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Abstract. We construct the solutions of the planar Navier-Stokes flow for a
viscous incompressible fluid in the half-plane, by means of a boundary layer
equation describing the production of vorticity on the boundary. Regularity
properties are also discussed.

0. Introduction

The time evolution of a viscous incompressible fluid is usually described by the
Navier-Stokes equations

ou

§+(u-l7)u=vAu—l7p+g, )
V-u=0, )

where
u:Dx[0, T]-R¢, d=2,3, T>0, (3)

denotes the velocity field, D CR? (d the dimension of the physical space) is an open
region with smooth boundary in which the fluid is confined, v >0 is the viscosity
coefficient, p: D x [0, T]—IR" is the pressure and, finally, g: D x [0, T] xR is an
external force acting on the system.

Equations (1) and (2) describe the balance of momentum and conservation of
mass, respectively. For simplicity the density is assumed to be one.

We are interested in the initial boundary value problem (ibvp) associated with
(1) and (2). This means that we have to specify the initial value of u, i.e.

u(x,0")=uy(x), xeD, 4
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where u, is a given divergence-free vector field, and the boundary conditions. It is
usually assumed that

u(x,t)=0 for xedD, (5

which means perfect adherence of the fluid at the boundary at rest.

The ibvp (1), (2), (4), (5) has been widely investigated and local and global
unique solutions have been proved to exist for d=3 and d =2, respectively. We
refer the reader to the monographs of Ladyzhenskaya and Temam [1, 2], for a
comprehensive review on the subject. However, a better understanding of the
structure of the solutions is desirable, even in the simpler two dimensional case. To
clarify what we mean, let us first consider the case d =2, curlg =0, and D a domain
without boundary (e.g. D=R? or D= T?, the two-dimensional torus). In this case
the infinitely many first integrals for the Euler flow induce infinitely many a priori
estimates for the Navier-Stokes flow. For example all the L, norm of the vorticity
o =curlu are non-increasing in time.

The situation is more involved when boundaries are present. The boundary
conditions (4) are satisfied only if an extra vorticity is produced, and thus we have
no more simple a priori estimates for the vorticity. Nevertheless, the decrease in
time of the energy 3 | udx is enough to prove existence and uniqueness of smooth

D
solutions by means of v-dependent estimates.

The two situations we have mentioned are very different from a physical point
of view. In particular, the vanishing viscosity limit is rather simple in the first case
(in [1, 3-5] it is proved that the Navier-Stokes solutions converge to the
corresponding Euler solutions when v—0), while the behavior of the flow, in the
same limit and in presence of boundaries, is rather involved and a matter of debate.

Since the production of vorticity due to the boundary is a basic fact in the
Navier-Stokes evolution, it is quite natural to look for rigorous estimates of the
rate of such a production and to take into account this physical feature for the
construction of the solution.

In this paper we do this in the case of the half-plane: the geometrical simplicity
of the domain will allow us explicit calculations leading to reasonably accurate
estimates.

The main idea of this paper is to describe the boundary conditions as a sort of
(singular) perturbation acting on the free flow. This follows the physical idea that,
to force the fluid to rest on the boundary, vorticity has to be produced by the
boundary itself [6, p. 277].

This approach was inspired by a numerical algorithm proposed by Chorin [7].
We will sketch the basic idea. Let E,u, be the solution of the Euler equations with
initial datum u,,. Let ¢ : u—1i be the operator which extends a vector field u defined
in D to a vector field i defined in a slightly larger domain D. if has the property of
the being odd across the boundary (see [8] for details). ¢ has essentially the effect of
adding a vortex sheet concentrated on the boundary. Finally, let H,/(i)
=IP{exp[tv4]dl,}, where P is the projection in IL?(D) on the divergence-free
vector fields tangent to the boundary. The one-step forward operator of the Chorin
algorithm is now defined as

ks(”O) = Hs °© ¢ © EauO . (6)
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It is easy enough to show [8] that k,(u,) is a consistent algorithm, that is k,(u,)
solves Eq. (1) for t=0 if uq=0 on 0D and divu,=0. However, there is no
convergence proof of the product formula

lim Kl ()=t ™

where u, solves Eqgs. (1)(3).

Our method to solve the Navier-Stokes flow differs from the Chorin method,
but rests on the same physical idea. In fact, we do not try to show the convergence
of the product formula (7); however, our approach provides a mathematical
justification of the fact that the boundary behaves as a singular source of vorticity.
Hence we hope that our results could give some insight into the validity of the
Chorin algorithm.

In order to realize our program, we approximate the Navier-Stokes flow by a
convergent sequence of linear problems. In each linear problem the correct
boundary conditions are satisfied by means of a suitable singular source (vortex
sheet) of vorticity on the boundary. The main point of this paper is that the
sequence of vortex sheets converges to a limit, which describes the rate of vorticity
production near the boundary in the Navier-Stokes flow, Moreover, the
convergence proof also implies explicit estimates of this vorticity production.

We, finally, remark that our techniques should extend, with minor modifi-
cations, to the half-space case, obviously, for short times.

The plan of the paper is the following. In Sect. 1 we deal with the Stokes flow. It
is constructed following the idea explained above, perturbing the heat flow by
means of a singular forcing term. The analysis can be done completely and the
solutions of the Stokes problem can be written out explicitly. Among the extensive
literature concerning the Stokes problem, we quote [9] for the explicit
construction and regularity properties of the solutions in the half-space case (see
also [10] for other considerations). Unfortunately, we cannot make use of these
results for our purposes, mainly because we need different norms.

The results of Sect. 1 are generalized in Sect. 2, where a linear Navier-Stokes
problem is considered. Here the transport term is given by a known drift,
considered (as well as the forcing term due to the boundary conditions) as a
perturbation of the heat flow. Technically speaking we use ideas of the classical
theory of linear parabolic equations; however, we introduce norms that are
unusual for fluid dynamical problems, but useful for our purposes.

In Sect. 3 the Navier-Stokes problem is finally constructed by means of the
classical iterative method, as a limit of solutions of linear problems. Section 4 is
devoted to the regularity properties of the solutions.

Most of the technical calculations and estimates are given in four appendices at
the end of the paper. Very often we will interchange integrations and use
integrations by parts. For the sake of brevity we do not underline the correctness of
such operations whenever this is transparent from the context. Finally, we shall
denote by C any positive constant (not always the same) independent of the
physical quantities introduced.



62 G. Benfatto and M. Pulvirenti

1. Stokes Equation
The Stokes ibvp in the half-plane takes the form

%u(z, t)=Adu(z,t)—Vp(z,1),

V-u(z,t)=0,
z=(x,y)eD={(x,y)ly>0}, u(z1)eR?,
u(z, 0" =ug(z), u(x,0,6)=0, 'llim u(z,1)=0.

(1.1)

Here u=(u,, u,) and p denote the velocity and the pressure fields, respectively, and
u, a given divergence-free vector field. The viscosity coefficient and the density are
assumed to be one for simplicity.

. . 0 0 .
Introducing the vorticity o =curlu= % — 6Lyl and the stream function ¥
0 0
=—Viy vi=| ——, = 2
u . ( 3y ax> (1.2)
(¥ exists by virtue of the incompressibility condition V- u=0), one easily obtains
AV =—w. (1.3)
Rewriting the first equation in (1.1) in terms of vorticity, we have
0
Em(z, H=40(z,1), (1.4)
with initial value
o(z,0") =curluy(z) = my(z) . (1.5)

To recover the boundary conditions u(x, 0%, t) =0 and the behavior at infinity
u(z)—0 as |z| > 00, one has first to specify the boundary conditions for the Laplace
operator appearing in Eq. (1.3). A reasonable choice is to consider 4, the
Laplacian with Dirichlet boundary conditions for which .

u=—V*+i,'o. (1.6)
This ensures the correct behavior at infinity and the condition
0
uz(x,0+,t)=—gAglw(x,OJ',t):O. (1.7

The other boundary condition u,(x, 0™, £) =0 cannot follow by static consider-
ations. Nevertheless, one has still freedom in choosing the boundary condition for
the Laplace operator in Eq. (1.4). Simple calculations show that such a condition is
rather complicated, because not local, hence very difficult to be handled directly.
To overcome this difficulty we impose Neumann boundary conditions for the
evolution problem (1.4). This choice implies that the vorticity is preserved. To take
into account the vorticity produced by the boundary, according to the idea
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explained in the Introduction, we add a vortex sheet source on the boundary which
will be determined by imposing the condition u,(x,07,t)=¢—0.
To be more precise we want to make sense to the evolution problem

%m(z, £)=(4yo)(z, )+ F(z, 1), (1.8)

where
F(z,0)=f(x)0(y), (1.9)

and f has to be determined by the condition u,(x,0",t)=0. Here 4 denotes the
generator of the semigroup solving the heat equation with Neumann boundary
conditions.

