from the (inevitable) catastrophic transitions which plague models of
the type described in Sect. 2. This is due to the fact that we are dealing with
probabilities, and thus all "masses" will be bounded below by zero. In this sense,
correlation functions of the type defined here provide a better forum for the study
of phase transitions in realistic systems.

The remainder of this section is devoted to defining the relevant events and
showing that an Ornstein-Zernike equation is satisfied by the corresponding
probabilities. The scaling (1.2) then follows from an analysis similar to that of the
previous section.

For clarity of exposition, we begin, as in Sect. 2, with the case of constrained
SOS tubes. Let ΩL denote the σ-algebra of plaquette events in the strip 0<x
<L-f 1. As before, we consider plaquettes on the dual of the cubic lattice Z3. Thus
to each unoccupied plaquette, there corresponds an occupied bond of 2£3. We
define /LCΩL to be the event that:

(i) PO^JPL is the boundary of a constrained SOS tube composed of occupied
plaquettes; and

(ii) the origin is connected to the point (L+ 1, 0, 0) by a path of occupied bonds.

Remark. Since φ'L C ΩL, both the plaquettes and the bonds referred to above must
lie entirely within the strip 0 < x < L+ 1 . In particular, this means that the path of
occupied bonds cannot include any bonds from the planes x = 0 and x = L+ 1 .
Thus the existence of the tube forces the path of occupied bonds to lie inside of it.

The above definition may be written more formally as

Se<4, S occupied; (0,0,0)eC.C. ((L+1,0,0))}, (3.2)

where o'L is the class of surfaces defined in Sect.2, and C.C. (r) denotes the connected
bond cluster of the point r 6 Έ?. We remind the reader that the prime on ύ'L denotes
the fact that the surfaces need not begin and end with elementary chimneys.

Since events in non-intersecting strips are disjoint, we obtain the subadditive
estimate! / / \ \ 4 / / \ / / \ / o o \

<^L 1 +L 2 +l>p^P<fL 1 >p<^L 2 >p (3-3)
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The inequality follows from the fact that we have only constructed a subset of
?Ll+L2 + ι by joining the two tubes in the simplest fashion. Note that the above
relation cannot be obtained by invoking the FKG inequality [11, 12], since the
events φ'L are neither positive nor negative.

Proposition 3.1. For all pe[0, 1], there exists

m(p) = - lim log<^>/L^O. (3.4)

Proof. Existence is a consequence of (3.3). The lower bound follows from the fact
that <^l)p is a probability. D

For a given ωe^ there are, in general, many surfaces SGO'L which are
occupied. The following proposition shows that it is possible to uniquely select one
of these tubes.

Proposition 3.2. There exists a function S: /L^^L.

Proof. Given two (contrained) SOS tubes S l9 S2 EO'L, it is possible to construct a
third tube out of some of their plaquettes. This is done by first regarding Sx and
S2 as the boundaries of geometric solids S(f and S(

2\ and then taking the
boundary of the solid which is the result of their intersection: S = d(S(l}nS(

2

)).
Since both S1 and S2 surround the x-axis, it is clear that S e OL, and that all the
plaquettes in S are in either S^ or S2.

Let ω e φ'L, and denote by Sl9 . . ., Sk9 . . . all tubes in JL which are occupied in ω.
Then

ίS(ω)Ξ3(S(

1

ί)n...nSfn...)Gdl (3.5)

is also occupied. D

Remarks. (1) Note that S(ω) is the minimal SOS tube in the configuration ω e p'L.
(2) For unconstrained tubes (which need not have an axis in common) the

above procedure would in general fail to produce any tube at all. However, we are
concerned with tubes which enclose a path of occupied bonds. Indeed, since all
occupied tubes in a given configuration must contain the connected bond cluster of
the origin, their intersection will produce a (unique) SOS tube.

The function defined in Proposition 3.2 allows us to associate disjoint events
with distinct surfaces Se^. We shall use the rather abusive, but suggestive
notation S C ΩL to denote the event

S={ωep'L\S(ω) = S}. (3.6)

This allows us to partition the event φ'L. In particular, it suggests the following
definition of the direct correlation event:

4 = {ωe^|S(ω)e^}. (3.7)

(Here t'L is the set of all constrained SOS tubes which have no elementary
chimneys.)

As in the previous section, we find it convenient to introduce analogues of φ'L
and c'L for which the SOS surface must begin and end in an elementary chimney. To
this end, let ch( ) denote the event that the four plaquettes which comprise the
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elementary chimney surrounding the point ( , 0,0) are occupied. The "unprimed"
events are defined by

(3.8a)

(3.8b)

Note that the above quantities are elements of the σ-algebra of plaquette events in
the strip —1/2 < x < L+ 3/2, since ch(ξ) consists of plaquette events in ξ —1/2 < x
<ξ+l/2. Since the three events in each of the definitions (3.8) occur in disjoint
regions, we have

(3.9a)

(3.9b)

Let TN denote the operator for translation by N units in the x-direction. It is
not difficult to see that ^L + 2 may be expressed as the disjoint union

ΓL-3 Ί
I I I 'TT/V+l/ / Λ IΛ/T I 1 \ I fϊ 1 ί\\

[_N = 0 N + 2 L (N+1) J'

so that, by (3.9a) and a shift of indices,

(3.11)

To proceed with the analysis, we must establish the analogue of Proposition
2.3, namely:

Proposition 3.3. For all p e [0, 1], there exists

mc(p) = - lim log<£LyL^O . (3.12)
L->oo

Furthermore, for p sufficiently small, mc(p)>m(p).

