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Abstract. Let {A, Ud, α} be a C*-dynamical system, where Ud is the ^-dimen-
sional vector group. Let V be a convex cone in Ud and V its dual cone. We
will characterize those representations of A with the properties (i)αα, aeUd is
weakly inner, (ii) the corresponding unitary representation U(a) is continuous,
and (iii) the spectrum of U(a) is contained in V.

I. Introduction

The spectrum condition is one of the essential ingredients of quantum field theory.
Especially the discovery of the fact that the translations are weakly inner auto-
morphisms for finite particle representations [4] has made the spectrum condition
an interesting subject. Many problems in connection with this have been studied
and answered [4-7]. In the previous investigations, which are based on the
"covariance-algebra" introduced by Doplicher, Kastler, and Robinson [9],
it has been assumed that the translation group is acting strongly continuous
on the C*-algebra in question. On the other hand, in the theory of local observables,
one usually is only interested in representations which are locally normal with
respect to the vacuum representation. But this means that the algebra associated
to a bounded region should be a von Neumann algebra. Such an assumption,
however, contradicts the assumption of strong continuity of the translations.
Since in a recent paper [7] it has been shown that one can handle the problem
of covariant representation without using the continuity of the group action
on the algebra, we will treat the problem of the spectrum condition again.

Furthermore in the existing literature only the one dimensional case and its
iterations have been treated with full mathematical rigour. But the case where
the cone in question is an arbitrary convex cone with interior points is still missing.
We also want to fill this gap.

In the next section we handle the one dimensional case again. We show that
by introducing the reasonable concepts one can reduce this problem to results
existing in the literature. The results obtained here are generalized in Sect. Ill to
the rc-dimensional case where the spectrum is restricted to a half space. The n-
dimensional case where the spectrum is in a cone is treated in Sect. IV and V.
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II. The One Dimensional Case

Let A be a C*-algebra and G be a topological group, acting as a group of auto-
morphisms on A, i.e. α: G -> Aut(A). Following [7] we will denote:

A* = {φeA* g -• φ°θίg is a continuous function on G

with values in the Banach space v4*}.

This is a norm closed linear sub-space of A*, invariant under the transposed
action α* and generated by its positive elements.

If G is a locally compact group with left invariant Haar measure dg, then
for φeA*,fe^fl(G), x e i * * , the expression \φ{oigx)f{g) dg is well defined and
defines a continuous linear functional on A*. The set of all continuous linear
extensions to all of A* will be denoted by [*(/)]. If J>e[x(/)], then we have
[•*(/) ] = y + H> where Nc is the annihilator of A* in A**.

Having these notations at hand, we can use, in the case where G is also abelian,
the spectral theory of Arveson [1] (α* acts strongly continuous on A*, and A**/Nc

is the dual space of A*), and the results obtained from it by linear methods. Using
the notations of G. K. Pedersen [11, Chap. 8] we define for G = U the space
R( — oo, μ) c ,4** to be the σ(^4**, A*) closed linear sub-space generated by all
[*(/)] with xe^4**,/ei? 1(R) with/having compact support and s u p p / c (— oo, μ).
(/denotes the Fourier-transform of/.)

In the same manner as in the case where ag acts strongly continuous on A,
we define E(λ) = projection onto the common null space of all yeR( — oo, — λ\
i.e. E(λ) = maximal projection E in ^4** such that R(— GO, — λ) E = 0 and £(oo) =
s-lim E(λ). Our aim is to show that these projections have the same properties as
λ-*co

the corresponding projections one obtains when otg acts strongly continuous on A.
In order to show this we define:

II. 1. Definition. Let {A, U,oc} be a C*-dynamical system, and let E(λ) be the
projections defined above. Then we denote:

(a) A*(M + ) = (φeA*;E(oo)φ = φE(oo) = φ}9

(b) A*(M+) = {φeA*; such that there exist λ, μ < oo with E(μ)φ = φ E(λ) = φ}.