To perform the above program it is convenient to extend ®, by parity with
respect to the y=0 axis. Let us denote this extension again by @, and by o, its
restriction to the upper half-plane,

wo(x,))=w5(x,y) if yz0,

=a4(x, —y) if y=0. (1.10)

We shall assume o, well prepared
ug(x,0M)=~V4,'0"(x,0%)=0. (1.11)

Equation (1.8) may be written formally

t
o(z, 1) = Go(2) + (f) (Gi-s/9)(2), (1.12)
where
=z —42’]2
e t

(GO(2)=]dz'G(z—2)&(z)=[dz (@) (1.13)

4t

denotes the free heat semigroup.

As we have noticed, f, the intensity of the sheet, has to be determined by the
condition

0
ul,,(x,0+)=@Aglwf(x,O*):O. (1.14)

[Here and after we use indifferently the notation &(-,t)=¢,(-) for all time
dependent functions.]

Equation (1.14) gives rise to an equation for f. To deduce it we rewrite Eq. (1.14)
in the following equivalent form

a -1
47 0x,0=0. (1.15)

[Here 4 and 4~ * denote the Laplace operator in the whole plane and its inverse,

given by the kernel 47 Y(z,z)= %ln lz—2'.]
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In fact Eq. (1.14) says that the stream function —Ap'w,” solves also the
Neumann problem, hence cannot fail to be equal to — Ay w," = — 4" 'w, The
argument can obviously be reversed and the equivalence between Egs. (1.14) and
(1.15) is then established.

Combining Egs. (1.15) and (1.12), we have:

W) =L, (116

where
h(x)=— %A“Gtwo(x, 0), (1.17)

and
(L= 547 [ a6, D) 50). (L18)

Now, we want to show that Eq. (1.16) can be explicitly solved in suitable spaces
of functions.
Let 4, be the Banach space of all continuous functions f:R'—IR! of the form

)= [dke™ (k) (1.19)
2n

=

equipped with the norm
1/ =1 dkl (k)] (1.20)

and
B, r={1€CO, TL, BN Sflr,. <0}, flr.= S(gpﬂt'glllel-
te(0O,

In Appendix A we prove

Theorem 1.1. % is a bounded injective operator of %, r , in itself. Moreover, if
he %, r . and satisfies the following conditions:
i) lin(} h,(k)=0.
t—
ii) h(k) is an absolutely continuous function of t€[0, T] for a.a. k.
iii) The function f, defined via (1.19) with
A . 0\~ k| ¢ ds  _..._ 0\ ~
k)=2ig(k)| | kK* + = | h(k)+ —= | ———=e ¥ k2 4+ —
Jko=2ie( )[( * m) Ayt (k 4 at)hsac)]

(e(k)=sgnk) , (1.21)
belongs to &, 1., then Eq. (1.16) has a unique solution %, r , given by Eq. (1.21).
Proof in Appendix A.

By virtue of Theorem 1.1 we could write explicitly the unique classical solution
of the Stokes equation. We are not interested in doing this in all details, but one
easily realizes that (1.21) can be inserted in (1.12) to give, at least, a formal solution.
Regularity properties follow by the considerations in Sect. 4.
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2. A Linear Problem

In this section we shall deal with the following linear problem. Let ¥~ be the family
of all time dependent continuous vector field b: R x R?—IR?, satisfying the
following conditions:
i) b,e C'RI)NC'(R2)NC(R?)  for all 20, where RZ
= {(x.») e RZy= ()0},
ii) V-b,=0 for all t>0,
iii) b,=(b¢,b?),
btl(x’ y) = btl(x’ —)’) P
bi(x,y)= —b2(x, —y) forall t=0,

iv) b}(x,0)=0 for all £=0.
1

Notice that i) and iii) imply b2(x,0)=0 for all >0, and that 6& may be
discontinuous at y=0. oy

Let V; ; be a two parameter family of operators whose kernels are given by the
fundamental solution associated to the parabolic linear problem with drift b and
diffusion coefficient 1, i.e. V; ; satisfies:

OVt VBV )=V, 12520,

Vo=1.

2.1)

2.2)

Given an initial profile of vorticity g in the upper half-plane, we want to study
the initial value problem

t
0(2) = (V,,0®0)(2) + £ ds(V;,sF3)(2) (2.3)
where o, is given by (1.10), and where

F(2)=£(x)8(»), z=(x,)). (2.4)

f;has to be determined by the condition that the velocity produced by the vorticity
mt+ = (‘)tly >0
u=—Va; e’ (2.5)

is zero on the boundary. We denote by the same symbol u, its extension by
reflection in the whole plane. This is given by

u=—V*+4" (o, *g,), (2.6)
where
£,(x,y)=¢(y)=sgny. 2.7)

We notice that (2.6) holds since o, has the same symmetry properties of @, due
to the particular choice of b, and 4, can be derived, in the half-plane, by the
images method.
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Proceeding as in the previous section, we couple Eq. (2.3) with the following
one

%(A‘lm,)(x,0)=0, (2.8)
that is equivalent to
—h(x)+ (& f)(x)— (A f)(x)=0, 29)
where
0
hy(x)=— g(ﬁ “1V,,000)(x, 0), (2.10)
(H 0= %(A - dth,st> (x,0), @1y
and
Rt,sth,s—Gt—s' (2.12)

[G is given by (1.13).]
As we have seen in the previous section, # ! exists in suitable spaces and
hence Eq. (2.9) can be conveniently rewritten as
=T =L hy, (2.13)
where
T=S%"'H (2.14)

and %~ 'h is defined by the right-hand side of (1.21).

The above algebra has been done in view of the explicit knowledge of # ~ ! and
the fact that #" (which is more regular) can be estimated to give sense to (1 —.7) !
as a Volterra series.

Thus we want to study the initial value problem (2.3), (2.4), (2.13), (2.14). To this
end we introduce the following norms:

IfI=fdklf(k), f:R'->R!, (2.15)
|®| =[dksup |®(k,y), & R>*->R!, (2.16)
where
1 o
=——)e"*f(k)dk 2.17
J(x) l/ﬂje f(k)dk (2.17),
1 A
D(x,y)= ﬁ fe**d(k, y)dk , (2.17),

and finally,
b= max 6" if b=(b',b?*):R>->R>. (2.18)
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Accordingly to the above norms, we introduce the following Banach spaces:
B, ={fe CR,L,RY[|f] < +o0},
B={®eCR*,RY||®| <+ 0}, (2.19)
B={be?||b| < +o0}.
For all time dependent, continuous functions &: [0, T]—%,, %, % we put
1817 = Sup &, (2.20)

and denote by %, ;,%, %1 the corresponding Banach spaces [notice that
By, 7=%1 1.0 see Definition (1.20)]. It is also useful to introduce the following
operators

(:,s@)(x, y)=(b;- V'V, ®)(x, ), (2.21)

(0:,@)(x,y) =1V, D)(x,y), =12, (2.22)

0=@".0". (2.23)

Lemma 2.1. Suppose be %1. Let ® €  and T >0. Then, for T=t>s>0 we have:
1V, @] Sce 9P @], (2.24)

12, s| @l Zc|bl eI 1E D], (2.25)

le., @Il = %eqm)“"”%lldﬂl : (2.20)

Furthermore, if ®=q@(x)8(y) and @ € #,, we have

cect=9blI?

o= ol (2.27)
I/ t—s
_ clb eC(t—S)IIbII?
T Pt el Y (228)
l/ t—s
cllblece=9Nblz
1o @) < LU T o (2.29)