Proof. Existence of the limit follows from a subadditivity estimate of the form

which (as before) requires a construction to guarantee that the tubes join in a
nodeless fashion. However, this estimate requires somewhat more caution than
that of Eq. (2.13). Here, we begin with a tube in t'Lί and another in TLl + 1( 2̂),
which are related to the unprimed events by Eq. (3.9b). The crucial point for the
derivation of (3.13) is that the nature of plaquette events in the initial and final
planes of a given tube is, to some extent, determined. In particular, since the
minimal SOS tube in some partition of CL can have no elementary chimneys, at
least one of the plaquettes adjacent to each of the boundary plaquettes, p0 and pL,
must be occupied. Since these plaquettes are guaranteed to be present, we can
remove any of them at the expense of a factor of p (i.e., there is no inequality
incurred by conditioning problems). If this is done in the final plane of the first tube
and the initial plane of the second tube, then it is possible to patch the two tubes
together in some (standard) fashion, in such a way that the resulting minimal tube
is nodeless. With such a prescription, the subadditivity (3.13) is straightforward.
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In order to demonstrate the existence of a region oϊp for which the masses are
separated, we first note the analogue of the corollary to Proposition 2.1:

e--w^(l-p)p4 Vpe[0,l]. (3.14)

(The factor of (1 -p) arises from the internal bonds.) To bound mc(p) from below,
we use the notation (3.6) to write <^L>P in the form

<*!.>,= Σ <S>P. (3.15)
Se/r,

However <S>P, which denotes the probability that S is the minimal occupied tube
and that S contains a path of bonds, is clearly bounded above by p|s|, the
probability that S is occupied. Thus, for p = e~β,

where mc is the direct correlation mass introduced in (2.12). For p sufficiently small,
the lower bound (3.16) on mc(p) exceeds the upper bound (3.14) on m(p). D

The proof of scaling for constrained SOS correlations in percolation is
identical to that of Theorem 2.4, with the result:

Theorem 3.4. Whenever mc(p) > m(p), there exist constants /ι(p), ̂ (p) > 0 such that

K^V+^-AG^e-^ (3.17)

uniformly in L.

We now turn to an investigation of unconstrained tube correlations for the
Bernoulli ensemble. Our analysis will parallel that of Sect. 2(ii). First, we define the
unconstrained pair correlation event «2L,(α,&) by analogy to ^L, replacing the set of
surfaces OL by the unconstrained tubes 5 L̂, («,&)• The relevant transforms are

<2p(z,(ω1?ω2))= Σ <^L,(fl,*)VVωιVω2b, (3.18)
L, «, b

Qp(z) = &(z, (0,0)), (3.19)

which, of course, have direct correlation function analogues. [We have taken the
liberty of using notation identical to that of Sect. 2(ii), so that the results of
Appendix B may be easily applied to either system.] As before (cf. Proposition 2.5),
it can be shown that the master functions φ and (C have well-defined masses which
we denote by M(p) and Mc(p), respectively. Furthermore, the reasoning used in
previous derivations shows that (5 and C are related by the Ornstein-Zernike
equation (2.27), with g replaced by p.

A key ingredient in the proof of Ornstein-Zernike scaling oϊQL(β) was Lemma
2.6 which established smoothness of the transforms in the variables ω1 and ω2.
Since no obvious analogue of the technique used to prove Lemma 2.6 applies to
the Bernoulli system, we follow an alternative approach which exploits decay of
percolation connectivity functions. We begin by defining a critical point which
plays a central role in our analysis.
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Definition. Let E be an edge of the (dual) lattice Z3*. Denote by C.P.C.(E) the
connected plaquette cluster2 of the edge E and let |C.P.C.(E)| denote its size. The
critical clustering point, σc, is given by

σc = sup{p|<|C.P.C(E)|>p<α)}. (3.20)

Remark. The point σc should be distinguished from other critical points of the
Bernoulli system. Although it is probable that σc coincides with the percolation
threshold for plaquettes (that is, the critical point for the formation of infinite
clusters of plaquettes), σc is unrelated to the critical point for the formation of
infinite sheets which was analyzed in [4]. Indeed, the latter critical point occurs (in
d = 3) at a plaquette density strictly larger than 1/2, while an easy application of the
Kesten method [13] demonstrates that σ c^l/2 for all d^3. The relationship
between σc and the Curie point in a certain type of spin system is discussed in [14].

Definition. Let Eί and E2 be edges of the (dual) lattice Z3* with coordinates
(XI,)Ί,ZI) and (x2,y29z2\ respectively. Denote by \El-E2\ = \xl-x2\ + \y1-y2\
+ \z1 — z2\ the t™ distance between E^ and E2. The connectivity function ΛElfE2 is
the probability that E± and E2 are connected by occupied plaquettes, i.e. the
probability of the event {El eC.P.C.(£2)}.

In order to prove the analogue of Lemma 2.6, we shall need the following
proposition, which describes the decay of the connectivity function.

Proposition 3.5. Whenever p < σc, there exists a positive constant λ such that

ΛEl)E2^e-λ^-E^ (3.21)

for lE^—E^ sufficiently large.

Proposition 3.5 is by now a standard result in percolation theory. It was first
derived in a general context by Kesten [15]. Alternative derivations using
rescaling methods and/or inequalities of the Lieb-Simon type [16, 17] may be
found in [4, 18, 19].

Lemma 3.6. Let p<σc and take \z\<eM(p} [|z| <eMc(p}~\. Then in a neighborhood of
|£il = 1 and \ξ2\ = 1, the transformed correlation function Qp(z, ξl9 ξ2) \_Cp(z, ξ1, ξ2)~]
is (separately) regular in ξ1 and ξ2.

The proof of Lemma 3.6 is rather involved and has been relegated to Ap-
pendix A. Although the cornerstone is clearly Proposition 3.5, we also use
certain properties of decay constants which are developed along the lines of the
analysis in Sect. 5.

We may now follow the reasoning of Theorem 2.7 (and Appendix B) mutatis
mutandis, with the result:

Theorem 3.7. If p< σc, and in addition M(p) < Mc(p), then

(3.22)

2 We remind the reader that two plaquettes are said to be connected if they have an edge in
common. The connected plaquette cluster C.P.C.(£) is composed of occupied plaquettes
connected to each other, at least one of which has E in its boundary
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4. Properties of Typical Tubes

(i) Wandering of Tubes. In this section, we investigate some structural properties
of typical SOS tubes. We first determine the distribution of endpoints in the plane
x = L (i.e., the ratio QL,(a,b)/Qι)> which indicates how far the typical tube wanders.