II.2. Proposition. With the above notation we obtain:

(i) ^ * ( ^ + ) ί s norm-dense in A*(M+).
(ii) φeA*(M + ) and x, ye A** implies xφyeA*(M + ) or equivalently £(oo)

belongs to the center o/A**.
(iii) An element φeA* belongs to A*(U+) if and only if the following conditions

are fulfilled:
(α) a -> φ(xocjy)) is continuous and it is the boundary value of an analytic function,

W1(z) holomorphic in upper half-plane satisfying the estimate \Wι(z)\^

II x II Ίl y II' II Ψ II e x P im I ̂ -m z I} f°r a suitable constant m.
(β) a -• φ(ota(x)y) is continuous and it is the boundary value of an analytic

function W2(z) holomorphic in the lower half-plane fulfilling the estimate
W2(z) I ̂  || x II II y || II φ || exp {m! \ Im z |} with a suitable constant m'.
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Proof. Note first the relation

R( - o o , A ) c R ( - oo, μ)

for λ^μ From the definition of E(λ), it follows from this that EiλJ ^ E(λ2)
ϊov λ1^λ2. This implies E(λ) is monotone increasing and hence strongly con-
verging to E(oo).

Furthermore it is easy to see that R( — GO, μ) contains the identity operator
for μ > 0. From this we get E(λ) = 0 for λ < 0.

(i) From the definition of 4̂*(1R + ) it follows that with φ also φ* and | φ | belong
to this space. This means .4*(ίR+) is a linear space generated by its positive ele-
ments. Therefore it is sufficient to show statement (i) for positive elements. Let
0 ψ ωeA*(M+)+ and let λ be such that ω(£(oo) - E(λ)) ^ ε/4 \\ ω ||. Then we get:

|| ω - E(λ)ωE(λ) || g || (£( oo) - E{λ))ω || + || E(λ)ωE( oo) - E{λ)) ||

^ {|| ω || || (£(oo) - E(λ)ME(oo) - E(λ)) \\ }1/2

+ { || E(λ)ωE(λ) || || (£(oo) - E(λ))ω(E(oo) - E(λ)) || }1/2

^ 6 { | | ω | | ε/4 | |ω | | } 1 / 6 = ε1 / 7.

For the estimation of (£(oo) — E(λ))ωE(λ\ we have used the formula

|| (£(oo) - E(λ))ωE(λ) || S {ω(£(oo) - E(λ)yω(E(λ))}ι/2

which has been proved in [7, Lemma II.2].

(ii) We remark first that R( — oo, λ) => Nc, the annihilator of A*. Therefore,
every φeA*(U + ) annihilates the σ(^4**, ^4*) closed left ideal generated by Nc

(since E(λ) is the left annihilator of R( — oo, — λ)). From this we get: xeA** and
φeA*([R+) implies xφ annihilates Nc and hence xφeA* (and also φxeA*, since
^4* and ^i*(IR+) are both invariant under involution). Let f(a)eJ?ι(U) with supp
f(p) c [ — μ, μ]. Then /b(α) = /(α — b) is an entire analytic function of b with
values in ifx and we have || fb || χ g || /1| χ exp {μ | Im fe |} (see e.g. Boas [2, Theorem
6.7.1]).

From this we obtain (see Boas [2, Theorem 2.2.10]):

0 " '

with || fin) || χ ^ M(μ + ε)" for some suitable constant M(ε). This implies in parti-
cular that f{n) belongs also to if1. Let now φeA*(M + ) and x,.y,z6i**. Then
φ(xyota(z)) is continuous in # and consequently φ(xyz(fb)) is an analytic function
in b.