(t—s)
Proof in Appendix B.
By virtue of (2.24) and (2.27), if fe %, 1,1/, [see Definition (1.20)], @, defined
via (2.3) makes sense and @ € 4 provided be %, and w, € %.
Now we show the existence of a unique f satisfying (2.13) and with suitable
regularity properties. As a preliminary step we estimate the operator 7.
Recalling (1.22), we have, if f and b are smooth enough,

TH®=am)+ L[ B

|t
_j’_
V7o Vis

a,(k) = 2ie(k) [kzwt(k) + gzw,(k)] , (2.31)

e e9q (k), (2.30)

where
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and

Z—x—)—— [dsR, ,F(x', ). (232)

By direct computation (g, denotes the one-dimensional heat kernel)

1
wi(x)= 7 fdx'dy’

nsFulk,y) = [dre ™ ¢ dyg,_ (y—y)(@sFIk.y), (2.33)
and by the same arguments used in Appendix A
| i - iu_ U
)= 5y § dsCRe ) ) fdue™ 57
= 5800 ]dye™ P [ ds(R),F) (k. ) (2.34)
0
Since
0
3 Rus=—bVV 4R, R, =0, (2.35)
we finally have
ak)=a; (k) +al(k), (2.36)
where
t
a; (k)= —[dye™ "V [ ds(gp Fy) (k, ) » (2.37)
0

. B t ot o , o2
20 = —[dye” MV ds T dve Iy g,y =y) (@ F k.Y

t ot Tk
B s e R L)

(2.38)
and the last step is due to an integration by part.
Defining the operator S by
t
KL§ 45 96, (2.39)

Vi

(Sa) (k)= ﬁ !
we have:

Lemma 2.2. Let be By and f:[0, T]xR!'->R' be an infinitely differentiable
function of compact support. Then:

. ,t o d
lafl| < clbl e1"1?§ ﬁ TAR (2.40),

. Lo ds
Sa) |l c|bl e | — | £l, i=1,2. 2.40
I(Sa).ll =clble gl/tjsllfsll i (2.40),
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Proof in Appendix B.
Since by (2.30), (2.36)2.39)

T =(I+9)(a*+a?, (2.41)

Lemma 2.2 proves that J can be extended as a continuous operator J : #r .
B maxi0.s—3p £€[0,1) if be By and the explicit estimates (2.40) allow us to
control the Volterra series defining (1—7)" 1.

To have estimates of f in terms of o, we need first to control £~ 'h.

Lemma 2.3. Suppose be %y, then
_ Cl|l® 2
e ”—:” el 11 e (2.42)

Proof in Appendix B.
We now establish the main result of this section.

Theorem 2.1. Suppose be By, le B, 1., €€[0,1). Then

I(1=2)" M|, . < ;0 177, .=y, s (2.43)
where
y(t)=cexp{ct|b|2etbl?} . (2.44)

Furthermore, if ®y € % and satisfies condition (2.8), there exists a unique solution of
Eq. (2.13), fe B, 1,1, satisfying

1l gv(t)%, (2.49)

and there exists a unique solution ® € B of the initial value problem (2.3), (2.8).
Proof. By Lemma 2.2,
Va alpyzf 48
(T D) =clbl.e ‘(f)—slllsfl- (2.46)
Hence the related Volterra series is absolutely convergent by virtue of Lemma B.1
in Appendix B, yielding Estimate (2.43). Estimate (2.45) then follows by Lemma 2.3.
Finally, Estimates (2.42), (2.46) and Theorem 1.1 allow us to establish the

equivalence between Egs. (2.13) and (2.9). Thus the function w, defined in (2.3), with
f the solution of Eq. (2.13), satisfies the boundary condition (2.8). [

In the next section we shall show how to construct the solution of the Navier-
Stokes problem as a limit of solutions of linear problems as above, by means of the
usual iterative procedure. To do this we need to prove that the velocity field
generated by ®," possesses the same properties of b.

We introduce the extensions to the whole plane of the Neumann and Dirichlet
velocities generated by o,:

v,=—V'4"'0, u=-—VA4"Yo,x*s,). (2.47)
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We have, under smoothness assumptions on ®:

1 Y=
1 - 2.
vt(xay) 27_[jjdxldyl(xl_x)2+(y1_y)2 O)t(xliyl)’ ( 48)
n 1 A - iku
b (k, y)= Ejdylmt(k’ )ﬁ)fduﬁfﬁe .
=3[ dy, @k, y)e(y—y,)e” M7, (2.49)
1 X{—X
2 _ 1
vt (x’ y)— 271: jj.dxldyl (x1 _x)z +(y1 __y)z (")t(xl’ yl) > (250)

1 u -
2 _ A % iku
570k y) =5 [dy ok, y)f du eIy

1
=— z—is(k)fdylén(k, ype” b, (2.51)
We remark that Egs. (2.49) and (2.51) express the relation , = curlv, in the case
in which |v,]| < co. We notice also that, by construction, v, and u, coincide in the

superior half-plane (both being solutions of the Neumann and Dirichlet problem
simultaneously). Furthermore, v,= —u, for y<0 and hence

o]l = e[| - (2.52)

Lemma 2.4. In the hypotheses of Theorem 2.1, supposing in addition |u,|| < oo, then
ue%y and

el < o + ]/t eao () - (2.53)
Proof in Appendix B.

3. Construction of the Solutions

In this section we prove that the solutions of the Navier-Stokes equations can be
approximated by a sequence of solutions of linear problems of the same kind as
those studied in Sect. 2. In doing this we first need to investigate continuity
properties of the solutions with respect to the drifts b's.

We denote by b, i=1, 2 two time dependent vector fields belonging to %, and

br= max 159 7. (3.1)
T>0 will denote an arbitrary but fixed time. We denote also by o, V.4, u? etc., all

the objects introduced in Sect. 2, associated to the vector field b¥.
The technical estimates we need are summarized in the next proposition.

Proposition 3.1. Suppose oy B, bV e By, i=1,2. Then for 0<t<T,
£V =2 L@ ool 6 =P, (3.2)

- - 2
l2f/3eo — @i [l < clIbD — 6@ e e, || (3.3)
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If F(x,y) =f(x)8(y), f € B, 1,

cth%
IQ0F,— 2IF,| < cb® — b, S Il (3.4
t
=) @)1 ds1 b=, (3.5)
where )
¥(t) = cexp{ctb?e”®T} . (3.6)

Proof in Appendix C.
Let us now introduce a sequence {®"};%, defined in the following way:

0__
mt —(!)0,

t
o=V oo+ JdsV'Fy,  nxl,
0 (3.7)
Fi(x, ) =£(x)8(y)
fsn=(1_g~n~1)~1$—1hn—1 ,
where V", 77", h" have been defined in Sect. 2 and the index n means that they refer
to the drift b™, defined as

bi”)=min{ 1,26<(n>T)} u?, (38)
g™l
ugn) =_—pig- 1((,0;' % 82) , uﬁo) =u,, (39)

o(T)> V47 e, to be determined later.

Theorem 3.1. Suppose ®y€ B and uge B, t<T. Then

lim [[u® —u™]|,=0, (3.10)
o
lim [o"—o"|,=0. (3.11)

Proof. By direct computation
[ —b™|| <2|u™ —u™)|, n, m integers. (3.12)

Therefore, by (3.5), for n=2:

t
[u® —u®~ D), < Byl | | dsllu® " —u®= 2|, (3.13)
0
where By is a suitable positive constant depending only on T and ¢(T). Such an
inequality can be iterated to yield

(Brllexo||)" !
n—1)!

Hence (3.10) is proved by using Lemma 2.4.