The results of Theorems 2.7 and 3.7, which show that whenever M(β) < Mc(β)
(or M(p) < Mc(p) with p < σc)

QL~A^--e-ML and QL-^~ML, (4.1)
απL

strongly suggest that the motion of the tubes is normally distributed. That this is
the case is established in the next theorem.

Theorem 4.1. Whenever M(β) < Mc(β) (or M(p) < Mc(p) with p < σj, the asympto-
tic behavior of QL,(α,zo zs given by

(4'2)

Proof. By the analsis in Appendix B, we have the following generalization of Eq.
(2.35):

βχ..(α,w= ί e-M^'^Le-i^ae-i^bF(ωί,ω2){\ + 0(e-^-\. (4.3)
|ωι|,|ω2 |

Now we simply expand M(ωl9 ω2) about its quadratic minimum and complete the
square in the exponent. (Note that this is equivalent to a distortion of the contour
in the ω1? ω2 planes, which requires the regularity established in Lemma 2.6 and
Appendix A.) The result now follows from standard asymptotic analysis (e.g., the
method of steepest descents). D

Comparing the above result with the asymptotic behavior of QL, and using the

usual scaling a, = α/j/L , 6- = b/]/Έ9 we obtain a normal distribution

ρ(Λ,^)=— <r<-2 + '*>/«, (4.4)
πα

indicative of uncoupled free particle motion in the perpendicular planes.

Evidently, a typical tube in ̂ L wanders a distance ~ j/L .

(ii) Stability of Constrained Tubes. A more subtle question than that of wandering
is whether the typical tube remains of finite width as L-κχ). In this subsection, we
investigate the width of typical tubes for free random surface models of the form
(1.1). [See Subsect. (iii) for analogous results in percolation.] In order to uncouple
this question from that of wandering, we restrict attention to constrained SOS
tubes.

Let τh denote a point in the plane x = L+ 1/2, a distance h from the x-axis. We
consider the probability, in the ensemble of constrained tubes, that the point τh is
enclosed by a surface S e 2L+ ί

= Σ e-e\s\χ(rheInt(S))/q2L+ ,(β) . (4.5)
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(0,0,0)

Fig. 3. A surface S which encloses rh

(2L+1,0,0)

In the above expression, χ(rh e Int(S)) is the characteristic function of the event,
depicted in Fig. 3, that rΛ is enclosed by the surface S.

Our criterion for the width of typical tubes is as follows: If

lim sup lim sup έPL(h β) = 0,
fc-»oo L->oo

the tubes are said to be stable; while if

lim
L->

; /?)>0 uniformly in h,

(4.6)

(4.7)

the tubes are said to breathe. A transition from the former behavior to the latter at
some finite βb>βc will be called a breathing transition.

This transition is, in some sense, the analogue of the roughening transition for
the Wilson loop variable. In both cases, the transitions indicate a qualitative
change in the structure of contributing surfaces. There is some evidence [20] that
the corrections to exponential decay of the Wilson loop variable are altered when a
system undergoes a roughening transition. Similarly, one might expect a change in
the corrections to exponential decay of the pair correlation for a system which
undergoes a breathing transition. Indeed, our proof of Ornstein-Zernike scaling
lends some credence to this expectation. If a breathing transition were to occur,
the surfaces contributing to qL would typically be quite wide, and thus would
resemble those contributing to CL. We would therefore expect the masses m(β) and
mc(β) to coincide beyond a breathing transition. Recall that our proof of Ornstein-
Zernike scaling depended on separation of the masses. While it is possible that
such a condition is not necessary, a comparison with exact solutions in two
dimensions indicates that separation of the masses is not merely an artifact of our
proof. If one examines the exact solution for the two-dimensional Ising pair
correlation [21], it is seen that (1) m(β) = mc(β)Vβ<oo, (2) the system satisfies our
breathing criterion (4.7) for all nonzero temperatures, and (3) the power law
correction to exponential decay of the pair correlation is dramatically different
than that predicted by Ornstein-Zernike theory. Our mass separation criterion is
also analogous to that for the transition from partial to complete wetting in an
exactly solvable planar Ising model [22].

In the remainder of this subsection, we shall show that constrained SOS tubes
are stable (i.e., of finite expected width) whenever β is larger than the melting point
of a related two-dimensional model. This result is analogous to that of van Beijeren
[23] on the stability of interfaces in the three-dimensional Ising magnet.
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We begin by defining a related model for the behavior of a rings in a plane. Let
^o be the set of all self-avoiding rings surrounding the origin on the lattice TL2. The
partition function of this system is given by

*oG»)= Σ e-W, (4.8)
re^o

where \r\ denotes the perimeter of the ring r e <%0. Alternatively, #0(/0 may be
written in the form

*0(/0= Σ eGOβ-", (4-9)

where ρ(/) is the number of rings r E &0 of perimeter f.

Proposition 4.2. The limit lim logρ(/)/zf exists.
L->oo

Proo/. This follows from subadditivity. First, let ρ(f) denote the number of distinct
rings r e J?0 (i.e., the number of rings in ̂ 0 which cannot be obtained from one
another by translation). Clearly

(constKρGO ̂  Q(f) ^ (consfχ2ρOO . (4.10)

Now a simple construction shows that

from which the desired result follows easily. D

Remark. The above proposition establishes a critical point for the melting of rings
in the plane:

(4-12)
L->oo

Standard arguments show that 0</?(2)<oo. For future reference, we note that
whenever β>β(2^: (1) all the moments of (4.9) are finite, i.e.,

ΣtkQV)e-β'«x>; (4.13)
f

and (2) the tail of the sum (4.9) decays exponentially, i.e.

