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Abstract. We construct the solutions of the planar Navier-Stokes flow for a
viscous incompressible fluid in the half-plane, by means of a boundary layer
equation describing the production of vorticity on the boundary. Regularity
properties are also discussed.

0. Introduction

The time evolution of a viscous incompressible fluid is usually described by the
Navier-Stokes equations

^ (1)

(2)

where

u D x f O J ] ^ , d = 2,3, T > 0 , (3)

denotes the velocity field, D C R d (d the dimension of the physical space) is an open
region with smooth boundary in which the fluid is confined, v > 0 is the viscosity
coefficient, p : D x [ 0 , Γ ] -•R1 is the pressure and, finally, ^ : D x [ 0 J ] x R d is an
external force acting on the system.

Equations (1) and (2) describe the balance of momentum and conservation of
mass, respectively. For simplicity the density is assumed to be one.

We are interested in the initial boundary value problem (ibvp) associated with
(1) and (2). This means that we have to specify the initial value of w, i.e.

(4)
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where u0 is a given divergence-free vector field, and the boundary conditions. It is
usually assumed that

u(x,i) = 0 for xedD, (5)

which means perfect adherence of the fluid at the boundary at rest.
The ibvp (1), (2), (4), (5) has been widely investigated and local and global

unique solutions have been proved to exist for d = 3 and d = 2, respectively. We
refer the reader to the monographs of Ladyzhenskaya and Temam [1, 2], for a
comprehensive review on the subject. However, a better understanding of the
structure of the solutions is desirable, even in the simpler two dimensional case. To
clarify what we mean, let us first consider the case d = 2, cuήg = 0, and D a domain
without boundary (e.g. D = R 2 or D = T2, the two-dimensional torus). In this case
the infinitely many first integrals for the Euler flow induce infinitely many a priori
estimates for the Navier-Stokes flow. For example all the Lp norm of the vorticity
ω = curlw are non-increasing in time.

The situation is more involved when boundaries are present. The boundary
conditions (4) are satisfied only if an extra vorticity is produced, and thus we have
no more simple a priori estimates for the vorticity. Nevertheless, the decrease in
time of the energy \ \ u2dx is enough to prove existence and uniqueness of smooth

D

solutions by means of v-dependent estimates.
The two situations we have mentioned are very different from a physical point

of view. In particular, the vanishing viscosity limit is rather simple in the first case
(in [1, 3-5] it is proved that the Navier-Stokes solutions converge to the
corresponding Euler solutions when v-»0), while the behavior of the flow, in the
same limit and in presence of boundaries, is rather involved and a matter of debate.

Since the production of vorticity due to the boundary is a basic fact in the
Navier-Stokes evolution, it is quite natural to look for rigorous estimates of the
rate of such a production and to take into account this physical feature for the
construction of the solution.

In this paper we do this in the case of the half-plane: the geometrical simplicity
of the domain will allow us explicit calculations leading to reasonably accurate
estimates.

The main idea of this paper is to describe the boundary conditions as a sort of
(singular) perturbation acting on the free flow. This follows the physical idea that,
to force the fluid to rest on the boundary, vorticity has to be produced by the
boundary itself [6, p. 277].

This approach was inspired by a numerical algorithm proposed by Chorin [7].
We will sketch the basic idea. Let Etu0 be the solution of the Euler equations with
initial datum u0. Let φ:u^>ubQ the operator which extends a vector field u defined
in D to a vector field u defined in a slightly larger domain i5. ύ has the property of
the being odd across the boundary (see [8] for details), φ has essentially the effect of
adding a vortex sheet concentrated on the boundary. Finally, let Ht(u)
= P{exp[ίvzl]w|D}, where P is the projection in ]L2(D) on the divergence-free
vector fields tangent to the boundary. The one-step forward operator of the Chorin
algorithm is now defined as

HεoφoEεu0. (6)
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It is easy enough to show [8] that kε(u0) is a consistent algorithm, that is kt(u0)
solves Eq. (1) for t = 0 if uo = 0 on dD and divwo = 0. However, there is no
convergence proof of the product formula

limfe?/B(M0) = wf, (7)

where wf solves Eqs. (l)-(3).

Our method to solve the Navier-Stokes flow differs from the Chorin method,
but rests on the same physical idea. In fact, we do not try to show the convergence
of the product formula (7); however, our approach provides a mathematical
justification of the fact that the boundary behaves as a singular source of vorticity.
Hence we hope that our results could give some insight into the validity of the
Chorin algorithm.

In order to realize our program, we approximate the Navier-Stokes flow by a
convergent sequence of linear problems. In each linear problem the correct
boundary conditions are satisfied by means of a suitable singular source (vortex
sheet) of vorticity on the boundary. The main point of this paper is that the
sequence of vortex sheets converges to a limit, which describes the rate of vorticity
production near the boundary in the Navier-Stokes flow, Moreover, the
convergence proof also implies explicit estimates of this vorticity production.

We, finally, remark that our techniques should extend, with minor modifi-
cations, to the half-space case, obviously, for short times.

The plan of the paper is the following. In Sect. 1 we deal with the Stokes flow. It
is constructed following the idea explained above, perturbing the heat flow by
means of a singular forcing term. The analysis can be done completely and the
solutions of the Stokes problem can be written out explicitly. Among the extensive
literature concerning the Stokes problem, we quote [9] for the explicit
construction and regularity properties of the solutions in the half-space case (see
also [10] for other considerations). Unfortunately, we cannot make use of these
results for our purposes, mainly because we need different norms.

The results of Sect. 1 are generalized in Sect. 2, where a linear Navier-Stokes
problem is considered. Here the transport term is given by a known drift,
considered (as well as the forcing term due to the boundary conditions) as a
perturbation of the heat flow. Technically speaking we use ideas of the classical
theory of linear parabolic equations; however, we introduce norms that are
unusual for fluid dynamical problems, but useful for our purposes.

In Sect. 3 the Navier-Stokes problem is finally constructed by means of the
classical iterative method, as a limit of solutions of linear problems. Section 4 is
devoted to the regularity properties of the solutions.

Most of the technical calculations and estimates are given in four appendices at
the end of the paper. Very often we will interchange integrations and use
integrations by parts. For the sake of brevity we do not underline the correctness of
such operations whenever this is transparent from the context. Finally, we shall
denote by C any positive constant (not always the same) independent of the
physical quantities introduced.
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1. Stokes Equation

The Stokes ibvp in the half-plane takes the form

— u(z,i) = Au(z9t)-Vp(z,t),

V <*>*> = *> (U)
= {(x,y)\y>0}9 φ , ί ) e I R 2 ,

(z), u(x,0 + ,t) = 0, lim u(z,t) = 0.
\z\^co

Here u — (μl9 u2) and p denote the velocity and the pressure fields, respectively, and
u0 a given divergence-free vector field. The viscosity coefficient and the density are
assumed to be one for simplicity.