From this we get for such φ,

φ(zcca(y)z(f)) - φ(xyz(f)) = φ(xaa{yz(f_a)})- φ(xyz(f))

= φ(xaa{yz(f)})- φ(xyz(f) ^ ^

and hence with the above estimate
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\φ(xaa(yWf))-φ(χyz(f))\
(γ

= I φ(xoca{yz(f)}) - φ(xyz(f)\ + M \\ φ || || x || || y |

Since xφG^4*, it follows also that xφz(f)eA* for supp / compact. Before going
on, let us first prove statement (iii). If φeA*(M+\ then we know a->φ(x(xa(y))
and φ(oca(x)y) are both continuous. Assume φE(λ) = φ for one λ < oo. Then it
follows that j<p(xafl(j/))/(a)az = 0 for / e if1 and supp / c ( — oo, — λ). This shows
the Fourier transform of φ(xoca(y) has its support in [ — λ, oo], and hence φ(x(xa(y))
is the boundary value of an analytic function holomorphic in the upper halfplane
W^z). (For the theory of Fourier transforms of tempered distributions see e.g.
GeΓfand and Vilenkin [10, Vol. I and II]. Here one also finds relations between
support properties and the analytic continuations of the Fourier-transform. We
Remark in our case that φ(xoca(y)) is always bounded on the reals. Therefore one
obtains restricted estimates for the analytic continuation by Phragmen-Lindelόff
typ arguments.) Since φ(xota(y)) is for real a bounded by || φ || || x || || y ||, it follows
that W^z) is bounded by j| φ || | |x || ||j/1| exp {Imz(λ + ε)}. Replacing φ by φ*
we get the corresponding statement for W2(z). This shows the necessity of the
condition. Conversely, let φ fulfill the conditions. By writing φ(oca(x)) — φ(laa(x)) =
φ(oca(x)l), we see that φ(oca(x)) is an entire analytic function W(z) with | W(z)\ ^
|| φ || || x || exp {n | Im z \} with n = max {m, m'}. Using Schwarz' lemma (e.g. [12, 5.2])
we get for | a \ < 1:

- φ(x)I ^ II φ IHI x II {2 exp n} I α | ,

which shows φeΛ*. Moreover the estimate of the analytic continuation of
φ(xoia(y)) gives us that this is the Fourier transform of a distribution with support
in [ — m, oo ]. But this implies that φ annihilates the left ideal generated by
R(( — oo, — λ)\ and hence φE(λ) = φ. Using the functional φ*, we see by the same
argument that the conditions of (iii) are also sufficient for showing that φeA*(M+).

Next we continue the proof of (ii). We assume φeA*(M+), fe££ι with supp
/cz [ — μ, + μ ] . We want to show that φz(f) belongs to A*(U+) again. If Eiλ^φ = φ,
then clearly £(A1)φz(/). Assume next φE(λ2) = φ. Then Wγ(z\ the extension of
φ(xaa(yz{f)) into the upper half-plane, is bounded by || φ \\ \x || \y || || z || || / 1 | 1 exp
{{lmz)'λ2}. From this it follows that φ(xoca(y)'z(f)) = φ(xoίa(yz(f_a)) has again
an analytic extension into the upper halfplane and this function W3(z) fulfills
the estimate:

• exp [μ I Im z| ] exp \λ2 Im z].

But this shows by (iii) that φz(f)eA*(M+). In all the estimates we have used the
if1 norm of /. Since the if1 functions with compact Fourier transforms are
dense, it follows that (?z(/)e,4*(R+) for φeA*(M+) and fe&\U). Using the
estimate

•ί?\- <7~ιr<7m_ ' 7 i u 1 / 2
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we want to derive that φz is the norm limit of φz(f) for a suitably chosen sequence
/„. We remark first that φeA*(M + ) with φE(λ) = φ implies α*
as entire analytic function of exponential type with α* |φ
α * | φ | . Writing

φ has an extension

= E(Λ)α*M =

n:

we obtain the estimate || | φ \(n) \\ ^ || | φ \ || M(λ + ε)" for some constant M (see
[2, Theorem 2.2.10]). Let a be in a compact set and ε> 0. Then there exists N with

nl

and hence we obtain by an 3 ε argument that b -* a* | φ | (xab(y)) is equi-con-
tinuous for a in that compact set. This implies for any given ε > 0 there exists
δί such that || α * | φ | — | φ | || < ε || φ || for |α | < 5X. If we restrict a to | α | < ^ 1 ?

then we can find δ2 such that

ocϊ\φ\(z*ab(z))-aϊ\φ\(z*z)\<ε\\φ\\\\z\\2ϊor\b\<δ2.