Σ ρ(0*~^(const)e-tf-*(2)>τ. (4.14)

Our principal result is the following:

Theorem 4.3. Whenever β>β(2\ there exists a λ(β)>0 such that

lim sup^L(/z; β)^ (const) e~λw. (4.15)
L->oo

In order to prove the above theorem, we introduce yet another random surface
pair correlation. Let ̂ L denote the set of all constrained SOS tubes which begin
with an elementary chimney on p0, but end in an arbitrary ring in the plane
x = L + 1/2. In other words, we have taken the set <tL and relaxed the constraint that
the tubes close at one of the ends. Defining the open pair correlation

OL= Σ e-W, (4.16)
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we have the obvious bound

oL^qL. (4.17)

Heuristically, one expects that if the tubes do not breathe, then the typical tube
contributing to OL should end in a ring of finite width. If this is the case, then OL and
qL should not differ significantly, so that (4.17) should be supplemented with a
bound of the opposite type. That this occurs for β > /P} is the content of the
following lemma.

Lemma 4.4. Whenever β > /?2), there exists a constant δ(β) > 0 such that

qL^δ(β)oL-ι (4.18)

uniformly in L.

Proof. Observe that we may obtain any surface in OL by taking a surface in ^L_ 1?

plating the final ring with vertical plaquettes and adding a chimney. The strategy is
to show that the final plating is (almost surely) not too costly.

To this end, let P(S) denote the number of plaquettes required to plate the final
ring of S e ̂ L_ x. We have

qL= £ e-
me-βp(S>e-*β. (4.19)

S e a L, - i

Now partition the set ^L_! into disjoint subsets characterized by the length f of
the final ring:

«ι.-ι= U«L-ι(Ό. (4-20)

Then

Σ e~m, (4.21)
S e aj_ - i £ Se &L - 1 (£)

where α = const. Defining the (normalized) weights

w,= Σ e-"|S|K-ι, (4.22)
Se*jL-ι(^)

we have, by Eqs. (4.19) and (4.21),

*2. (4.23)

Next, we obtain an upper bound on the WΛ To do this, note that any surface in
^L-ι(0 may be constructed by choosing an appropriate surface ^L_2> adding a
ring of length /, and plating the (symmetric) difference. Thus

^^Σ e-^e-^rΣ^=oL_2e-VρW, (4.24)

where the inequality has been obtained by neglecting the "plating factor" P(S, r).
We also observe that adding a chimney to the left end of a tube in ^L_2 certainly
gives us a (translate of a) tube in ^L_1? so that

oL-ί>e~4βoL_2. (4.25)
JU 1 Li Z \ /
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Combining this with Eq. (4.24), we have

w,^e4Vρ(0. (4-26)

Finally, we apply Jensen's inequality to the normalized sum in (4.23), and use
the bound (4.26) to obtain

(4.27)

Since β > β(2\ all moments of e~βeρ(f) converge (cf. remark following the proof of
Proposition 4.2). In particular, the above sum converges. Thus δ(β) > 0. D

Proof of Theorem 4.3. We first note that any surface in the set
{S E <32L+ί\rhe Int(S)} may be constructed by taking two open tubes in ^L (one
"facing" to the right, and the other translated and "facing" to the left) and joining
them to a ring of sufficient diameter. If we relax the constraint that the three pieces
connect, we may ignore the weight of the plating factor necessary to joint them.
Thus

(4.28)

By Eq. (4.14), the sum in (4.28) is bounded above by e~λh for some λ(β)>0
whenever β>β(2\ We also have

β) < 00 , (4.29)

where the first inequality follows from Lemma 4.4, and the second from
subadditivity. Thus

^L(ή; jB)^ (const) e~mh (4.30)

for every L. D

Remark. We have no proof that the tubes undergo a breathing transition. If one
does occur, it is possible that the transition is driven by the melting of rings, which
would imply βb = β(2\ However, as noted in Sect. 2, systems defined as (un-
normalized) sums over surfaces often undergo catastrophic transitions at finite
temperature. Thus such systems are not guaranteed to survive roughening (or
breathing) transitions in the systems they are attempting to model. Indeed, it may
be that the melting of rings drives not only a breathing, but also a catastropic
destabilization of our system. In the next subsection, we investigate the width of
tubes in an ensemble of Bernoulli plaque ttes. As remarked prviously, such a system
does not undergo a catastrophic transition. Thus, if a breathing transition occurs,
the system is guaranteed to exist beyond that point.

(in) Stability of Constrained Tubes for p<l/2. Let us turn attention to cons-
trained SOS tubes in the Bernoulli ensemble. The analogue of our criterion for the
width of tubes is expressed in terms of the event /L C ^2L+ 1 that at least one of the
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SOS tubes contributing to ^2L+ι encloses the point rh. The quantity of interest is
the conditional probability

Our principal result is the analogue of Theorem 4.3. It is shown (Theorem 4.6) that
whenever p< 1/2, lim sup^L(/ι; p) decays exponentially in h. The point p= 1/2 is,

L->oo

of course, the percolation threshold for the two-dimensional (self-dual) bond
ensemble.

We remark that there are alternative candidates for an event of the form /L.
These include: (1) the event that the minimal SOS tube has in its interior the point
ΓΛ; and (2) the event that ΓΛ is in the connected bond cluster of the origin. Since these
events are subsets of the /L defined above, it is clear that our result (Theorem 4.6)
implies that the conditional probabilities of the alternative events also decay
exponentially in h.

The strategy employed is very similar to that of the previous subsection;
however, a little care must be taken due to the competition between positive and
negative events.

We begin by defining the open tube event

L|3S e «'L9 S occupied; 3(α, 6) e PL, (0, 0, 0) e C.C.((L, α, ft))} . (4.32)

The prime is removed by the placement of an elementary chimney as the origin:

^chίOJu*!-!. (4.33)

Evidently <?L>^<*L>p. (4.34)

The principal ingredient in our proof of stability is a bound of the opposite type:

Lemma 4.5. Whenever p< 1/2, there exists a constant A(p)>Q such that

^Lyp^A(p)^Lyp. (4.35)

Before proving Lemma 4.5, let us make immediate use of the result.