™ —u®= D], = 1@ =g, (3.14)
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The convergence of the vorticity fields follows by writing
of—wf ™ = [dsG, 00D PV b PV Doy + [dsG, (- F1 )
+ idsjz diG,_ (b VPV FO b2y o2Fr ). (3.15)

Integrating by parts

t o ds
Ilw?—w?_1|]§0{ I@5o" —@ o moll+f £ fs"_lll}
ol/T ’ V—

Idel/t—_f{lIQ" SE—FOI+ 1@ —a HF M},
(3.16)

where @" are defined as in (2.22) with V replaced by V™. The proof is then achieved
by the use of (3.14), (2.28), and Proposition 3.1. [J

We denote by @, u, b the limits in Z and %1 of ®", u", b". It is easy to realize that

. 26(T)
bt—mm{l, i }ut. (3.17)

Moreover, there exists f= hm f"in B, r, and denoting by V, ; the family of

operators defined in (2.2) relatlve to the drift b, the pair {o, f/} satisfies
t
@, =V, 00+ g sV, Fs,  Fy(x,y)=£(x)(y), (3.18)

as follows by the same arguments leading to (3.16). Finally, |Ju,|| < + 00, u,(x, 0)=0,
and U= —V+4 Yo, *g,). (3.19)

Now we prove that, for a suitable value of ¢(T'), we have constructed a weak
solution of the Navier-Stokes equations.

Theorem 3.2. Suppose that o, € &, u, < B, and ug € WA(R2%). Then the function
© € B defined in (3.18) satisfies, for any @ € C*(IR?) of compact support vanishing
on the boundary, the following equation:

d
77 (@00 =<40,0) +{Vo,u0,). (3.20)

The velocity field ue By defined in (3.19) satisfies, for any divergenceless C*
vector field v of compact support vanishing on the boundary, the following equation

d 2 S
7 w,uy =<{Ap,u) + Z= . O, 9 uu’). (3.21)
Here we put, s !
(aby= 3 @b, (3.22)

(o.By=] dkfdyé(k, Whk. ). (3.23)
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Proof. By virtue of the estimate (2.53) there exists T* > 0 for which b, =u,, provided
o(T) 2 |lug|. For 0=t=T*,

(@, 0> =[dk[dy@(k, y)(V, o00) (k, ) + i ds[dkdy@(k, y) (V. F)(k,y), (3.24)

and (3.20) follows by integrating by parts, once we prove
lim <@, V, F,»=0. (3.25)
t—s

In fact, .
(@, V, ;F>=£9,G,_F)+ [d1<9,G,_u,-VV, F). (3.26)

The first term in the right-hand side of (3.26) goes to zero as t—s since
Jo(k, 9)ge- ) — (k,0)=0. (3:27)

On the other hand,
|<(P9 Gt—tut ' VVt,st>| § |<V(P, Gt—rutVt,st>|
Sdy sup Volk, )., oFl - (3.28)
Using Estimate (2.28) in (3.28) we finally obtain (3.25). Equation (3.21) is now a

straightforward consequence of (3.20). Denoting y= —V*¢, by integrating by
parts we get

{@,curlu,y = —{Vto,uy={yp,u,, (3.29)
4@, curlu,y = —{AV*@,u,y = — {Ayp,u,), (3.30)
Vo,ucurlu,y = —<Ve,u-Vutd+3{Ve,Viu?y, (3.31)
where the last step is due to the identity:
Vtu? =ucurlu+(u-Vyut. (3.32)

The last term in (3.31) obviously equals zero, while the first one may be rewritten as
V+e, (u-V)u), yielding (3.21). Thus we have proved that, at least for < T*, our
solution coincides with a weak solution of Navier-Stokes equations. Furthermore,
this solution is the only one for which o, € #, as casily follows by our previous
considerations. To extend this solution for all times we need an a priori estimate
(basically the energy bound).

It is well known that, under our hypotheses on u,, the following holds (in two
dimensions!)

M+, atu+9 ax,-u+ € Loo([oa T]’ LZ(IR%F)Z) s
u+ € Loo([oa T]’ (L4(]Ri))2) s u+ =u|y>0 .

(See [1] and [2].)
We want to prove, by the use of (3.33), the existence of a continuous function
o(t) for which

(3.33)

llu | S ox(t) , (3.34)
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( n

and this would achieve the proof of the theorem, by choosing &(T)> ——= a

Actually, with such a choice of 6(T), convergence of the same kind of (3.14) w111
hold for the approximating linear problems solutions to the Navier-Stokes
solutions.

To prove (3.34), we observe that u," satisfies, as a distribution on R?2 for almost
all t>0, the equation

1=y =—Vp,+h,+h,, (3.35)
where hy=u,—0ueL,(R3)% h,=(u-V)ueL,s(R3)? p is the pressure. This
follows from (3.33) and the estimate, valid for any @ € L,(IR?)?,

(@, ko)l =] dzp(2) [(w,- V1 (@) 4] @l ]l [ Vel (3.36)
The bound (3.34) then follows by the use of the following lemma which will be
proved in Appendix C.

Lemma 3.1. If the field u* satisfies the following equations
(1—=Au*=Vp+h*,
u*(x,0)=0, (3.37)
Veut=0, y>0,

and h* € L,(R%)?, 1<p<2, then u™ is the restriction to R% of a function ue %.

4. Regularity Properties

In this section we want to investigate further regularity properties of the solution
we have constructed. It is not hard to prove that, under suitable assumptions on
the initial datum ©,, ®, and u, are classical solutions of the Navier-Stokes
equations, since, out of the boundary, all the derivatives we need make sense. Our
main effort here, is to prove uniform estimates up to the boundary, on first and
second derivatives of vorticity and velocity. Such estimates are, in a sense, optimal,
having the same structure of the corresponding estimates for the Stokes flow.
We need to introduce the following Banach spaces:

= (e CRLRY 1= max [0 < +o0],
B0m {cbec<R2,R“ra:6;"<I>eC<RiJR1%

| @] ™= max [0;07®] < +o0 and ®(x,y)=D(x, — y)}, 4.1)

0<jSm

B = {be ' |0ybe CORLR?), [b]"'= max [0107b] <+ o0,

0<jZm

Notice that the functions belonging to ™™ and #™™ may have a discontinuity
of the y-derivative in y=0.
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We also define 4", = C([0, T], #{"), and analogously #¢™ and ZJ™.

The main point in the following discussion will be a simple lemma about the
regularity properties of the most singular term appearing in the expression of ®,,
Eq. (3.18), that is the function

— f dsG,_F,. 4.2)
Lemma 4.1. If fe #{) and for some k>0, a>3, 0<p<1,0<s=<¢<T,
Ifi=£19= @(I—S)a, (4.3)
then #,€ BV B°? for t>0 and

[EA S~ Hlel‘”+ f —sa 1= £, (44)

)3’
o3, A0 °)<c<11/ +1> ||fz|“’+65 )3,2 1= £ 4.5)

Proof in Appendix D.

To use Lemma 4.1 we have to find conditions on @, implying Estimate (4.3) for
the function f which appears in Eq. (3.18). This function satisfies Eq. (2.13), where
the operator 4 and the function h are expressed in terms of u, a solution of the
Navier-Stokes equations. Then we have to study the t-continuity of (J f), and
(£ h),.

In Appendix D we prove the following lemmas.

Lemma 4.1. If 0 e #*V and be #% Y, 0<s<t<T,

(L7 ), — (L )| = e(T) |it_—s + IIbz—bsll(l’o)} (4.6)

Vs
where c(T) depends only on T, @, b.

Lemma 4.3. If o, =curluye #% 0BV u, e B and ug € W (R2), the solution u
of the Navier-Stokes equations, satisfies for any €€ (0,%] the estimate

(t_s)l—e

”ut_us”(l’())éc(T) A ’ Oés

IIA
IIA

t<T. (4.7)

Lemma 4.4. If be B% %, the operator T, defined in (2.30), satisfies the following
estimate, for any €€(0,3], 0<s<t<T,

(t—s)' e
£

Il(ff)t—(ff)sll‘médT)[ + I\brbsll“’o)] (VA 4.8)

Lemma 4.5. If o e %Y and be B¢V, the solution f of Eq. (2.13) satisfies, for
any €€ (0,1], the following estimate

= fl < (T)[( % £+||b,—bsn“’°)] 49)
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Moreover, if ®@,e ™" and be B, fe BV, Vn20.
We are in position to establish the main result of this section.
Theorem 4.1. Suppose o,=curluye #>VnB*?, u,e B, ui e WA (R2%), and

denote by u and ® the solutions of the Navier-Stokes equations with u, as initial
datum. Then there exists ¢(T)>0 depending only on o, and T such that

[l D+ w2+ ull$” + [0ul PP < e(T), (4.10)
lo|F*+ ol P <«(T), (4.11)
|92+ [6,0,] O <e(T))/ 2. (4.12)
n+m
Proof. Putting 6= R n,m=0, by (3.18) we obtain
t t
00,=0G,0,+ [ dsdG,_ F,+ [ dsdG,_ (u,- V)w,, (4.13)
0 0
and hence for §= —,
ox

Hﬂ <lool 0 +cf — 2| Wt e B o] fu 0
0x ol/t—s o)t—s
t ds |0
+cllu -
e |5,

Therefore, @ € 8%V ifue A% and @, € 29, since, by Lemma 4.5, f'e 2. By
2

putting 8= repeating the argument, we can conclude that we #%? if

ox*’
ue B¢ and o, £ 9.