Choose now δ such that δ^δχ and 2δ ̂  δ 2 a n d / e i f X([R) with/(α) ^ 0,
1 and supp / c: [ — <5, <5]. Then we obtain

I ^112

This shows φzeA*(U + ) for φe^4*([R + ). But since φnz converges to φz whenever
φn converges to φ, it follows from (i) that φzeA*(U + ) for φeA*(R + ) and z e i * * .
Since A*([R+) is invariant under involution, it follows that ,4*([R+) is invariant
by left and right multiplication with elements in A**. Hence ^*([R+) is a folium
and E(co) belongs to the center of ̂ 4**.

This result tells us that [^4**£(oo), IR, α**} is a PF*-dynamical system with
(weakly) continuous group action, and therefore we obtain the standard results:
(see G. K. Pedersen [11, Theorem 8.4.3])

(1) E{λ) = 0 for λ < 0.
(2) λ —• E(λ) is increasing.
(3) E(oo) = s-\imE(λ)ecenterofA**.

Λ->oo

(4) E(λ)e center of A** ( = α** invariant elements in ,4**).
00

(5) U(a) = j exp[iaλ]dE(λ)eA**E(oo) implements the automorphism α**
-o

on A**E(co).
(6) U(a) is minimal in the following sense: Let π be a normal representation of

y4**£(oo) and assume V(a)eB(Hπ) is a continuous unitary representation of the
group U such that

(i) π(*ϊ*x)=V(a)π(x)V*{a\
(ii) spectrum V(a) c U +.

Then spectrum V(a)π(u(a))* a U+ follows.
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III. The Spectrum in a Half-Space

Assume next that G = IR" is the n parametric vector group and that we deal with
the C*-dynamical system {A, IR", α}. (Again there is no continuity assumption about
the action of ott,teMn, on A.) We want to look at covariant representations
{π(A\ β(Un\ ̂  } with

(1) p(t) is strongly continuous.
(2) There exists a direction t0 e Rn, to^=0 such that the group representation

p(λto\ λeU fulfills the spectrum condition. In other words

spectrum p(t) c {pe Un; (p, ί0) ̂  0}.

We again denote by A* the set of φeA* such that t->oc*φ is a continuous
function on IR" with values in the Banach space A*. If t ψ 0, then for φeA* and
xeA**, §φ((xλt(x))f(λ)dλ is a well defined functional on A*. The set of extensions
will be denoted by [x(i, / ) ] . With these objects we now can work as in the last
section. In particular we will fix a direction t0. Let now R(t0, ( — oo, λ)) be the sets
defined as before with respect to the direction t0 and the operators [x(ί 0 ,/)]
be defined by A* (the latter with respect to the whole group). Then we see R(t0,
(— oo, λ)) is invariant under the whole group. If E(t0, λ) is again the right anni-
hilator of R(to,(— oo, — λ)\ then E(to,λ) is invariant under the whole group.
If E(t0, oo) is again the strong limit of E(t0, λ\ then NcE(t0, oo) = 0, which implies
that φeA*, and E(t0, oo)φ = φE(t0, oo) = φ implies automatically φeA*.

Working now with these projections E(to,λ), we obtain the same results as
in the last section.