Introducing the vorticity ω = curlw= -^ — ^ - and the stream function Ψ
ox oy

(Ψ exists by virtue of the incompressibility condition V u = 0), one easily obtains

AΨ=-ω. (1.3)

Rewriting the first equation in (1.1) in terms of vorticity, we have

^ ί), (1.4)

with initial value

ω(z,0+) = curlwo(z)Ξωo(z). (1.5)

To recover the boundary conditions u{x, 0 + , ί) = 0 and the behavior at infinity
w(z)->0 as \z\ -• ex), one has first to specify the boundary conditions for the Laplace
operator appearing in Eq. (1.3). A reasonable choice is to consider AD, the
Laplacian with Dirichlet boundary conditions for which

u=-V1AD

1ω. (1.6)

This ensures the correct behavior at infinity and the condition

u2(x,0 + ,ή=-—AD

1ω(x,0\t) = 0. (1.7)

The other boundary condition ux(x, 0 + , t) = 0 cannot follow by static consider-
ations. Nevertheless, one has still freedom in choosing the boundary condition for
the Laplace operator in Eq. (1.4). Simple calculations show that such a condition is
rather complicated, because not local, hence very difficult to be handled directly.
To overcome this difficulty we impose Neumann boundary conditions for the
evolution problem (1.4). This choice implies that the vorticity is preserved. To take
into account the vorticity produced by the boundary, according to the idea
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explained in the Introduction, we add a vortex sheet source on the boundary which
will be determined by imposing the condition uί(x,0+,t) = φ->0.

To be more precise we want to make sense to the evolution problem

j t t), (1.8)

where

F(z,t)=ft(x)δ(y), (1.9)

and / has to be determined by the condition uλ(x, 0 + , t) = 0. Here ΔN denotes the
generator of the semigroup solving the heat equation with Neumann boundary
conditions.

To perform the above program it is convenient to extend ω 0 by parity with
respect to the y = 0 axis. Let us denote this extension again by ω 0 and by (UQ its
restriction to the upper half-plane,

ωo(x,y) = ω^(x,y) if y^O,

= o>Z(x,-y) if j ^ O . (1.10)

We shall assume ω^ well prepared

uo(x90
+)=-V1Aό1ω+(x90

+) = 0. (1.11)

Equation (1.8) may be written formally

(1.12)
0

where

= Sdz'Gt(z-z')ξ(z') = Sdz'e 4 J ξ{z') (1.13)

denotes the free heat semigroup.
As we have noticed, /, the intensity of the sheet, has to be determined by the

condition

M l t ί ( x , 0 + ) = | ; ^ V ( ^ 0 + ) = 0. (1.14)

[Here and after we use indifferently the notation ξ(-,t) = ξt(-) for all time
dependent functions.]

Equation (1.14) gives rise to an equation for/. To deduce it we rewrite Eq. (1.14)
in the following equivalent form

— zl"1ω ί(x,0) = 0. (1.15)
(JX

[Here A and A ~ * denote the Laplace operator in the whole plane and its inverse,

given by the kernel A~1(z,zr)=—\r\\z — z\~]
2π
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In fact Eq. (1.14) says that the stream function — A^γω^ solves also the
Neumann problem, hence cannot fail to be equal to —Aχ1ωf = —A~1ωt. The
argument can obviously be reversed and the equivalence between Eqs. (1.14) and
(1.15) is then established.

Combining Eqs. (1.15) and (1.12), we have:

, (1.16)

where

x,0), (1.17)
ox

and

(i?A(x) = ^ - Λ "* ί ds(Gt-Jsδ)(x, 0). (1.18)

Now, we want to show that Eq. (1.16) can be explicitly solved in suitable spaces
of functions.

Let 33x be the Banach space of all continuous functions / : R 1 ->RX of the form

f(x)=-^$dkeίkxf(k) (1.19)

equipped with the norm

11/11 =idk\f(k)\ (1.20)

and

«i. β ,r = ί/eC((0,T],Λi)ll l/llr i β <oo} > Il/llr..= sup f|l/fll.
ίe(0,Γ]

In Appendix A we prove

Theorem 1.1. <£ is α bounded ίnjectίve operator of 38ltT>ε in itself. Moreover, if
he38ltTtε and satisfies the following conditions:

i)\imht(k) = 0.

ii) ht(k) is an absolutely continuous function of te [0, T] for a.a. k.
iii) The function f defined via (1.19) with

ft(k) = 2ie(k) \(k> + 1 ) ht(k) + ^ L ί - * « - " » - > ( e + A ) hs(k)]
LV dtJ yπoyt-s \ otj J

(ε(/c) = sgn/c), (1.21)

belongs to ̂ i ,r, ε, then Eq. (1.16) has a unique solution &i>TfE given by Eq. (1.21).

Proof in Appendix A.

By virtue of Theorem 1.1 we could write explicitly the unique classical solution
of the Stokes equation. We are not interested in doing this in all details, but one
easily realizes that (1.21) can be inserted in (1.12) to give, at least, a formal solution.
Regularity properties follow by the considerations in Sect. 4.
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2. A Linear Problem

In this section we shall deal with the following linear problem. Let f be the family
of all time dependent continuous vector field i?:RxR 2-»R 2, satisfying the
following conditions:

i) foίeC1(IR2

+)nC1(R2_)nC(R2) for all ί^O, where R 2

( _ }
2

ϋ) V bt = 0foτ all ί^O,
iii) bt = (bl,bf),

b}(x9y) b}(x9y)9

bf(x9y)=-bf(x9-y) for all ί^O, ( ' j

iv) b}(x,0) = Ofoτ all ί^O.

Notice that i) and iii) imply bf(x, 0) = 0 for all ί^O, and that -^- may be
discontinuous at y = 0. ^

Let Vt s be a two parameter family of operators whose kernels are given by the
fundamental solution associated to the parabolic linear problem with drift b and
diffusion coefficient 1, i.e. VtfS satisfies:

Given an initial profile of vorticity (OQ in the upper half-plane, we want to study
the initial value problem

(2.3)
o

where ω 0 is given by (1.10), and where

Fs(z)=fs(x)δ(y), z = (x9y). (2.4)

fs has to be determined by the condition that the velocity produced by the vorticity
ω+=ωt\y>0,

ttf=-F1^V (2.5)

is zero on the boundary. We denote by the same symbol ut its extension by
reflection in the whole plane. This is given by

ut=-V±Δ-1(ωt*ε2)9 (2.6)

where

(2.7)

We notice that (2.6) holds since ωt has the same symmetry properties of ω 0 due
to the particular choice of b, and A^1 can be derived, in the half-plane, by the
images method.
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Proceeding as in the previous section, we couple Eq. (2.3) with the following

one

(2.8)

that is

where

and

equivalent to

-K(χ)-

«*) =

(JTΛW =

KJSP.

d.

ί

d

&

:)-(JfAW = 0,

r^,oωo)(x,0),

1 ~1 ί dsR, SFS (x,
o ' /

s — Gt-s

0),

(2.9)

(2.10)

(2.11)

(2.12)

[G is given by (1.13).]

As we have seen in the previous section, 5£ ~ι exists in suitable spaces and
hence Eq. (2.9) can be conveniently rewritten as

(2.13)

where
or cp—\ sψr CJ i Λ\

and J£~1h is defined by the right-hand side of (1.21).
The above algebra has been done in view of the explicit knowledge of j£? ~1 and

the fact that Jf (which is more regular) can be estimated to give sense to(l—3Γ)~ι

as a Volterra series.
Thus we want to study the initial value problem (2.3), (2.4), (2.13), (2.14). To this

end we introduce the following norms:

||/||=Jdfc|/(fc)|, / i R 1 - * 1 , (2.15)

||Φ||=Jdfcsup|Φ(fc,3θl, Φ R 2 - * 1 , (2.16)
y

where

(2.17).