Let us denote the above argument by A.

Furthermore, we have already proved in Appendix B [ Estimates (B.42), (B.45)]
that ue #1912V if @ € #,. We denote this argument by B. Finally, by (2.49)
and (2.51) one easily proves that u e #% %, provided @ e 5919, n> 1. We refer to
this as argument C. Then, the following chain of implications is true:

0 €AY = ueBt?, @,eB*? = wept?,

B _ A _ (4.15)
0 eHB*Y = e, 0,eB?*? => 0eBEO => ueHL?.
C A C

. . . . 0 .
To estimate the y-derivatives we make again use of (4.13) with § = — to obtain:

ady
0 0 0 ou om,
@ = ameo+a %HdsVG, 3y m-i—fdsVG,_s S@y’

(4.16)
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by which

0
||a—yco,“§ oo+ ]
fds— -1 |
+ Jds U
0 I/ t—s l/
suddenly implying @ € L'V, because of Lemmas 4.1 and 4.5 and the fact that

ue L% as follows by (2.49) and (2.51). Finally, by (4.16), since |V ®| ;< oo, g—z isa

is continuous in y =0 (it is the derivative of an

gl © Plleog ] + f

2

divergenceless vector field and %y

odd function). Moreover,

02 0? 0?
a—yz(l)tr—G ( 6;00 +2S°’08) 6—7%

2
+ f dsG, _, (g > +2S“s5) Vo,

ou, O, %o,
+2‘(‘;dSVGt_s.E 6y ,_s-us—ayT, (418)
where
0o 0o,
(8°°8)(x, y)= { % (x 0+)— o ( 0~ )} ().,
4.19)

(8*8)(x, ) = {5; (x,0")— *aj(x, 0‘)} 3(y).

. . . . . o
We can write again an integral inequality for 37

Lemmas 4.1 and 4.5.
It remains to estimate the time derivatives. By (2.49) and (2.51), we have:

Noas | s cll £ill +cllull ool +eCleo O+ o), (4.20)

and an analogous estimate for o,u?.
Finally, the estimate on d, follows by the estimate on 9}, the previous
estimates and the structure of the equation for . [

el . 0’0,
implying ]/Ea—y2 € By for

5. Concluding Remarks

We conclude by discussing some cases of physical interest, not explicitly treated in
our previous analysis.

If a sufficiently smooth external field g such that curlg=0 is acting on the
system, all our considerations remain valid just replacing F, by F, + curlg,. It is well
known [1, 2] that the a priori estimates we make use of in Sect. 3 still hold under
suitable hypotheses on g. Moreover, it is a standard fact that the hypotheses on the
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initial profile of velocity, uy(z)—0 as |z]— o0, can be removed. In fact, by putting
w=u—u, the Navier-Stokes equations reduces to

0
Ew,+wt. Vw,+ug-Vw,+w, - Vug+Vp=Aw,+g+vAu,—u,Vu,, 5.1)

Vow,=0, we=0, w(x,07)=0.

It is easy to realize that, under suitable hypotheses on u,, the above problem
can be treated along the same lines of the one we have considered, the two systems
differing only for trivial linear terms.

The case in which one needs to consider non-homogeneous boundary
conditions like u?(x,0")=0, u!(x,0")=a, can be analyzed by subtracting to u a
time independent vector field b such that b>=0, b! =0, for y=0. The resulting
equations for w,=u,—b admit homogeneous boundary conditions and differs
from the previous one only by linear terms.

Finally, let us consider the case in which u2 =0, u$ +0 for y =0, and we look for
solutions for which the usual conditions, u=0 for y=0, are satisfied. For the
Stokes problem the same analysis of Sect. 1 can be carried out, yielding Egs.
(1.16)—(1.18). Putting

[ =F(x)+8()a(x), (5.2)
one can determine @ under the condition that f; is continuous in time, obtaining
g0 1 Y 1 _ 0 -1 +
b;A ®y(x,0")= 11_1131 h(x)= p 47 ad(x,0™"). (5.3)
Putting
0, _
E@:anlq%—m@m, (5.4)

Eq. (1.16) can be rewritten as
h=2f, (5.5)
and  satisfies 1ir(}1 h(x)=0.
>0+

The presence of a vortex sheet ad in the initial profile of vorticity , does not
perturb our analysis in an essential way. Its presence is reasonable to impose a
jump discontinuity of the Neumann velocity in the normal component, in order to
force the system (although in a singular way) to satisfy the right boundary
conditions. Under suitable assumptions on a (and hence on u,) %~ 1h makes sense
to give rise to a solution of the Stokes ibvp as in Sect. 1. The Navier-Stokes

. . . 0
evolution can be constructed as in Sects. 2 and 3 by replacing h by h— ;’;‘;A ~1ad.

Appendix A

Let f:R* x [0, T]—IR? be an infinitely differentiable function of compact support.
Consider

Vs, 9)= [ d56G, 13, 9). (A1)
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It is easy to show that V,e L nL,(IR?), Vt€[0, T]. Then Eq. (1.18) can be written
in the following way,

x‘—xl

1 © + ©
(Z)x)=— (j) dy _joo dx; C—x )12 Vi(x1, )
o 1 R\2 R+x (x_xl)
_1}1—1130 n li‘dey—Ii[+x (x—x,)%+y? Vix1,)- (4.2)
From (A.1)
! 1 . R
Vi(xy, y)= [ dsg,_((y) —— [ dke™*1e~ =9 f (k), A3
(x1,9) (f)Sgt (y)l/ﬁf e™e Js(k) (A3)
where g is the one-dimensional heat kernel. Then, by Fubini’s theorem:
fooa 2
(Zf)(x)= lim 12 fdke™ [ dsf(k)e™ @~ Qp(k, t—s), (A4)
R— o0 Vi 0
where
0uk, )= — 2 | dyg(y) | due—"— (A.5)
rK, 1) = TR ygz)’_R ity :
It is easy to show that
[0k, D) =c, (A.6)
gim Ok, t)= —is(k)e’k2¢(|/ tk?*), (A7)
where |
x)=— | dx,e ™. (A.8)
(p( l/; x 1
By the Lebesgue dominated convergence theorem, we have
1 .
ZL)(x) = —— [ dkh,(k)e™™, A9
(£ )x) Vﬂj (k) (A9)
t -
h(k)= —ig(k) J; dsf(k)o(])/ (t—s)k?). (A.10)

Equation (A.10) suddenly implies that .# is a bounded linear operator on a dense
set of #, r . and hence can be extended as a continuous operator on %, r , into
itself, for any €€ [0, 1).

Let us now extend arbitrarily fi(k) for t> T, so that fe B, ., , and f(k)=0 for
t=2T. We extend also /,(k) so that Eq. (A.10) is valid for any ¢>0. We can then
define the Laplace transforms F(®, k) and H(w, k), of f and h, respectively, via the
expression

Flo, k)= Idte“’” 7k (A11)

(and the similar one for H) for any complex ® such that Re® >0.
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Since the Laplace transform of ¢ is explicitly known, we can translate Eq.
(A.10) in

F(o, k)

o+ k2 +Ik)/o+i’

which immediately implies that . is injective.
Let us now observe that Eq. (A.10) implies that, for any fe &, 1., h(k) is an
absolutely continuous function of ¢, for a.a. k, and that /,(k)=0. Then

(A.12)

2ie(k)H(e, k) =

oH(k, ©)= Te""’#(k)dt. (A.13)
0
Since
1 h —ot 1 -kt
ot gk Al4
Vork 4 (al9

Eq. (A.12) easily implies Eq. (1.21), if h belongs to the range of #. Finally, if h
satisfies conditions i) and ii) of the theorem, Eq. (A.13) is valid and we can invert the
order of the previous calculations to show [provided that condition iii) is satisfied ]
that the function (1.21) is the solution of the equation £ f=h.