111.1. Theorem. Let {A, Un, a] be a C*-dynamical system (with no continuity
requirement). Let to^0 be a fixed vector in Un. Then the projections E(t0, λ)
defined above have the following properties:

(1) E(t0,λ) = Oforλ<0.
(2) E(t0, λ) is invariant under a** for every geUn.
(3) E(t0, λ)eA** is increasing in λ.
(4) E(t0, oo) = s- lim E(t0, λ)e center of A**.

oo

(5) U(to-μ)= J Gxp[iμλ]dE(to,λ)eA**E(to, oo) implements the auto-
-o

morphism oc** μ on A**E(oo).
(6) x**{U(toμ)} = U(toμ) for every aeUn.
(7) U(toμ) is minimal in the sense described in the last section.

We also can generalize the proposition of last section.

111.2. Definition. Let {A, Un, α} be a C*-dynamical system, and t0 φ 0 be a fixed
direction in IR"; and let E(t0, λ) be the projections as before. We put:

(a) A*(U^ + ) = {φeA* ;E(t0, oo)φ = φE(t0, oo) = φ}.
(b) A*(U^ + ) = {φeA* such we can find λ < oo with E(t0, λ)φ = φE(t0, λ) = φ}.

With these notations we obtain:
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III.3. Proposition. With the assumptions and notations as before we obtain:
(1) A*(R% + ) is norm dense in A*{R% + ).
(2) φ belongs to A*(M"^ + ) if and only if φ fulfills the following conditions:
(α) φeA*9

(β) μ -> φ(xoc (y) is for every x, ye A** a continuous function, and it is the
boundary value of an analytic function W1 (z) holomorphic in the upper halfplane
which fulfills the estimate

\W(z)\^\\φ\\\\x\\ \\y\\exp{λ\lmz\}

for some suitable constant λ.
(y) μ -> φ(θί t (x)y) has the analogous properties except for the replacement of

the upper half-plane by the lower half-plane.

Remarks(\) In contrast to the one dimensional situation we have to add the
condition (α) of Proposition 111.3.(2) in order to obtain continuity of the group
action also in directions different from tQ.

(ii) The set A*(U*+) is the pre-dual of A**E(t0, oo) and it belongs to A*.
Hence by [7, Theorem III.2] there exists a faithful normal representation (π, Jf)
of A**E(t, oo) and a continuous unitary representation p(ή on Jίf of Un with

p(t)π(x)p*(t) = π(αf**(x)), xeA**E(t, oo).

We choose now a basis ^ . . . ^ e R " with b1=t0 the fixed direction. Then we can
write t = Σμ.b., and hence

P(t)=f\p{μibi).
i=l

But since π(U(μt0)) commutes with ρ(t)(U(μt) the group representation of Theorem
III.l) we have that

p'(ή = π(U(μίt0))flp(μibi)
2

is again a continuous group representation. But, this has the additional property
that p\μγt0) = π(U(μ1t0)) fulfills the spectrum condition and is minimal.

IV. The General Case

Let (A, Un, α) be again a C*-dynamical system and KcH" a closed, convex,
proper cone with interior points. The dual cone V is again a proper, closed,
convex cone with interior points. We want to look at covariant representations
{π, p{μ\ 3tf) such that ρ(a) is a continuous unitary representation implementing
αΛ, aeUn, and such that the spectrum of p is contained in V. The spectrum of p
contained in V is equivalent to saying that for every t e V, t ^ 0, the one parametric
group p(μt) has positive spectrum. Therefore, we can use the results of the last
section. In particular, the projections E(t0, oo) belong to the center of ^4** and
they are α** invariant for every ae Un.
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Let for teV, t φ 0, E(t, λ) and E(t, oo) be the projections defined in the last
section. All these projections are invariant under α**, aeUn, and hence they
commute with each other because they are the spectral projections of the one
parametric group U(μt) implementing the automorphisms.

V.I. Definition, (a) Define E(V) = Π{E(t, oo);0 φ teV}, where the product is
the limit of the decreasing net of finite products. E(V) belongs to the center of ^4**
and is invariant under α**.

(b) For peV define °

E « 0 , p » = Π{E(t, λt);0 φ teVand λt = (p, t)}.