Φ(x, y) = -^$eikxΦ(k, y)dk, (2.17)b

' Ίπ

and finally,

| = max Hfo'll if b = (b\b2):'R2^JR.2. (2.18)
1=1,2
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Accordingly to the above norms, we introduce the following Banach spaces:

= {ΦeC(]R 2 , ]R 1 ) | | |Φ | |< + oo}, (2.19)

For all time dependent, continuous functions ξ: [0, T]-> 3SU ίffl,3i we put

llξ|lr= sup IIU, (2.20)
ts[0,Γ]

and denote by 38ίtT,!%τ,§&τ the corresponding Banach spaces [notice that
^ i , r = ̂ i,r,o> s e e Definition (1.20)]. It is also useful to introduce the following
operators

(Ct,,Φ)(*. y) = Φ, • rVttSΦ){x, y), (2.21)

(Ql,,Φ)(x,y) = Φi,Vt.tΦ)(x,y), i=l,2, (2.22)

ρ = (δ\e 2 )- (2-23)

Lemma 2.1. Suppose be@τ. Let Φe01 and T>0. Then, for T ^ ί > s ^ 0 we have:

(2.24)

(2.25)

(2.26)
't — s

Furthermore, if Φ = φ(x)δ(y) and φ e ^ 1 ? we have

cec(t-s)\\b\\l

(2.27)
t — s

1*11?
— | | φ | | , (2.28)

t-s
\\b\\2

t

— IIΦll (2-29)\\ψt,sΦ\\ί ; , I I Φ I I .

Proof in Appendix B.
By virtue of (2.24) and (2.27), if fe^UTΛ/2 [see Definition (1.20)], ω, defined

via (2.3) makes sense and ω e J*Γ provided b e &τ and ω 0 e Sfi.
Now we show the existence of a unique / satisfying (2.13) and with suitable

regularity properties. As a preliminary step we estimate the operator 2Γ.
Recalling (1.22), we have, if/ and b are smooth enough,

τ= ί -β^e-kl«-%(k), (2.30)
1/π ol/ί-s

where

Γ ^ l ( 2 . 3 1 )
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and

wt(x) = ^\dx'dy' , _ χ ~ X ,2 ί dsRt,sFs(x',y'). (2.32)

By direct computation (gt denotes the one-dimensional heat kernel)

Kf&>y)= \dτe-^-^dy'9t.τ{y-y'){QlsFs){k,yr), (2.33)

and by the same arguments used in Appendix A

wt(k) =^

= U(k)\dye-W M \ ds(R;sFs)(k, y). (2.34)
I o

Since

we finally have

Hk), (2.36)

where

ά}(k) = -Sdye-W|y| ί ds(Q~sFs)(k, y), (2.37)
o

t t e-k2(t-τ) (y-/)

SdsSdτ—==-Sdy'—1==gt-τ(y-y%Q~sF8)(k9y'),
o s yt-τ 2|/ί-τ

(2.38)

and the last step is due to an integration by part.
Defining the operator S by

(2.39)

we have:

Lemma 2.2. Let be$T and f: [0, T] x R 1 - ^ 1 fee an infinitely differentiable
function of compact support. Then:

t Jς
(2.40)x

oyt-s

i = l , 2 . (2.40)2
o|/ί-s
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Proof in Appendix B.
Since by (2.30), (2.36H2.39)

(2.41)

Lemma 2.2 proves that ZΓ can be extended as a continuous operator 2Γ \ &τ ε

-^^r,max{o,ε-i}? ε e [0,1) if b G (% Ύ and the explicit estimates (2.40) allow us to
control the Volterra series defining (1 — 5")" 1 .

To have estimates of / in terms of ω 0 we need first to control JS?" 1Λ.

Lemma 2.3. Suppose beMΎ, then

^ \\b^o>0\\. (2.42)

Proof in Appendix B.

We now establish the main result of this section.

Theorem 2.1. Suppose fcelΓ, ί e l U ) £ , εe[0,1). Then

, (2.43)

where

2 | | ϊ 1 1 . (2.44)

Furthermore, j f ω o e l and satisfies condition (2.8), there exists a unique solution of
Eq. (2.13), / e J * 1 Γ 1 / 2 satisfying

WfΛ^tit)^-, (2.45)

and there exists a unique solution ωε£$τ of the initial value problem (2.3), (2.8).

Proof. By Lemma 2.2,

t Λ<j

(2.46)ί==\\l8\\.
oyt-s

Hence the related Volterra series is absolutely convergent by virtue of Lemma B.I
in Appendix B, yielding Estimate (2.43). Estimate (2.45) then follows by Lemma 2.3.
Finally, Estimates (2.42), (2.46) and Theorem 1.1 allow us to establish the
equivalence between Eqs. (2.13) and (2.9). Thus the function ωt defined in (2.3), with
/ the solution of Eq. (2.13), satisfies the boundary condition (2.8). D

In the next section we shall show how to construct the solution of the Navier-
Stokes problem as a limit of solutions of linear problems as above, by means of the
usual iterative procedure. To do this we need to prove that the velocity field
generated by ωf possesses the same properties of b.

We introduce the extensions to the whole plane of the Neumann and Dirichlet
velocities generated by ωt:

vt=- VLΔ ~ xωt, ut=- VLΔ ~ 1 ( ω f * ε 2 ) . (2.47)
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We have, under smoothness assumptions on ω:

1 2π γ ι {x1 — ^ ) 2 + (y 1 — y)2

1 A y-yi

2π 1 u2+(yι~y)2

—,ωt(Xuyi), (2.50)

^ t ( k , y ι ) e - ^ ^ - ^ . (2.51)

We remark that Eqs. (2.49) and (2.51) express the relation ω, = curli;ί in the case
in which \\vt\\ < oo. We notice also that, by construction, vt and ut coincide in the
superior half-plane (both being solutions of the Neumann and Dirichlet problem
simultaneously). Furthermore, vt = — ut for y < 0 and hence

ll»rll = lkll (2.52)

Lemma 2.4. In the hypotheses of Theorem 2.1, supposing in addition \\uo\\ < oo, then
u 6 83 Ύ and

| (2.53)

Proof in Appendix B.

3. Construction of the Solutions

In this section we prove that the solutions of the Navier-Stokes equations can be
approximated by a sequence of solutions of linear problems of the same kind as
those studied in Sect. 2. In doing this we first need to investigate continuity
properties of the solutions with respect to the drifts Vs.

We denote by bf\ i=\,2 two time dependent vector fields belonging to MΎ and

bτ= m a x \\b{i)\\τ. (3.1)

T> 0 will denote an arbitrary but fixed time. We denote also by ωί0, Vt

{^s, u\ι) etc., all
the objects introduced in Sect. 2, associated to the vector field bγ\

The technical estimates we need are summarized in the next proposition.