Appendix B

Lemma B.1. Consider the following integral

T dr, T3 dr,_,
t, —_
a"( S) j' tl)al :El(tl -TZ)aZ s (1:n~—s_‘|:n—2)°!n_2
g2 dtn—l
. , B.1
s (T =T )" (T — 9™ B0
where a;<1,i=1...n, t>s. Then
g “ 1:—11 I(1—o)
(B8 =(t— s) . (B.2)
r<n* Z ai>
Proof. Since i=1
dr dg
I, (s = (t—s)l Tt
w9~ e =09
z(t_s)l”(d1 +e2) r(l *al)r(l —aZ) (B.3)

Ir2—oa,—oa,) °’
(B.2) follows by iteration. [J
Proof of Lemma 2.1. Defining the following operator

(D®)(k, y)= (ik¢(k, », % o(k, y)) ; (B.4)
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we have
Vo @)(k, y)=e™ g, (y—y)B(k, y)dy’
+ j dve ¥ 9[dy'g,_(y—y)[dhb(k—h,y)- DV, @(h,y). (B.S)
Since V - b,=0, by integrating by parts:

2t
IVt:\sq)l(k, y) < sup |(D(k, y)l + Z j’ —k2(t 1:)
v s

'Idy’gt-f(y—ﬂl&(z(t_ >‘

-[dnibP(k—h, y)| Ve ®|(h, ), (B.6)
where
ik if i=1,
w(éy?k): 2y—s it i=2, ®7
then

IV, ;@[ = 1@ +c|b], [ V., s@l- (B.8)

1/2‘

By iteration:

1V, @< @] (1+ % clblly, . 5,000 s)> (B.9)

n llmes
1 n
F(i)

IV, @ <@ [1+ T (lbl)—s)" z—F—F—
n=1 n
F<n+l——)

Finally, by virtue of Lemma B.1,

bt — n/2
=05+l
)
<c|®| expc|lb|Z(t—s). (B.10)
If ®(k, y) = p(k)8(y), we obtain

y(t)écu(pll+c||bI|,|/t—s£ 1/?;_1 1/1% (B.11)

where

YO =)t—s|V,@. (B.12)



82 G. Benfatto and M. Pulvirenti

Hence

n tlmes

y0=clol <1+ X by 1=l s)) (B.13)

implying (2.27) by Lemma B.1.
Furthermore, along the same lines,

le., @l = clibll | @I} +cllb], [y 0.,s®|, (B.14)

w:'

c|bll,| D t dt
le, @< PPL it~ @, (B.15)
£,s [/t—s s)/t—1

and hence we obtain (2.25) and (2.26).
Finally, (2.28) and (2.29) are consequences of the extra divergence appearing in
the first term of the right-hand side of (B.14) and (B.15) in case when ® = @d.

Proof of Lemma 2.2. By (2.37), recalling definition (B.4), integrating by parts, by the
use of Lemma 2.1, we obtain

t
G =TdyDe V1 ds@ )k, ), (B.16)
t
o115 { a1, ) sup (fdyikie™ )
< [as 5L by, expetb]2). (B.17)
=0 F t .

Moreover, by (2.38)

la? |l < f dke™ ¥ k]

o<—.~
I

ol i

t

Al dyee MMy, XTI g - (y—y ) (@ F (K. )

2|/t—1:

i), (B.18)

t t
= | ds]
0 s

i

where the last equality defines J.
We have

J(t,t,5) =<

12c,sFsll - (B.19)

W

In fact, proceeding as in the estimation of 4, we realize that the first component of

. The second

D gives rise to a factor k and supkZe ¢~ 9[dye I <
k t—1
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0 .
component, iﬁ’ can be bounded in the same way because
1

fdy,

Y= _ 4
1 (2‘/—79,-,@ y1)> §—~V;.

On the other side, we have also
J@t, 1, 5)Sclle. o Fll - (B.20)
Therefore, combining (B.19) and (B.20) and making use of (2.28) and (2.29),

J(t,5.9 S el bl exp(ee D) i, — v (B21)

We, finally, obtain (2.40), by inserting (B.21) and (B.18) and using (B.3).
To obtain (2.40), we have

sty < § 2 Tasfar- DL ‘f e dye™ Mg F,) k. )

]/t—s 0

Ikl

t
= (I) )1/2 fdtfdkf eI (s, 1 k), (B.22)
and the last equality defines J.
Two estimates are true
|~'§W sup |¢5, . Fl(k, ), (B.23)
M<e sup le5, <F-I(k, y), (B.24)

the second one again by integrating by parts. Hence

~k2(t—s)| T/ ert —er'c 1z
[ dk|kle=¥*@=9)J(s, x; k)léc[”Q’(t——”J)?/’[——J] . (B.25)
By virtue of (2.28) and (2.29),
t
I(Sa’), | <c||b,e1*1? (f)(t )3/4 J G )3/4 (VAR (B.26)
implying (2.40), for i=1, by interchanging integrations.
Finally,
I do —k2(t—s)—k2(s—¢
1(Sa?),|| < 1/’? (j) (i— )1/2 Idtf 0_)1/2jdkk2e K2(t—5)—k2(s — o)

[ dye(y)e” MPIf dy1%gmw—yl)(Q;,tFt)(k,yl) :

(B.27)
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Denoting by J the quantity appearing in the modulus of the right-hand side of
(B.27), we have

J=c sup g, Fl(k ). (B.28)

V= I7I sup|gs, F.l(k, y) . (B.29)

Using as above both estimates (B.28) and (B.29), we have

I(Sadil =

5 f dtf 1)3/4 | £lelbl e 1), (B.30)

o(t— )7’ )7’8(
yielding (2.40),, i=2, after integrating. [J

Proof of Lemma 2.3. By the use of the same arguments leading to (2.41), (2.37),
(2.38), we obtain

P =7+ 2 4 s(z +27), (B.31)
where
2 (k)= — [ dye Mgy yor0) (k, y) (B.32)

—k2t _
22(k) = [K|  dye(y)e 'y'{" i Idylyz—l/{igxy—yo&ak,yl)}

e[ dy 2 g (y—y)(ez.000)(k,y). (B3Y)

= 21—

Proceeding as in the proof of Lemma 2.2, we obtain

t
+]
0

llz SCIIQt 0®oll 5 (B.34)
[0
122 < ”1/"” +ef l/'r I 02,000l (B39)
t dr
1(Sz"), écg = @, 0®oll 5 (B.36)
t d't T
“(SZZ)t” é ”(00” .g )3/4 3/4 +C (t—— )3/4 g (‘C 0')3/4 ”Qc 00)0” (B 37)

This achieves the proof by the use of Lemma 2.1. [
Proof of Lemma 2.4. Writing
t t
0, =Gwo+ [dsG,_ b, VV, gwo+ [ dsV, [F,, (B.38)
0 0

and inserting it in the expression of #*) [see (2.49)], we obtain #*) as a sum of three
terms, the first of which is bounded in the | - | norm by |3, since V4~ 1G,m,
=G V47 o, and |G| < ||®@].
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The second term is estimated in the following way

! _ _v.1 € k2 — - A
gdsjdksup jd}ﬂjdhe Ikl 1y ylli(y—h)gz—s()ﬂ—}’z)e K S)DQs,o(‘)o(kah)
y
t
écg ds||@s,00%0] - (B.39)

Finally, for the last term we have

t _ _ € 2 ”
(f) dSIdksgp{‘Idyle Wl b1 y'z(%yl)gt_s(yl)e K ”fs(k)!}

t s
+ |l ds[dufdy Jdy,e” P>
0 0

(B.40)

S=y)9-(y1—yy)e ¥ )D'Qr,st(ka y2)|-
2

Proceeding as above and making use of an analogous estimate for #,, we obtain
t _ 1 t t t _
o]l = vl +C£ ds|@s, 000l + 5 (I) ds| £ +C£dedt||Qt,stll . (B4

Estimate (2.53) can be obtained by Lemma 2.1 and Theorem 2.1, thanks to
Eq. (2.52).