Theorem 4.6. Whenever p< 1/2, there exists a constant θ(p)>0 such that

lim sup^L(/ι; p)^ (const) e~θ(p)h . (4.36)
L-»oo

Proof. Observe that the bonds in the plane PL and the (dual) plaquettes in the strip
L— l/2<x<L+ 1/2 form an effective two-dimensional bond-dual bond Bernoulli
system. Let ΩL denote the σ-algebra of the effective planar system. We may then
define &L(h) C ΩL to be the event that there is a ring of occupied plaquettes in L
— l/2<x<L+l/2, surrounding the "origin" (i.e., the x-axis) and enclosing the
point rΛ.

It is easily seen that

(4.37)

Using the bound of Lemma 4.5, together with the obvious inequality

. (4-38)
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we have
0>L(h; p)^ <#L(Λ)VP (1 -pM20). (4.39)

Exponential decay now follows from well-known two-dimensional bond results
[24], which give

<^L(h)>p ^ (const)e " θ(p)h (4.40)

with θ(p) >0 for p< 1/2.

Proof of Lemma 4.5. For a given configuration in ^L_ 1? there are in general many
rings of plaquettes in the strip L— 3/2 < x < L—1/2 which are part of an open SOS
tube from the origin. We may partition the event <?L _ ί according to which ring, 7, is
the maximal such ring:

*L-ι=LUl-ι (4.41)
y

It is observed that all in-plane events which may occur inside y are independent of
the condition that y be maximal. Should every bond inside y in the plane PL_ 1 be
occupied, then, for any configuration in ^£_ 1? there is a path of occupied bonds
connecting the origin to (L— 1,0,0) within the tube. If, in addition, the ring y is
plated by vertical plaquettes in the plane PL_1/2, and if the chimney event ch(L)
occurs, then the configuration is also in φL. Since all these events occur in disjoint
regions, they are independent. Thus

<?ιΛ ̂  (const) Σ <*!-1 >P [P(l -p)2]Areaω, (4.42)
y

where Area(y) denotes the number of plaquettes within the ring y. In the above, the
constant depends on p, but is independent of L.

Performing the partial sum over rings of the same length, we obtain

" -ι>Pe~*k\ (4.43)"/ *-" f — > ' ^—
where *

= Σ <X-ι>P (4.44)
γ:\γ\=k

and α = const < oo. Defining the (normalized) weights wfc = <^_1>p/<^L_1>p, we
have

(4'45)

where t?fc is the event that there is a ring of occupied plaquettes of length k encircling
the "origin" in the strip L-3/2<x<L— 1/2. Performing a Jensen inequality on
(4.43), and using (4.45), we obtain

<^L> ̂  (const) exp Γ - α'Σ <»*>Pfc2l <^L- ι>P (4.46)

For p < 1/2, the quantities <t;fc>p have finite moments of all order. (A simple estimate
shows, for example, that (vkyp^e~c^.) Thus the sum in the exponent in (4.46)
converges. We may bound <VL-ι>p from below by <^L>P to obtain the desired
result. D



462 D. B. Abraham, J. T. Chayes, and L. Chayes

5. Entropy of Random Surfaces

In order to study the entropy of lattice tubes, we rewrite QL(β) in the form (1.3):

iίkL. (5.1)

Here Γk(L) is the number of surfaces with exactly kL plaquettes, i.e. with "covering
factor" k. It is easy to see that the necessary and sufficient condition for Γk (L) > 0 is
kL=2n^ 4L, where n is an integer. Thus, for each rational k ̂  4, there is a squence
of lengths <£ (k) tending to infinity, such that Γk(L) > 0 for all L e JS?(fc). It turns out
that the quantities Γk(L) are relatively interesting in their own right. The starting
point is to establish that Γk(L) has well-defined asymptotic behavior:

Proposition 5.1. The limit

ζ(k)= lim logΓfe(L)|Le &(k) (5.2)

exists and is finite for all rational k ̂  4.

Proof. If Ll9L2e&(k), then clearly Lί+L2e&(k). Thus we obtain the
subadditive estimate Γk(L1+L2)^Γk(L1)Γk(L2). An elementary argument, with
some caution taken to ensure that one does not stray from Le <=£?(/c), establishes
the existence of the limit. The limit ζ(fc) is nonnegative by definition. A Peierls
estimate of the form Γk (L) ̂  eckL shows that ζ(k) is always finite. D

Remarks. (1) As usual, we obtain as a corollary the subadditive bounds

Γk(L)^eζ(k}L VL. (5.3)

(2) It is observed that exact subadditivity is not a requirement for the proof of
Proposition 5.1 (or for analogous arguments in the rest of this section). In
particular, a little patching shows that the Γ's associated with the direct correlation
function also have well-defined asymptotic behavior.

The ζ(k) defined as the limit in (5.2) is of course meaningless for irrational k.
However, the following proposition demonstrates that ζ(k) has a natural extension
to a function defined on all real numbers.

Proposition 5.2. ζ(k) is concave as a function of (rational) k^4.

Proof. Let /c 1 ? fc 2 ^4 be rational. Let Λe[0, 1] be rational. Pick
+ (l—Λ,)fc2) so that λLe^(ki) and (l-A)Le JS?(fc2). By arranging a covering
factor of fci in the first λL steps and a covering of k2 in the final (1 — λ)L steps, we

°btam (5.4)

from which the desired result can be shown to follow. D

Since ζ(k) is concave, it is also continuous and thus extends to a (concave,
continuous) function on all real /c^4. A few comments are in order:

(1) Since ζ(k)^0 for all fe^4, the concavity implies that the function is
nondecreasing.