Proposition 3.1. Suppose ω 0 eSi, b{i)e J Γ , i = 1,2. Then fo

(3.2)

ll. (3.3)
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IfFt(x,y)=ft(x)δ(y),fe@uτ,

^«%e^βB, (3.4)
yt-s

-b^\\s, (3.5)
0

where 2

y(t) = ccxp{ctb2

τe
ctbτ}. (3.6)

Proof in Appendix C.
Let us now introduce a sequence {ω"}^°=0 defined in the following way:

(3.7)

nχ,y)=f,"(χWy),

where J^s, &~n, hn have been defined in Sect. 2 and the index n means that they refer
to the drift b(n\ defined as

b(π)=min<!l " " V J / U < " )

1 ' II^II J ' '

M<"»=-F xzl- I(ω?*ε 2), M<°> = « 0, (3.9)

σ(T)> | |F1zl"1ω0 | | to be determined later.

Theorem 3.1. Suppose ω o e f and uoeM, t^T. Then

lim | |M ( " ) -u ( m ) | | 1 = 0, (3.10)
n—• o o

m>n

lim | | ω n - ω m | | ί - 0 . (3.11)
n-> oo

Proof. By direct computation

H^(n)_£(m)|| ^2\\u(jn) — u\m)\\, w, m integers. (3.12)

Therefore, by (3.5), for n^2:

where Bτ is a suitable positive constant depending only on T and σ(T). Such an
inequality can be iterated to yield

Hence (3.10) is proved by using Lemma 2.4.
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The convergence of the vorticity fields follows by writing

0 0

+ Jds\dτGt_τ(b^-1 VV^F^-b^-V FF ^Γ 1)- (3.15)
0

Integrating by parts

f j f d τ cu n-U-nn r n - h , , „, „ - ! „ - 2Λ - l , n
+ J α s j - η = ( I I ρ " s ( r " — r " ) | | + | | ( ρ " s — Q " S )F \\} ,

o s | / ί — τ
(3.16)

where ρ" are defined as in (2.22) with F replaced by Vn. The proof is then achieved
by the use of (3.14), (2.28), and Proposition 3.1. D

We denote by ω, u, b the limits in &T and &τ of ω", un, bn. It is easy to realize that

ut. (3.17)

Moreover, there exists / = lim ft

n in Sί^ τ, and denoting by Vt s the family of
n—*• o o ' '

operators defined in (2.2) relative to the drift b, the pair {ω,/} satisfies

ωt=VtίOωo+\dsVt,sFs, Fs(x,y)=fs(x)δ(y), (3.18)
0

as follows by the same arguments leading to (3.16). Finally, \\ut\\ < + oo, ut(x, 0) = 0,

a n d ut=-V±A-1(tot*E2). (3.19)

Now we prove that, for a suitable value of σ(T), we have constructed a weak
solution of the Navier-Stokes equations.

Theorem 3.2. Suppose that ω o e J*, M o e J , and u^ G Wj"(R.%). Then the function
ω G J*T defined in (3.18) satisfies, for any φ e C°°(R+) o/ compact support vanishing
on the boundary, the following equation:

— <φ? ω,> = (Aφ, ωt> + <Γφ, M ^ > . (3.20)

77ze velocity field ue$τ defined in (3.19) satisfies, for any divergenceless C00

vector field ψ o/ compact support vanishing on the boundary, the following equation

j t <ψ, u,} = (A v, «,> + ; Σ χ <δ»y, MV> . (3.21)

Jίere we put,

<«,&>= Σ < α U ; > , (3.22)
i = l

oo _

<φ, β> =Sdk ί dyfak, yMKy) • (3.23)
o
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Proof. By virtue of the estimate (2.53) there exists Γ* > 0 for which bt = ut, provided

<φ,ωt> =ίdkSdyφ(k,y)(Vt;oωo)(k,y)+ \ds\dkdy(sf(k,y)(Vt:sFs){k,y), (3.24)
0

and (3.20) follows by integrating by parts, once we prove

lim<φ,K fΛ> = 0. (3.25)
ί->s

In fact, t

<<P, Vt>sFs) = <φ, Gt_sFs) + jdτ<φ, Gt_τuτ FFτ,sFs> (3.26)
s

The first term in the right-hand side of (3.26) goes to zero as t->s since

f φ(fc, y)gt.s(y) -^ ψ(k, 0) = 0. (3.27)

On the other hand,

F J . (3-28)
k

Using Estimate (2.28) in (3.28) we finally obtain (3.25). Equation (3.21) is now a
straightforward consequence of (3.20). Denoting tp = — F 1φ, by integrating by
parts we get

<φ, curl ut > = - < F > , ut) = <tp, ut>, (3.29)

<zlφ, curl ut) =-(A F > , ut} = - < Jip, ut), (3.30)

F)" 1 ) +i<^Φ ? ^ ^ 2 > , (3.31)

where the last step is due to the identity:

\ Vλu2 = u curlu + (H V)uL. (3.32)

The last term in (3.31) obviously equals zero, while the first one may be rewritten as
<F1φ, (u F)w>, yielding (3.21). Thus we have proved that, at least for t ̂  T*9 our
solution coincides with a weak solution of Navier-Stokes equations. Furthermore,
this solution is the only one for which ωt e J*Γ, as easily follows by our previous
considerations. To extend this solution for all times we need an a priori estimate
(basically the energy bound).

It is well known that, under our hypotheses on w0, the following holds (in two
dimensions!)

u+,δtu
+,dxιu

+ eL r o([0, Γ],L2(R2

+)2),

u+eLa&0,T],(Lt(R2

+))2), u+=u\y>0.

(See [1] and [2].)
We want to prove, by the use of (3.33), the existence of a continuous function

α(ί) for which

(3.34)
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and this would achieve the proof of the theorem, by choosing σ(T) > .

Actually, with such a choice of σ(T), convergence of the same kind of (3.14) will
hold for the approximating linear problems solutions to the Navier-Stokes
solutions.

To prove (3.34), we observe that wf

+ satisfies, as a distribution on 1R+ for almost
all ί > 0 , the equation

(\-A)u? = -Vpt + hi+hl9 (3.35)

where hί = ut — dtueL2QR2

+)2, h2 = (u'V)ueL4_/3(ΊR2

+)2, p is the pressure. This
follows from (3.33) and the estimate, valid for any φeL 4 (IR+) 2 ,

|(φ,h2)\ = IJdzφ(z)[(ii( FK](z)|g4||φ||4\\u t\\4\\Vu t\\2. (3.36)

The bound (3.34) then follows by the use of the following lemma which will be
proved in Appendix C.

Lemma 3.1. // the field u+ satisfies the following equations

{ί-A)u+ = Vp + h+ ,

ι/+(x,0) = 0, (3.37)

V-u+=0, y > 0 ,

and h+ eLp(]R+)2, 1 < p ^ 2 , then u+ is the restriction to IR+ of a function M G I .

4. Regularity Properties

In this section we want to investigate further regularity properties of the solution
we have constructed. It is not hard to prove that, under suitable assumptions on
the initial datum ω 0 , ω ί ? and ut are classical solutions of the Navier-Stokes
equations, since, out of the boundary, all the derivatives we need make sense. Our
main effort here, is to prove uniform estimates up to the boundary, on first and
second derivatives of vorticity and velocity. Such estimates are, in a sense, optimal,
having the same structure of the corresponding estimates for the Stokes flow.