To achieve the proof of the lemma it is enough to prove that ||0,v,] and [|0,v, |
are finite, the rest of the properties being evident.

In fact,

Jdk sup likdi|(k, y) < cfdkfdy, |kle I~ sup|@(k, y)| = lleo | (B42)

Furthermore,

0 . 1 0 (+ . B ~ y X B )
a—yv}(k,y)=§5;{£ dylco,(k,yl)e k11 y)__jwdylwt(k,))1)e [kl(v1 .V)}

1 + ©
==k y)+ 5 | dy, @k, y,)lkle™ O, (B.43)

o 1 ) e
@vf(k,y)=2—ikfdy1w,(k,y1)8(y1—y)e klG1=9) (B.44)

Therefore,

(i)

0b
max jdk sup| - (k y)<cllo, . (B.45)

The thesis follows since we #;. [
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Appendix C
Proof of Proposition 3.1. By (3.5)
1@ — 8o (k, ) <[ dh sup b — E(Z)I(k —h,y) sup [@o(h, )|

+f dulf dh(B — 62 (k—h, )G, g ook, y)|

+f dulf dhBP(k—h, )G, - (@b — eZh)wo(k, ).

(C1)
Proceeding as in the proof of Lemma 2.1,
@673 — 0i2)eo [| S 1DV — || [l eo | +0||b‘1”—b‘22’||z£dt = || o]
L 1
+0br(f) dr Vit @5 —@2)eoll - (C2)
By the use of (2.25)
@3~ 8)evo | Scl[bV = b llovg||(1+bre™r/1)
+ebr [ e 1/:? 1@~ 2o 3
The thesis follows by iterating the inequality as in Lemma 2.1.
Estimate (3.4) can be obtained along the same lines.
To prove Estimatte (3.2) we write
fO_ O (1 —FW)~ (@~ 1ph_ @~ 1p2)
+[(A=T D1 —(1—-g D)~ 1P~ 1h?, (C4)
By Theorem 2.1 we have
1= D)~ =511 - (C.3)

Furthermore, %~ 'hV— %~ 'h® can be evaluated as in Appendix B, proof of
Lemma 3.3, as a sum of four terms in which appears the difference (@€', — @*h)@.
By using Estimate (3.3), we, finally, get

(271D~ L1, | Selb—bD e wo | (o)

(the most singular term disappears by difference).
It remains to estimate the 2" term in the right-hand side of (C.4). By expanding
in a series,

A=) =1 =D)L h®),|
= Z 7@ =g Oz~ th2), . (C7)

n=1
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Proceeding as in the proof of Lemma 2.2, Appendix B we can write
(TWH—g@)f@ a5 a sum of four terms similar to a'+a*+S(a' +a*) [see
(2.37)42.39)] in which g, F, and @, F, are replaced by (¢!')—eP)F® and
@1 —0)F?), where F® =f®8. Therefore,

P ds

T _ g <c|| bV — b@)|| et CS8
ITC )1l =c| lle (I)I/—Hfsll (C.8)
t
Hence <recalling that [|(79f),]| < ce®'b, ds | .| by Lemma 2.2>
0 |/ t—s
o n—1
right-hand side of (C.7)< Y 3 [ WHT WV —g @) g @n—k=1 p=1p@1 |
n=1k=0
< X nlebr) e b b,
fdrl"d T e L e
0 0 nl/t_tl I/Tn—l_ -
(C.9)
By virtue of Lemma B.1 and Lemma 2.3, we obtain (3.2).
Finally, using the same arguments leading to (B.41)
' —u| = o — o] <0f dr 1ot oo — e, |
1 t
+ 5 LdsI £ O£
2 0
+cfdsI dt]| @0 —e2VF|
+c [ dsj de||@2UF P —F@)). (C.10)

The thesis follows by inserting Estimates (3.2)(3.4). [

Proof of Lemma 3.1. We prove the Lemma for h* smooth. The general case is
recovered by usual density arguments.

To solve the elliptic problem (3.37), we introduce a sheet of vorticity as in
Sect. 1, to take into account the boundary conditions.

Let o be the even extension to R? of @* =curlu™. Then o solves the following
problem

(I-Aw=g+F, (C.11)
where g is the even extension of g* =curlh®,
F(x, ) =f(x)8(y), (C.12)

and f has to be determined by the condition

a -1 —
(541 m)(x, 0)=0. (C.13)



88 G. Benfatto and M. Pulvirenti

Taking the Fourier transform of (C.11),

(14828 =)+ /() ﬁ E=(k.q), (C.14)
and (C.13) becomes K
ldg En 2m(k 9)=0. (C.15)
Inserting (C.14) in (C.15) and making use of the formula

dq B n
j(k2+qz)(1 K2 +4%) K/ TR/ 1+ K2 +Ikl)
we obtain

o= —1/% / gk, q)
f(k)——-]/;|k|]/1+k2(|/1+k2+|k|)jdq (11 (C.17)

On the other hand, if h=(h', h?), where h' is the odd extension of h** and h? is
the even extension of h* 2, we have

(C.16)

0k, 0) =ik (K, 4) g (K, 4) + =~ lim TR(k, )~ Rk~ ). (C18)

>

The term in square brackets of (C.18) gives no contribution in the expression of @,
so that we can write

el P -17
L L CE +(212c> fit 1
where 5 el
Fi=— \/;lkll/ TR (/TR + |k|)§dq'(—f—+'&%)?2
& = (k. )] (C.20)
Putting v=V+4"'m, we have
TS IARTAN (Ca1)
where
1 el . 1 k
ORI SUURR YOS ot T c22)

- A
Moreover, by the Hausdorff-Young theorem, he L (R?)?, g= (1~ E) , and

hence
ol <1 < e | 0, (€23)
520 Sl 1 2 R/ THR(/ T +1k)
-Jdq K+l (C.24)

K+ (1 +k*+4%)°
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Using formulas (C.16) and

lql 1
=2log| 1
gt gy ~2oe 1 )
we obtain logk|

152l ¢ fd’é Le 2 @)= clhll,.

The proof is achieved by the inequality |u| = |v| Z|7],. O

Appendix D
Proof of Lemma 4.1. If y>0:

Ak, y)= (I) dse g, _ () fi(k),

then

-y e —y%/4@—s)

2t=5) |/An(t—s

suplka H(k, y)| = sup fdse k=)

y>0 y/ t

2.2
<|kf(k)|sup[ﬁ f duexp( kuy _u

+c‘§)dS(t—S)_mIﬁ(k)—ﬂ(k)l ;

which implies Estimate (4.4). Moreover,

j 2(t— s)
§lf(k)lsuplL(k y)|+cf )3,2 k) —fk),

ds
igplﬁw H(k,y)|= sup 32—y

where

k)= | d < “2> T
L.k, y)= ull——Je ¥ .
ey |/4ny we 2

© u?
du{ 1— = e "=
(f) u< 2)e 0,

Since

we can write

1)

—k2<r—s>[1— v ]gt_s(x)fs(k)'

89

(C.25)

(C.26)

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)
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which implies . iy
suP |L,(k y)I ‘/» +C|k| Sng /l_/[k_d)ve 8 (1 —e” 1/;,2)
y> 2

g(Vl; + |k(>. O (D.7)

Proof of Lemma4.2. We shall use decomposition (B.31) of &~ *h. From Eq. (B.32)
it follows that

Izt =221 < [1@;, 000 — 85,00 | . (D.3)
By Egs. (2.21), (2.22) .
0,=bG, + g dth,G, - 0. s, (D.9)
which implies (|| - [| =] - [*?)

122,000 —@s, 000 | = (b = b)) G2 || + [ by(G, — G oo |
t N
+ [ dt]b,G, - 0., 0| + {) dt]|(b; — b)) G, - 2:, 0o

+ [ dtlb (G, G, Je, 00|
< b= b oo+ 11, { do13,G 0]
+lb) ] g ool + 15, b | el oo
+lb1 de 1 dol0,G,0. 0001 (D.10)

We observe now that, if ® € #9150,

[0,G,@[ " =] dk sup fdy,04[e oy —y1) 1Dk, y,)l

< —V%Idk[uq sup |9k, )] + sup 2,D(k. )|
- —cﬁuwu“’% @], (D11)

and we used the fact that, for {y|>0

0595(¥) = 04yg(¥) » (D.12)

and an integration by parts.