(2) Clearly £(4) = 0. It is sometimes convenient to define ζ(k)= -oo for all
/c<4. In this context, it is gratifying to observe that dC/d/c~log(l/(k-4)) as fe|4.
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(i) Thermodynamics of Random Surfaces. The function ζ(k) has an ad hoc
interpretation as the surface entropy at covering factor k. Indeed, taking the
derivative of QL with respect to β, we obtain

Σ\S\e~βls{

1 n 1 ^z*
(5.5)

i.e., the expected covering at inverse temperature β. Conversely (after an informal
exchange of limits), the left-hand side of (5.5) is seen to "equal" dM/dβ. This allows
the interpretation: (^partition function, M<->free energy, ζ<-»entropy,
/c<->energy, which suggests that there is a canonical relationship between all
relevant parameters. That this is indeed the case is shown in the following:

Theorem 5.3. The variables k and β are canonically conjugate. Moreover, M and ζ
are related by a Legendre transform, i.e.

— M(β) = sup [_ζ(k) — βk] . (5.6)
k

Remark. Since ζ(k) is concave (Proposition 5.2), we may also express ζ(k) via the
inverse Legendre transform.

Before proceeding with the proof of Theorem 5.3, we must dispense with a
minor annoyance. To this end, let βK/0 = διX/0 represent the correlation function
defined by summing only over those surfaces ίfl C ίfL which are confined to the
region \y\, \z\<T(l + L2). Evidently Mτ is well-defined, nondecreasing in T and
bounded below by M.

Lemma 5.4. lim Mτ = M.
Γ-+QO

Proof. The lemma is easily verfied if M= - oo. Now suppose M> — oo. Observe
that for any finite L,

VmQί(β) = QL(β). (5.7)
Γ-^oo

Let ε >0 and choose L0 so large that QLo(β) >ε~(M+ε)L°. By (5.7), for T sufficiently
largel5ϊp08)^βI,0G8)e"βLo. Using the subadditive bound on Ql.(β) [i.e., Qτ(β)

], this implies

D (5.8)

Remark. Although we require only the above result, it will turn out that Mτ is
independent of T. That this should be the case is indicated by the observation that,
for any fixed k and T> 0, Γ^(L) = Γk(L) once L is large enough. Thus ζτ(k) = ζ(k) for
all Γ>0.

Proof of Theorem 5.3. Expressing β£(/f) in the form (5.1), it is clear that, for any
(rational) k

kL (5.9)

for L sufficiently large. This implies

-Mτ(β)^ζ(k)-βk. (5.10)
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Taking a supremum over k of (5.10), a lower bound of the form (5.6) is established.
If the right-hand side of (5.10) is +00 [indicating Mτ(β) = — oo], we are done.
Otherwise, observe that there are only FΓ(L)^L(L2)d~1 nonzero terms in the
expression (5.1) for Q^(β)- Replacing each nonzero Γ^(L) by Γk(L), we have the
upper bound

^τ(L) VT(L)

Ql(β}^ Σ Γk(L)e-ekLί Σ e^~^L. (5.11)

Evidently,

-rlogβΓO^ 7logFT(L)+ supK(/c)-A] . (5.12)
L L k

Letting L-> oo and using Lemma 5.4, the desired result is established. Note that this
also implies MT = M VΓ, as expected. D

Remark. Standard arguments show that with the possible exception of a single
point, /ί defined below, whenever M(β) > — oo, there is actually a maximizing k for
the right-hand side of (5.6). We shall denote this maximizer by k(β).

Corollaries. (1) The critical melting temperature, βc, is given by

(5.13)

/Γ= lim [£(*;)/*;] (5.14)
fc-»oo

is strictly positive, then JJ is a catastrophic transition point, i.e. M(β) = —oo for
β<β.

(3) Vβ^β M(β) = M(β+) = \imM(β + e). In particular, M(β) is right con-
tinuous at β.

(4) Vβ^β

n(βί-β2) = 4(β1-β2). (5.15)

(5) // βcΦp, then M(β)~(β-βZ as β[βc.

Proofs. Corollaries (1) and (2) may be checked by using the identity

- M(β) = sup [ζ(/c) - β*k + (β* - β)K\ (5.16)
k

with /?* = βc or β, as appropriate.
To prove (3), first assume M(β)> — oo. Let δ>0. We may find a kδ such that

ζ(kδ) - βk? ̂  - M(β) -δ. But then - M(β + ε) ̂  ζ(kδ) - βkδ -εkδ^- M(β) - εkδ

— δ. Letting εjO, the desired result is obtained. A similar analysis shows that if
M(β) - - oo, then M(j8)-> - oo as β\β.

To prove (4), first assume β±>β. Then, by the remark following the proof of
Theorem 5.3, the expression (5.6) for M(βl) has a maximizer k(β±). Evidently

M(β2)-M(β1)^k(βί)(β2-β1). (5.17)

We note, for future reference, that (5.17) is independent of the relative size of β1 and
/?2 However, for /?2^/? l5 we may replace k(βλ) by its lower bound femin = 4, the
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minimum covering factor. If β1 =β, the analysis may be repeated by noting that
V<5>0, there is a kδ for which ζ(k) — βk_is within δ of its maximum value.

To establish (5), first take β1 = βc*β_and β2 = β^βcin (5.17). This gives M(β)
^4(β-βc). Conversely, take β2 = βc^β and β^β^βc in (5.17). Reversing the
inequality, we obtain M(β)^k(β)(β-βc)^k(βc)(β--βc). Since βcή=β, k(βc) is
finite. D

Remark. We may do a trivial estimate to bound Γk(L) from below by (say)
considering rings in a plane which may be serrated at random. Such an estimate
shows that β>0, and thus by Corollary (2) that our model has a catastrophic
transition.

It is worth noting that the considerations in this section are quite general;
indeed, the results may be applied to any model of the form (1.1), provided that the
process is (essentially) subadditive. In particular, the results are applicable to
random walks as well as random surfaces. For both types of systems, the
corollaries to Theorem 5.3 offer simple proofs of rather soft, but often useful
properties.