We need to introduce the following Banach spaces:

>= max WJ \\<+ao[,

^ { Φ e C(R 2, R 1 } I dn

xδyΦ e C(IR4, R1),

*= max ||3"δ^Φ|| < + oo and Φ(x,y) = Φ(x, — y)l, (4.1)

\ l ^ ( ± 9 l R 2 ) 9 | | b | | ( n ' m ) = max \\dn

xd^b\\ < + o o l .

Notice that the functions belonging to J* ( n 'm ) and ^ ( n > m ) may have a discontinuity
of the y-derivative in y = 0.
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We also define ^ T = C([_0, T],Λ?>), and analogously ^ m ) and J(

τ

M'm)

The main point in the following discussion will be a simple lemma about the
regularity properties of the most singular term appearing in the expression of ωt,
Eq. (3.18), that is the function

\ s F s . (4.2)
o

Lemma 4.1. If fe@^τ and for some fc>0, α > i 0 g β < l , O ^ s ^ ί ^

^ (4.3)
S

then 34?te@iU1)n^°>2) for t>0 and

I ) , f ^
0 \ΐ — S)

1 \
— -

\yt
Proof in Appendix D.

— II f-f ll(

_ \ 3 / 2 WJt Js\\

s)

To use Lemma 4.1 we have to find conditions on ω 0 implying Estimate (4.3) for
the function / which appears in Eq. (3.18). This function satisfies Eq. (2.13), where
the operator 2Γ and the function h are expressed in terms of u, a solution of the
Navier-Stokes equations. Then we have to study the ί-continuity of (β~f\ and
(if"1/!),.

In Appendix D we prove the following lemmas.

Lemma 4.1. // ω 0 e J> (2'1} and b e @ψ γ\ 0 ̂  s ̂  t ̂  Γ,

! (4.6)

where c(T) depends only on T, ω0, b.

Lemma 4.3. Ifωo = cuήuoe@(2'O)nόS(ltl\uoe08anduo e W?QR.2

+), the solution u
of the Navier-Stokes equations, satisfies for any ε e (0, | ] the estimate

/ * ^ \ . (4.7)

Lemma 4.4. // beM{γ'°\ the operator Si, defined in (2.30), satisfies the following
estimate, for any ε e (0, | ] , 0 ̂  5 ̂  t ̂  Γ,

^1 £ ] ) - (4-8)

Lemma 4.5. 7/ ω 0 e ̂ ( 2 ' υ and b e J (

τ

2 ' υ ? ^ solution f of Eq. (2.13) satisfies, for
any εe(0,£), the following estimate

( f ~ ^ E l (4.9)
ε|/s
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Moreover, if ω o e J ( ( w ' 1 ) andbe&%-°\ / e ^

We are in position to establish the main result of this section.

Theorem 4.1. Suppose ωo = curlw o e^ ( 2 ' 1 ) n^ ( O ' 2 ) , M o el , u£ eWi(R2

+), and
denote by u and ω the solutions of the Navier-Stokes equations with u0 as initial
datum. Then there exists c(T)>0 depending only on ωo and T such that

\\u\\ΨΛ)+ Nl (r°' HΓr3 '0 )+ (4.10)

(4.11)

(4.12)

Proof. Putting δ = m, w,m^0, by (3.18) we obtain

δωt = δGtω0+ίdsδGt_sFs+\dsδGt_s(us V)ωs, (4.13)

and hence for δ = — ,
dx

dωt

dx

««Γί

ds
0 Vt-s

ds

0 Vt-s

dωs

dx

ds
llωjl ||κ (1 0)

Therefore, ω e Slψ^ if u e ^>0) and ω 0 e @{ί>°\ since, by Lemma 4.5, fe @[% By

putting δ = ^ - 2 , repeating the argument, we can conclude that ω e J (

τ

2 ) 0 ) if

M 6 i (

τ

2 ' 0 ) a n d ω 0 G j ( 2 ' 0 ) .
Let us denote the above argument by A.
Furthermore, we have already proved in Appendix B [Estimates (B.42), (B.45)]

that u G J* ( 1 ' 0 )n J* ( 0 ' υ if ω e &τ. We denote this argument by B. Finally, by (2.49)
and (2.51) one easily proves that u e J ? ' 0 ) , provided ω e i ^ ^ ' ^ n ^ l . W e refer to
this as argument C. Then, the following chain of implications is true:

ael?'0',
(415)

To estimate the ̂ -derivatives we make again use of (4.13) with δ = — to obtain:
dy

(4.16)
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by which

11(0,1)

77

ds

ί - s °\/t-s
Ik

suddenly implying o ) e j (

τ

o > 1 ) , because of Lemmas 4.1 and 4.5 and the fact that

u e M 2) as follows by (2.49) and (2.51). Finally, by (4.16), since || F ω | | τ < oo, ~ is a
dy

d2u
divergenceless vector field and -j-y is continuous in y = 0 (it is the derivative of an

odd function). Moreover,

dy2<Ot~(

dy2

(4.18)

where

We can write again an integral inequality for
d2ωt

dy2 implying ]/t-

(4.19)

Jor

Lemmas 4.1 and 4.5.
It remains to estimate the time derivatives. By (2.49) and (2.51), we have:

| | ( l , 0 ) t 11^. If (0 , 1)\ (Λ ΛΛ\

til + | |ω t | |
ι }), (4.20)

and an analogous estimate for dtu
2.

Finally, the estimate on dtω follows by the estimate on d2

yω, the previous
estimates and the structure of the equation for ω. D

5. Concluding Remarks

We conclude by discussing some cases of physical interest, not explicitly treated in
our previous analysis.

If a sufficiently smooth external field g such that curlgφO is acting on the
system, all our considerations remain valid just replacing Ft by Ft + cuήgt. It is well
known [1, 2] that the a priori estimates we make use of in Sect. 3 still hold under
suitable hypotheses on g. Moreover, it is a standard fact that the hypotheses on the
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initial profile of velocity, wo(z)->0 as |z|->oo, can be removed. In fact, by putting
w = u — uQ the Navier-Stokes equations reduces to

— wt + wt Vwt + u0 Vwt + wt- Vuo + Vp = Awt + g + vAuo-uoVuo,
dt (5.1)

It is easy to realize that, under suitable hypotheses on u0, the above problem
can be treated along the same lines of the one we have considered, the two systems
differing only for trivial linear terms.

The case in which one needs to consider non-homogeneous boundary
conditions like wί

2(x,0+) = 0, wί

1(x,0+) = α, can be analyzed by subtracting to u a
time independent vector field b such that b2 = 0, bι = 0, for y = 0. The resulting
equations for wt = ut — b admit homogeneous boundary conditions and differs
from the previous one only by linear terms.