In order to use inequality (D.11), we need an estimate of ||@, (@, ]"*® and
Q.. 00>, which can be obtained by an extension of the proof leading to Eq.
(2.26) (see Appendix B). This is a very easy task and we obtain that for any n and
m=l bl
@, @™ < —= eI @ (D.13)

t—s

(the limitation on m is due to possible discontinuities of the derivatives in y=0).
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Estimates (D.10, (D.11), (D.13) immediately imply that, if @, #* 9%V
and be B3 OnHV

s t—1 d
@, 000 — Qsowol|(oo)<C(T)[”b b||(00)+§1/~+(j;7 £ l/(i}
<o(T)| 16, b, -0 t—] D.14
=( )[” [+ Vs (D.14)

Let us now consider the function z? defined by (B.33). If @, € £V, we can
write

22(k) = K| dye(y)e” P {e [ dy, g.(y—y.)(0,d0) (k. y1))
+j)dre-““-ﬂs"dylgt_t(y—yl)(ay@t,omo)(k,yl). (D.15)

Proceeding as in the previous calculation, making an integration by parts in the
left direction in the terms containing d,g,, We obtain

t—
22— 22| <™= flang | 1’-I-c‘f(flrllqt 0@
N

S

t—s
+cfdt———=9. o®oll** V. D.16
g 1/; ”Q ,0 0” ( )
Then, by using Eq. (D.13), we obtain that, if @, #":") and be #¢ Y,
22— 22| <e() . (D.17)
Vs

We still have to study ||(Sz),—(Sz),||'”, where z=2z'+2% and § is the operator
defined by Eq. (2.39). We can write

20 =L T8 ey, (D.18)
Jr by
which implies
t dr s dt
1(S2),— (S2)s|° S ef —=lzi |V + ] —= lz— . — 2, | V. (D.19)

s ‘/? 0 l/;
We note now that (2.25) can be easily generalized to obtain, for any nand m< 1
1@, @, ™™ S c[[b][ et UL @m0 (D.20)
Then, proceeding as in the proof of Lemma 2.3 (see Appendix B), we get, if

0, BV and be B¢

_ t dr
Iz P <L cl@, 0ol VP +cllog M +cf —— ll@., 000l ?
0 I/ t—1

=«T). (D.21)



92 G. Benfatto and M. Pulvirenti

Finally, we can repeat the steps leading to (D.14) and (D.17) in order to show
that, if 0y #*V and be A%V

IIZz—ZSII“)_S_C(T)[Ilbt—bsll“’o)+ t—l}—s] (D.22)
s
Estimates (D.19), (D.21), (D.22) imply that
1(S2),— (S2),|” = (T) [t_rs + llbt—bsll“"”] : (D.23)
s

Hence (4.6) follows from (B.31), (D.14), (D.17), and (D.23). O

Proof of Lemma 4.3. The solution u of the Navier-Stokes equations is obtained by
inserting (3.18) in the right-hand side of (2.49) and (2.51). To estimate ||u, —u||**?,
we proceed as in the proof of Lemma 4.2, obtaining

t
=g P < e(t =) Ll |+ e | VT + CI a2, 00| "+”

N t ‘E
+eldt f IIQt 0@, |*" °’+0§dfllﬂ|‘”+6fdf f llfll‘”
0

Ss—T -

t t
+efdu ] dolgy Fol O+ dtfdclléc,TF,II“"”
s T 0 s

S—0c

s s t—o du _ (1.0)
+C£dtfdc ] - 1@ el (D.24)

An easy generalization of (2.28) gives, for all n

c(e—)(]|b ]| ()2

=
Moreover, Theorem 2.1 can be extended to prove that, if 0, € #™ " and b e 39,
I £l <e(T). (D.26)

In fact, proceeding as in the proof of Theorem 2.1, it is easy to obtain the analogue
of Estimate (2.45), with || f;[| replaced by [|f|™” and [[b],, [l@| by 6], [ .

Finally, the L singularity [arising only by the bound (2.42)] can be removed by an
t

exp

18q, Fell ™ < cl|b]| LN (D.25)

extra integration by parts, involving the first y-derivative of ®,,.
(D.20), (D.24)(D.26), and (B.44) imply that, if @, € #* %"V and £€(0,3]

=, °><c(T)[<t—s)+ Jar | %y Jaef 1

s N dG t— cdu
d
+£ t'il/o'— s!c u]

tdu S dr
<c(T) (s—t)H g | =+ f
) EstcUE 0 /S—1T s
+§dcj—“tf@] (D.27)
0 t]/o—1(s—0)' " s-o UL ' .
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(4.7) then follows by the inequality
tftfiﬁ tjs@_(t_s)l‘ﬂ
steue= o ue  1—
Proof of Lemma 4.4. We shall use the decomposition (2.41) of 7 f. Let us define

@) = f dydkid(k, y)| - k" (D.29)

<2(t—s)' . (D.28)

Equation (2.37) implies
t
laf —ag | < | drllg,, . F NI
s —
+ [ dt[dk|[dye” ¥ PI[g, F.—g, .F.1(k ). (D.30)
0

Proceeding as in the proof of Lemma 2.1, it is easy to show that, for all n>0

- — n,0)
lQs, F Ll < cllbfl[ Qe ~ DU £ (D.31)
Moreover,

T
[dk|fdye~ " P[g, F.—g, .F.](k.y)
< (b= b)G,_ F.[ @O+ | dullbd,GoF I

t s
+c | do|bG,—oQq, . FllV+c[ do||(b,—by)G, — oQq, . F ||
0 T

s t—oc
+cI do I du||b0,G Qs F IV

0.0 ||ﬂ|| © 0
<c||b,—by|®V = + o] ¢ f ||f||(“
do  _
+C||b:||(1’°)fd0|||96,t r|||(1)+0||bt—bs||(°’0)§ —O_HQo,rFTH(O’O)
s t]/s—
g Tt du o) it
+Cfd0! 7||b||t’ g, -F-llI*", (D.32)
(2.28), (D.31) and the analogue
(n)
llo, FI® < b st Datwterone Ll (D33)
t—71

imply, if be Z%9, for all £€(0,3]

_l-e
ot —al1 @ 5on)| =9+ 18, -1+ L . 30

Let us now consider the function g, defined by (2.38). We have

dt

la? — 2||(°’<C§d6§(t )1,2 lle-, oF o |||“’+Cfd6fdf||9, oFoll"?

1) F |(LOT1-2
+CId0‘de j‘ d |:|”Q1: 03/;;'” :| |:||Q1:,0 uo‘“ ] (D35)

s§—7T
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for any €€ (0,4]. Therefore, by (2.29) and (D.33), if be Z%-?

l|at2—as2||‘°’§0(T)[(t—s)+ faaf 2
¢} s T—

$ 8 dr 7t du
+aof e T |
)
<o), (D36

We have also by (D.19), if a=a' +a?
td s d
I(Sa)y—Sa)l @sc] = lla, IV +el “Ella,—a, |V, (D.37)
s l/; 0 1/;
The same steps leading to (D.34) and (D.36) give also, changing the norm and

supposing be %9

||a,~as||“>§c<T>[nb,—bsn“"’w %] IFIP. (©38)

Moreover, if be Z%°%, by means of an easy generalization of (2.41),
lalV<e(DI S (D.39)

The previous estimates immediately imply Estimate (4.8). [

Proof of Lemma 4.5. (2.13), (4.6), and (4.8) imply

Ifi=MO=IL )= (& h) O+ i (7L = (T L )| ©
t—

gc(T)[ %Hubt—bsn“ﬂ]

_q)l—= ©
e L b0 S . 040
0

Moreover, if o, € %V and b e %, it is easy to show, proceeding as in the proof
of Lemma 2.2 and Lemma 2.3, that

S N7"L hP < (T). (D.41)
0

Estimates (D.40) and (D.41) immediately imply the lemma.
The last statement follows by (D.26). [
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