(ii) Analyticίty of the Mass and Power Law Corrections to the Entropy. The
relationship (5.1) between QL(β) and Γk(L), coupled with the fact that there is a
(finite) maximizing k(β) (for β>β), can be used to show that if there is a
neighborhood of k(β) for which Γk(L) ~ LV(fe)L, then QL(β)~D>+1/2e~M(β)L.
Unfortunately, direct estimates on the number of surfaces are difficult to obtain.
Conversely, it should be possible to use asymptotic estimates on QL(β) to obtain
information on the behavior of Γk(β)(L). The first step, which is of some independent
interest, is to establish analyticity of the mass.

Theorem 5.5. M(β) is analytic whenever M(β)<Mc(β).

Proof. By an argument similar to that used in the proof of Lemma 2.6, it can be
shown that when |z| < eMc(β\ the function

tyz,g)=ΣzLΣri(ktfL (5.18)
L k

is regular in g is a neighborhood of \g\ = e~β. Next, recall that whenever M(β)
<Mc(β), eM(β) may be defined as the smallest real zero of 2-fc(z,e~β)/ze~4β.
Analyticity is established by invoking the (analytic) implicit function theorem. G

The power law corrections can now be determined by an analysis along the
lines of Appendix B.

Theorem 5.6. For all k for which the corresponding β(k) satisfies M(β) < Mc(β), the
asymptotic behavior of Γk(L) is given by

(5.19)

Proof. The proof entails asymptotic analysis of the integral

1 da dz ~*~π

τL+ϊ ί dωldω2QL(g,z,ωί,ω2) (5.20)
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with QL(g,z, ω1?ω2) given by the transformed Ornstein-Zernike equation (2.27),
analytically continued to complex values of g. Throughout our analysis we will
restrict attention to \g\<e~βo, where β0 is such that the masses are separated
whenever β>βQ.

We first observe that if the integration is performed about some fixed circle
g = e~βeiφ, then by the #<-» — # symmetry of the integrand, we need only integrate
the phase of g from — π/2 to π/2 and double the result. Next, a detailed
examination of the expansion of C3(g) in powers of g shows that the phases are
mismatched except at φ = 0. Using this as the key ingredient in an argument along
the lines of Lemma B.I, it can be shown that the contribution to (5.20) from the
region \φ\>δφ has modulus bounded above by

(Const) [β

whenever β>β0. The constant ε depends, of course, on β and δφ. Another
argument along the lines of Lemma B.I establishes that the contribution to (5.20)
from (ω1?ω2) outside some small neighborhood of the origin is also bounded
above by an estimate of the form (5.21).

Employing a Rouche argument similar to that of Lemma B.2, we may perform
the z-integration to obtain

§ -J ϊ̂ ί dω1dω2β-M<» a" »^F(ί)ω1,ω2)
\<δφQ |ωι|, |ω2 |<<5ω

l + 0(e-(M(«+s)VfcL)]. (5.22)

In the above, δφ and δω are chosen small enough so that (1) the implicit function

(5.23)

exists; and (2) the Rouche argument is valid.
Now when φ Φ 0, both eM(g} and gk develop imaginary parts which, when raised

to the £h power, oscillate so strongly that the purported "error" term dominates
the "principal contribution." To avoid this difficulty, we choose \g\ = e~β so that
the integrand has stationary phase. This is done by finding the β such that
dM(β)/dβ = k, i.e. β = β(k). By the remark following the proof of Theorem 5.3,
— M(β(kJ) + kβ(k) (which is the coefficient of L in the exponent) is identified as ζ(k).
The ωl9 ω2 and φ integrations are now easily performed; each multiplies the result
by a factor ofiΓ1 / 2. D

Appendix A

Regularity of the Transform Functions for Percolation

Here we provide a proof of Lemma 3.6 for the function βp(z, ξί9 ξ2); the proof for
Op(z,ξl9ξ2) is identical.

For each pair (ka, kb) of rational numbers, we define the correlation function

This function is to be understood in the sense of Sect. 5; that is, we consider only
those Le ^(fcα, kb) for which ρ^'fcb) need not vanish.
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Proposition A.I. Let ka and kb be rational. Then Vpe(0, 1)

lim - logβML e &(ka, kb) = Jί(ka, kb) (A.2)
L

exists in R*. Furthermore Jί(ka,kb) is jointly convex in ka and kb.

Proof. The existence of the mass follows from the usual subadditive bound

efe **'. (A3)
where f(p) > 0 is the patching factor required to join the tubes. Now simply iterate

(A.3) and take lim — log( ) through a sequence (Le^f(ka,kb)).
L->oo L

Convexity in ka is a consequence of the subadditive estimate

Qίλka +(1~ λ)k'a> kb) ̂  /(p)Q&* feb)β^-U , (A.4)

for rational λ e [0, 1]. Again the limit must be taken through a sequence (L) such
that Le&(λka + (l-λ)KM λLεJ?(ka,kb) and (l-λ)Lε 3>(k'α,kb). D

Remark. The usual subadditive bounds (cf. corollary to Proposition 2.1) imply

Q(ka,kb)<e-Λi(ka,kb)L yjr^ (A 5)

Furthermore, by convexity, we may extend Jt(ka, kb) to a continuous function of
its arguments.

Since Ji(ka, kb) is convex and symmetric in ka+-+ — ka, kb^> — kb, it must be either
a constant or, eventually, increasing (at least linearly) with \ka\9 \kb\. In the latter
case, the contribution to the correlation function from surfaces outside some fixed
cone is negligible. The following proposition, which makes use of the asymptotic
decay of the connectivity function, shows that, indeed, the latter case is realized.
This enables us to prove the desired regularity.