Finally, let us consider the case in which u% = 0, UQ + 0 for y = 0, and we look for
solutions for which the usual conditions, u = 0 for y = 0, are satisfied. For the
Stokes problem the same analysis of Sect. 1 can be carried out, yielding Eqs.
(1.16HL18). Putting

x), (5.2)

one can determine a under the condition that ft is continuous in time, obtaining

s) Pi

— zl-1ωo(x,0+)= lim ht{x)=—A~ιab{x^). (5.3)
OX ί->0+ OX

Putting

Eq. (1.16) can be rewritten as

/Γ=JS?/, (5.5)

and h satisfies lim ht(x) = 0.
ί-*0 +

The presence of a vortex sheet αδ in the initial profile of vorticity ω 0 does not
perturb our analysis in an essential way. Its presence is reasonable to impose a
jump discontinuity of the Neumann velocity in the normal component, in order to
force the system (although in a singular way) to satisfy the right boundary
conditions. Under suitable assumptions on a (and hence on u0) S£ ~ ^makes sense
to give rise to a solution of the Stokes ibvp as in Sect. 1. The Navier-Stokes

evolution can be constructed as in Sects. 2 and 3 by replacing hby h——A~1aδ.

Appendix A

Let / : R 1 x [0, T] -^R1 be an infinitely differentiable function of compact support.
Consider

Vt(x9y)=]dsGt-Jfi(x9y). (A.I)
o
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It is easy to show that VtεL^nL^R2), Vie [0, T]. Then Eq. (1.18) can be written
in the following way,

1 OO +00 γ γ

t\ ) J y J l / \2 i ,,2 t\ l? y)

1 *)* R+χ (x-Xi) „<
= \\τa - \ dy \ —^—2 2Vt(χi>y) ( A 2 )

From (A.I)

(A.3)
ό ~y2π

where g is the one-dimensional heat kernel. Then, by Fubini's theorem:

(jj?/) f(x)= lim -^ldke*xUsf8(k)e-{t-s)k2QR(k9t-s)9 (A.4)

where

μ/2 i? . u

OR(k,t)= ί dygt(y) J dueiku

 2 2 . (A.5)

It is easy to show that

(A.6)

lim θE(fc, £)= —iε(k)etk φ(]/tk ), (A.7)

i?-^oo K

where

" d x ^ . (A.8)

(A.9)

By the Lebesgue dominated convergence theorem, we have

)
|/2π

Equation (A. 10) suddenly implies that if is a bounded linear operator on a dense
set of J ^ 1 Γ ε , and hence can be extended as a continuous operator o n ^ 1 J ε into
itself, for any ε ε [0,1).

Let us now extend arbitrarily ft(k) for t > T, so that / ε J*1? ^^ and /,(&) = 0 for
ί^2T. We extend also ίt(fc) so that Eq. (A. 10) is valid for any ί^O. We can then
define the Laplace transforms F(ω, k) and H(ω, k), of/ and h, respectively, via the
expression

F(ω,fc)= ldte-**ft(k) (A.ll)
o

(and the similar one for H) for any complex ω such that Reω>0.
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Since the Laplace transform of φ is explicitly known, we can translate Eq.
(A. 10)in

2iε(k)H(ω, k) = F^k] , (A.12)

+ fc2 + | / | ] / + F
which immediately implies that S£ is injective.

Let us now observe that Eq. (A.10) implies that, for any /e^i , r , ε , ^t(Ό *s a n

absolutely continuous function of ί, for a.a. k, and that ito(k) = 0. Then

ωH(k,ω)=]e-<»tdp-(k)dt. (A. 13)
o 0ί

Since

(A.14)

Eq. (A.12) easily implies Eq. (1.21), if h belongs to the range of if. Finally, if h
satisfies conditions i) and ii) of the theorem, Eq. (A. 13) is valid and we can invert the
order of the previous calculations to show [provided that condition iii) is satisfied]
that the function (1.21) is the solution of the equation ^£f—h.

Appendix B

Lemma B.I. Consider the following integral

I ( t G ) - \ dXl T d X 2 V dτn~2
1 * ί . . . * n \ J > > s ) - J /, m ΛΛι J / m Λ « 2 ••• J

J (f T \<Xί J (- - \(X2 ' " J / - - \»n-2

s \ι — τι) s [τ1 — τ2) s y^n-s~τn-2)
:n-2 fa

ί (τ^-τ^r-'ίτ^-s)""' ( R 1 )

where α, < 1, i — 1... n, t>s. Then

Tin- Σ
Proof. Since V ί = 1

/ f ^ f r V - ( « i + « 2 ) f

) i 1 f ^ ( B . 2 )

( ί - τ ) α i ( τ - 5 ) α 2 v J J

0 ( l - ξ ) α i ξ α 2

?, (B.3)
)

» 1 " *Ί)

(B.2) follows by iteration. D

Proof of Lemma 2.1. Defining the following operator

(Dφ)(fc, y) = ί ίkφ(k, y\ — φ(k, y)), (B.4)
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we have

(Vt^sΦ)(k,y) = e~k2( t~s)igt-s(y — y/)Φ(k9y
/)dy/

+ \dτe-k2^\dy'gt.τ(y-yr)\dhβτ(k-h,y')-DVτβ{h,y'). (B.5)
s

Since V bt = 0, by integrating by parts:

2 t

ί=l s

y-y' ,k
2(t-τ)

• \dh\bf(k-h,y')\\v;jSΦ\{Ky'),

where

ZS

ik if i=\,

2s

then

By iteration:

if i =

dτ

(
\ n=l

Finally, by virtue of Lemma B.I,

• Σ (Φint-sj
n=l

gc| |Φ| |ex P c| | i4 2 (t-s).

If Φ(k, y) = φ(fc)δ(y), we obtain

ί dτ y(τ)

t-τ Vτ-s

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

where

(B.12)
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Hence

implying (2.27) by Lemma B.I.
Furthermore, along the same lines,

G. Benfatto and M. Pulvirenti

+c\\b\\ j ρ τ, sΦ||

^s γt-s

and hence we obtain (2.25) and (2.26).
Finally, (2.28) and (2.29) are consequences of the extra divergence appearing in

the first term of the right-hand side of (B.14) and (B.15) in case when Φ = φδ.

Proof of Lemma 2.2. By (2.37), recalling definition (B.4), integrating by parts, by the
use of Lemma 2.1, we obtain

Moreover, by (2.38)

]/t^s

2}/t-τ

t t Λ-

= ldsί-==J(t,τ,s)9
o s l/ί-τ

where the last equality defines J.
We have

In fact, proceeding as in the estimation of ά1, we realize that the first component of

D gives rise to a factor k and snpk2e
2e~k2(t~τ) \dye The second
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component, ί-—, can be bounded in the same way because

c

On the other side, we have also

(B.20)

Therefore, combining (B.I9) and (B.20) and making use of (2.28) and (2.29),

J(t,x,s)^{c\\b\\texp(ct\\b\\f)}
( ί - τ ) 1 / 4 ( τ - s ) 3 / 4 *

(B.21)

We, finally, obtain (2.40)! by inserting (B.21) and (B.18) and using (B.3).
To obtain (2.40)2 we have

ds

and the last equality defines J.
Two estimates are true

(B.22)

the second one again by integrating by parts. Hence

By virtue of (2.28) and (2.29),

i (

(B.23)

(B.24)

(B.25)

(B.26)

implying (2.40)2 for f = 1, by interchanging integrations.
Finally,

ί

(B.27)
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Denoting by J the quantity appearing in the modulus of the right-hand side of
(B.27), we have

τ|(fc,y), (B.28)

^ > F τ | ( / c , y ) . (B.29)