Proposition A.2. Whenever p < σC9 there exist constants λl , λ2 > 0 such that Jί(ka, kb)

Proof. This follows from the obvious fact that V/cα, kb rational, and for L sufficiently
large,

(The second inequality is simply Proposition 3.5.) D

Proof of Lemma 3.6. It suffices to show that for |z| < eM(p\ and for I^J, \ξ2\ in some
neighborhood of 1, the sum

, ,
L,a,b

is absolutely convergent.
First note that M(p) = ̂ (0, 0). By the above proposition, there exists ka9 kb and

λ > 0 such that

feβ, kb) ̂  M(p) + λl(ka - ka) + (kb - fcft)] . (A.8)

Take \ξί\ and \ξ2\ to lie within a disk of radius eλ.
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Since |z| < eM(p\ there exists a neighborhood of \ξt\ = 1 (possibly smaller than eλ)
such that for \ξγ\ and \ξ2\ in this neighborhood,

\z\\ξ^\ζ2f
b<eM(*\ (A.9)

We take |̂ | and \ξ2\ to lie inside the smaller of the two regions specified above.
Now using the subadditive bound on the master function

QL(?)=

and the bound (A. 5)
a,b

it is straightforward to verify absolute convergence of the (triple) sum (A. 7). D

Appendix B

Asymptotic Behavior of QL,(a,b)

In this appendix, we analyze the integral

^ Λ X f ^.
2-— ?C(z,(ω1,ω2))

(B.I)

For a = b = Q, this analysis completes the proofs of Theorems 2.7 and 3.7. The
general case is needed for the proof of Theorem 4.1.

We first demonstrate that as L->oo, the only significant contribution to the
integral is from an infinitesimal neighborhood of ω1 = ω2 = 0.

Lemma B.I. V<$>0, 3ε,v>0 such that unless

2 -- ϊC(z,(ω1,ω2))

,KI<<5
vizi 2

(B.2)

Using the bound (B.2), we may integrate (B.I) around the circle \z\ = eM+ε to
obtain:

Corollary.

. dz f -
^zyf^TT J dωι J

i Z l c o ι l > δ Iω 2 l

zg

0 - π, f
2 -- 4;C(z,(ω1,

Note that the upper bound in (B.3) is exponentially small relative to the
(anticipated) value of the integral (B.I).

Proof of Lemma B.I. It is convenient to express C(z, (ωl5 ω2)) as a power series in z
with coefficients CL(ω1? ω2). By the α<-» — α, b*^ — b symmetry, each CL(ω1? ω2) is
of the form of a cosine series with positive coefficients, and hence is maximized by
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co1=ω2 = 0. Furthermore, the maximum is quadratic whenever CL(ωl5ω2) has
nontrivial ω-dependence. This turns out to be the case for all L^3. Thus, given
<5>0, there exists v>0 such that

sup |C3(ω1,ω2)|<C3(0,0)-2v. (B.4)
|ωι|>(5
\(02\>δ

It follows that, for \ω^\9 \ω2\>δ

|z|3[C3(ω1,ω2)-C3(0,0)]^(D(|z|)-2v|z|3. (B.5)

Next, we find an ε>0 small enough so that

<2 + ve2M/g4. (B.6)

[Recall that fc(eM)/eMg4 = 2 and that [<C(x)/x]x>0 for x real and positive.] Since
the coefficients, (CL, are nonnegative, (B.6) implies

|(D(z)/z#4| ̂  (C(|z|)/|z|04 < 2 + ve2M/#4, (B.7)

whenever eM^\z\^eM+ε. When |z|<eM, we have the (stronger) bound

|<C(z)/z#4| ̂  ί;(|z|)/|z|^4 < 2. (B.8)

Combining (B.5), (B.7), and (B.8), we have

I
2 z<t(z, (COT , ω?)) >2 — (D(|z|)/|z|g4 + 2v|z|2/<74

ZGΓ

^v\z\2/g4. (B.9)

In the above, χ(\z\^eM)= 1 if |z|^eM, and zero otherwise. G

By the reasoning in the proof of Theorem 2.7, the function 2 - C(z, (0, 0))/z#4

has a simple zero at z = eM, and no other zeroes in the annulus eM < \z\ ̂  eM\λ. We
now verify that a similar situation occurs for (ωl5ω2) sufficiently close to (0,0).

Lemma B.2. For any A>0 satisfying eM + A<λ~1eM, 3δ>0 such that for all lωj,
|ω2|<(5, [2 — C(z, (ω1?ω2))/zgf4] /zαs exactly one zero inside the disk \z\<eM + A.

Proof. Define κ= min |2 — ίl(z)/z^4|>0. By choosing L0 and /c0 sufficiently
|z |= eM+^

large, we may ensure that

L>L0 \a\,\b\>k0
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An analogous estimate holds for ωί and ω2 nonzero. Thus, on the circle
\z\ = eM + A, we have

2κ
<Ύ

Σ si L/1 icoiα iω?&\ /"D 1 Λ\C^ ίa b\z \L—e e ) ' l B * U
L<LO

\a\,\b\<k0

Since the second term on the right-hand side of (B.I 1) is a finite sum, we may find a
<S>0 so that it is bounded above by κ/3 whenever lωj, |ω2|<<5. Applying the
theorem of Rouche, the desired result follows. D

To complete the arguments of Theorems 2.7, 3.7, and 4.1, one finds a δ'
neighborhood of the origin for which the implicit function theorem defines a
function e

M((0ί'ω2} describing the motion of the zero specified in Lemma B.2. That

gM(ωι,ω2) jlas a quadratίc minimum follows from the form of the coefficients
CL(ωl5ω2).

Remark. Regularity of C in (ω1?ω2) has been established in Lemma 2.6 and
Appendix A. It should be noted that the implicit function theorem (and thus
Theorems 2.7 and 3.7) requires only differentiability of C. However, regularity is
necessary for the distortion of the contour (i.e., completing the square) in the proof
of Theorem 4.1.
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Note added in proof: It has recently been established that Mc(β) > M(β) for all β > β. Thus
Theorems 2.7 and 4.1 give the asymptotic behavior of QLι(β>6)(β) for all noncritical temperatures.
It has also been shown that the surfaces contributing to the pair correlation QL(a,b)(β) do not
breathe whenever Mc(β) > M(β), and thus for all β > p. These results appear in "Nonperturbative
analysis of a model of random surfaces," Harvard University preprint (HUTMP 169), by the
authors.