Using as above both estimates (B.28) and (B.29), we have

' ^ ' s ί ΰ ^ ! * ! ^ " i ? 4 « l / l(e|"^"") (BJ0)

yielding (2.40)2, ί = 2, after integrating. D

Proof of Lemma 2.3. By the use of the same arguments leading to (2.41), (2.37),
(2.38), we obtain

where

z}(k)= -Uye-WM(Qΐ,o<»oKk,y), (B.32)

zKk) = \k\ίdyε(y)e-W M\^1 \άy

 y-^gt(y-yi)ώ0(k,

lyi 2yi

+ ] f i ί y i : p p g t τ ( y y
oj/ί-τ 2γt-τ

Proceeding as in the proof of Lemma 2.2, we obtain

. (B.33)

(B.34)

Qτ,o«>oll, (B.35)
t-τ

, ,oω o | | , (B.36)^ β τ i o oo yt — τ
t A~ τ A*e

+ c ί ( Γ ^ F ί ( ΐ = i F l l ρ σ °ωo11 (R37)

This achieves the proof by the use of Lemma 2.1. D

Proof of Lemma 2.4. Writing

]dsVttaFa9 (B.38)
o o

and inserting it in the expression of v{1) [see (2.49)], we obtain v(ί) as a sum of three
terms, the first of which is bounded in the || || norm by | | ί o | | since V1A~ίGtω01 χ
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The second term is estimated in the following way

Jdsjd/csup
0 y

85

(B.39)

Finally, for the last term we have

jdsjd/csup
0 y

o o

(B.40)

Proceeding as above and making use of an analogous estimate for v2, we obtain

t o , o o f s \ Q τ , s s
0 ^ 0 0 s

Estimate (2.53) can be obtained by Lemma 2.1 and Theorem 2.1, thanks to
Eq. (2.52).

To achieve the proof of the lemma it is enough to prove that ||dxι;f || and \\dyvt\\
are finite, the rest of the properties being evident.

In fact,

(B.42)

Furthermore,

Γ + o°

I
= -ώt(k,y)+ \ Tdyiώt(k,

Therefore,

max Jdfcsup
1=1,2 y

The thesis follows since ω € ύ&T. •

dΰ(i)

(k,y)^c\\ωt

(B.43)

(B.44)

(B.45)
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Appendix C

Proof of Proposition 3.1. By (3.5)

l(β$ - β$)ωo(*, yMidh sup \b^ - bf\{k - h, y) sup |ώo(A, y)\
y t y

0

(C.I)

Proceeding as in the proof of Lemma 2.1,

Ό τy7^c Qτ'° Qτ'0<°0 '
By the use of (2.25)

o l/ί-τ

(C.2)

o l/ί-τ

The thesis follows by iterating the inequality as in Lemma 2.1.
Estimate (3.4) can be obtained along the same lines.
To prove Estimatte (3.2) we write

1]if- 1/z ( 2 ). (c.4)

By Theorem 2.1 we have

(C.5)

Furthermore, ^?~1h(1) — ^~1h{2) can be evaluated as in Appendix B, proof of
Lemma 3.3, as a sum of four terms in which appears the difference (ρ^}

0 — ρ^o)ωo.
By using Estimate (3.3), we, finally, get

\\(^-ψ^-^-ψ2\\\^c\\b{1)-bi2^bHω0\\ (C.6)

(the most singular term disappears by difference).
It remains to estimate the 2n d term in the right-hand side of (C.4). By expanding

in a series,

ύ Σ \\{ί^{2)n-^il)nW~ι^2)\\\. (C.7)
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Proceeding as in the proof of Lemma 2.2, Appendix B we can write
( 5 Γ ( 1 ) - ^ r ( 2 ) ) / ( 2 ) as a sum of four terms similar to a1 + a2 + S(a1 +α 2 ) [see
(2.37H2.39)] in which ρτ SFS and ρτ SFS are replaced by ( ρ ^ - ρ ! ^ ) ^ 2 * and
(Ciίί"Q?,l)Fϊ2\ where F<2) =fs

{2)6. Therefore,

^ ^ (C.8)

Hence ί recalling that \\(^{i)f)t\\ ^cecb2τtbτ] 77=L= \\fs\\ by Lemma 2.2

right-hand side of (C.7)^ Σ " Σ
n = l k = 0

^ Σ nicbjf-^^'Wb^-b^l
n=l

,-! —τβ

(C.9)

By virtue of Lemma B.I and Lemma 2.3, we obtain (3.2).
Finally, using the same arguments leading to (B.41)

u(2) || _ | | ϋ ( l )_ t ; (2:

0

4-1 f/foil f(i)_/ (2)ιι
I o

0 s

^dτWQ^KF^-F^W. (CIO)
0 s

The thesis follows by inserting Estimates (3.2)-(3.4). D

Proof of Lemma 3.1. We prove the Lemma for h+ smooth. The general case is
recovered by usual density arguments.

To solve the elliptic problem (3.37), we introduce a sheet of vorticity as in
Sect. 1, to take into account the boundary conditions.

Let ω be the even extension to R 2 of ω + =curlw + . Then ω solves the following
problem

(Gil)

where g is the even extension of g+ =

and / has to be determined by the condition

' d Λ_Λ
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Taking the Fourier transform of (C.I 1),

(1 + ξ2)ώ(ξ) = /

and (C.I3) becomes

, ξ = (k,q), (C. 14)

Inserting (C.14) in (C.15) and making use of the formula

we obtain

On the other hand, iίh = (h1, h2\ where hx is the odd extension oϊh + 1 and h2 is
the even extension of h+2, we have

g(k, q) = ikP(k,q) - iqP(k, lim [^(fc, y) - fι\K ~y)~\.
^ 0 +2 π ^ 0 +

The term in square brackets of (C.18) gives no contribution in the expression of ώ,
so that we can write

where

Putting v= VλA ~ ίω, we have

where

1 + ξ 2 '

(C.19)

(C.20)

(C.21)

(C.22)

M o r e o v e r , b y t h e H a u s d o r f f - Y o u n g t h e o r e m , h e L ^ ( R 2 ) 2 , q=[l — I , a n d
" 1

h e n c e

(c.23)

/2i/Γ(ξ)n/ΓTF(|/ΓTF+|/c|)

( c 2 4 )
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Using formulas (C.I6) and

Iβl

we obtain

89

(C.25)

(C.26)

The proof is achieved by the inequality || u\\ = ||f|| ^ ||#|| v D

Appendix D

Proof of Lemma 4.1. If y>0\

then

2{t-s)gt -8(y)f8(k), (D.I)

sup \kdyjfct(k, y)\ = sup
y>0 y>0

-y e
ί-s)

o 2(t-s) i/4π(ί-s

p \ ^
y>oL|/4π

-2 V2 2
y

o

which implies Estimate (4.4). Moreover,

\ ds
sup \dyy3ίft(k, y)\ = sup J —
y>0 y>0

where

U(ί-s)-3/2|/t(/c)-/s(/c)|, (D.2)

o2(t-s)'

ds

0 (,£ —
.3/2

\/4πy

Since

we can write

(D.3)

(D.4)

(D.5)

fi
|/4πy o V 2

M2/4

-y | e "2 - υ , (D.6)
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which implies u2y2λ2

3>>0

g C 0 = + |fc|). D (D.7)

Proo/ 0/ Lemma 4.2. We shall use decomposition (B.31) oϊ^'ιh. From Eq. (B.32)
it follows that

; ? r 0 °>. (D.8)
By Eqs. (2.21), (2.22)

Qt,s = b,Gt-s+$dτbtGt-τQτ,s, (D.9)
0

which implies (II || = M l ( 0 ' 0 ) )

IIQt, o ω o - fc, o ω o || S II (ft, - bs)Gtω0 || + || ftβ(Gf - G s )ω 0 1 |
ί s

+ ίdτ||bίGt-.Q,,oωo|| + ί dx||(&(-WGt-xex.
s 0

\\bt-b
0

0 s-τ

We observe now that, if Φe@{1'0)n@{0Λ\

^ - = ίdkϊ\k\sup|Φ(/c,y)| + sup\dyΦ(k,y)\\

and we used the fact that, for \y\>0

and an integration by parts.
In order to use inequality (D.ll), we need an estimate of ||ρτ5o

ωoll(1'O)

llQτ,oωollί°'1)? which can be obtained by an extension of the proof leading to Eq.
(2.26) (see Appendix B). This is a very easy task and we obtain that for any n and

r\\U\\{n,m)

ft-s

(the limitation on m is due to possible discontinuities of the derivatives in y = 0).
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Estimates (D.IO, (D.ll), (D.13) immediately imply that, if ω o e J l < 1 0 ) n ^ < 0 1 )

,ί-fos||<
o o)+ { ~ + { ~ ?

s yσ o yτ s-τ

Let us now consider the function z2 defined by (B.33). If ωoεέ%{OΛ\ we can
write

Proceeding as in the previous calculation, making an integration by parts in the
left direction in the terms containing dσgσ, we obtain

t —
II 2 2 | i ( 0 ) < :
\\zt ~zs\\ =ct ~zs\\ =c 7=^ IIωoII + c J α τ I I ΰ τ , o ω o

]/

| |βτ.oωo l l ( 1 1)

o ys — τ

Then, by using Eq. (D.13), we obtain that, if ω o e J ( 1 ) 1 ) and be${γΛ\

Vs

We still have to study ||(Sz)f —(Sz)J ( 0 ), where z ^ ^ + z 2 and S is the operator
defined by Eq. (2.39). We can write

Ifel ds
(Sz)t(k)= ^L ί ^e-k2%_M, P.18)

which implies

We note now that (2.25) can be easily generalized to obtain, for any n and m ίΞ 1

| |ρ I j SΦ s | |
("'m )^c| |ft | | ί" 'mV ( t- s ) ( l | b | |t<" m ) ) 2 | | Φ s | | ( " ' m ) . (D.20)

Then, proceeding as in the proof of Lemma 2.3 (see Appendix B), we get, if

o l/f-τ
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Finally, we can repeat the steps leading to (D.14) and (D.I7) in order to show
that, if ω 0 e J* ( 2 ' υ and b e 0ϊψ•υ

(D.22)

Estimates (D.19), (D.21), (D.22) imply that

_.Ί
(D.23)

Hence (4.6) follows from (B.31), (D.14), (D.17), and (D.23). D

Proof of Lemma 4.3. The solution u of the Navier-Stokes equations is obtained by
inserting (3.18) in the right-hand side of (2.49) and (2.51). To estimate \\ut-us\\{1>°\
we proceed as in the proof of Lemma 4.2, obtaining

1(1,0)

0 s-τ U s 0 s-τ M

+ cRτ} ί/σ||ρ< T τF τ | |«
1 o >+ C ίdτί ί /σ| |ρ < Γ , τ f τ i r 1 o»

s τ 0 s

+ cfrfτfrfσ t]σ-||ρσ,τFτ | |<
1 '0 ). (D.24)

0 τ s-σ M

An easy generalization of (2.28) gives, for all n

c(<r

S0 P ||/J<»>. (D.25)
|/σ —τ

Moreover, Theorem 2.1 can be extended to prove that, if ω 0 G J*(n'1} and b G ̂ ψ°\

\\fτ\\{n)ύc(T). (D.26)

In fact, proceeding as in the proof of Theorem 2.1, it is easy to obtain the analogue
of Estimate (2.45), with ||/f|| replaced by ||/ί||(ϊl)and ||fo||ί? | |ωo | | by \\bt>°\ | |ωo | |(w).

Finally, the —p singularity [arising only by the bound (2.42)] can be removed by an

lAl
extra integration by parts, involving the first y-derivative of ω0.

(D.20), (D.24HD.26), and (B.44) imply that, if ω 0 e f ( 2 ' 0 ) n f ( U ) and ε e (0,£|

II If Oil • ^ ' • " N • I N S V V mt

0 s - τ U 0 s l / σ — 1

\dτ) j —
o τ ]/σ-τ s-a u J

dτ ty du s

c dτ

τwfc o]/s — τ
s s ^ 7 ^ f - σ / ~"

o

iis-τ)1-*.1-^
V

f-σ /7ί/Π
(D.27)
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(4.7) then follows by the inequality

f - £ f ™ = lf S) ^ 2 ( t _ s ) l - ε ( D 2 8 )

s - τ wε o wε 1 —ε

Proof of Lemma 4.4. We shall use the decomposition (2.41) of 3~f. Let us define

\\\Φ\tϊ = \dydk\Φ(Ky)\ \k\n. (D.29)
Equation (2.37) implies

UF^StτFτ-\{Ky)\ • (D.30)
0

Proceeding as in the proof of Lemma 2.1, it is easy to show that, for all n^O

Moreover,

0

τ s —σ
+cU^fdu\\\bsduGuQσ,τFτ\\\w

ί - ι ι / τ i ι ( 1 )

— τ
ί

's — <

i"-iifeiii1>0)iiie..xFjr>, (D.32)
τ s-σ U

(2.28), (D.31) and the analogue

(D.33)

(D.34)

imply, if b e J (

T

1 ? 0)

? for all ε e (0, i ]

Let us now consider the function at defined by (2.38). We have
1 x dτ s t

—x) ' o s

c'cFgl1 ' I ε (D.35)
0 σ s-τ



94 G. Benfatto and M. Pulvirenti

for any εe(0, | ] . Therefore, by (2.29) and (D.33), if be J< r

l l 0 )

f (D.36)

We have also by (D.19), if a = aι + a2

> } ^ | | α ί _ τ - α s _ τ | | ^ . (D.37)

The same steps leading to (D.34) and (D.36) give also, changing the norm and
supposing beM{τ'0)

^ : 1 ] . P.38)

Moreover, if be^'0\ by means of an easy generalization of (2.41)!

Ikll^cmil/Uί 1). (D.39)

The previous estimates immediately imply Estimate (4.8). D

Proof of Lemma 4.5. (2.13), (4.6), and (4.8) imply

t —

n\\^"^-1h\\?)- P.40)

Moreover, if ω 0 e ̂ ( 2 υ and b e ffl? °\ it is easy to show, proceeding as in the proof
of Lemma 2.2 and Lemma 2.3, that

Estimates (D.40) and (D.41) immediately imply the lemma.
The last statement follows by (D.26). D
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