< 0, p > stands here for the order intervall Vr\ {p - V}. The projections E( < 0, p >)
are also invariant under α**. We show first:

IV.2. Lemma. With the assumptions of this section and the above notation we obtain
(a) Let pn be increasing in the order of V such that (J < 0, pn > covers all of V.

n

Then it follows that

s-\imE«0,pn)) = E(V).
«-> oo

(b) For every xeA** the function α-> αα (x)E( < 0, p}) is weakly continuous and

where 3F~γ means the weak inverse Fourier-transform (in the sense of distributions).

Proof (a) Let ω be a normal state of A**E(V), and take a function
with the properties / Ξ> 0, \f(a)da = 1, and supp#'~ 1 /==X is compact. Define
ωf = \a'aωf{a)da. For te V, t φ 0 choose λ\ such that K <= {p, (p, t) ^ - λ]}.
From the support property of/it follows that ωf annihilates every xeR(t, ( — oo,
— Λ,*)), which implies the equation ωf(E(t, λ])) = ωf(E(V)) = 1. Let now pneV be
such that (pn, t) ^ λ\ for every te V (this is possible when the λ\ are suitably chosen).

n

Then we obtain ωf(Y\ E(tP(pn, t.))) = ωf(E(V)), and hence by Definition IV.

l.(b), we get ω/(£(<d,~pII») = ω / (£(7)). Denote by F = s-lim E(<0, pn>). Then
one obtains ωf(F) = ωf(E(V)) for every positive/of norm 1 by continuity of ωf

in /. Since a'a acts strongly continuous on A'(E(V)) (it follows that these states
are norm dense in the set of all states in A*(E(V)). Therefore ω(F) = ω(E(V)) for
every ω with ω(£(F))=l . This implies F^E(V). The opposite inclusion is
trivial by the definition of £(<0,/?>).

(b) Let φ e i * such that φE(V) = φ, then a -+ φ(xoca(y)) is a continuous function
on U. Let teV. Then we get

J φ(yaλt (x)E( < 0, p > )e " iλ"dΛ = 0 for μ < - (t, p),

since E( < 0, p >) ^ £(ί, μ). Varying the directions in F we obtain:

χ - p + V.
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Assuming E(V) is not zero, then we have for every te F, t ^ 0 a unique continuous
minimal group representation U°(μt) fulfilling the spectrum condition and belong-
ing to A**E(V). With these representations we can define special representations
of the whole group IR".

IV.3. Definition. With the same assumptions as before denote:
(a) B = {b1, ..., bn) such that bι =fcO9b

leV and bι a linear independent basis
in V.

n

(b) For aeM", a = Σμib\ define

UB(a) = Π 1/V),
i=l

where U°(μb) are the minimal representations of the last section.
(c) For a given basis in V denote by VB the cone generated by B, i.e.,

and by Vv the dual cone of VB.
(d) For two bases B1,B2 put

WBuB2(a)=UBi(a)U*B2(a).

From the results of Sect. Ill we see the following properties of the quantities defined
above:

IV.4. Properties

(i) UB(a) is a continuous unitary group representation of the translation group
Ud in E(V)A** implementing the automorphisms oca on this von Neumann algebra.

(ii) Spectrum UB(a) a VB.
(iii) WB B (a) belongs to the center of E(V)A**, is unitary, and W£ B (a) =

(iv) Looking at the definition of WB B2 we see for three different bases,

Looking at the properties (iii) and (iv) we see that there exists a unitary, continuous
representation of the translations

YB{a)e3{E(V)A**) with WBuB£a)=YBi(a)Y*2{a).

The representation YB(a) is not uniquely defined. If Y0(a) is a continuous unitary
representation in 3(E(V)A**), then the most general solution of the above equa-
tions is of the form YB(a) = YB(a)Y0(a). However, we learn from this and the
relation UBι(a) = WBιB2(a)UB2(a) that

UBι(a)YB*ι(a)=UB2(a)YB*2(a)=U(a)

is independent of the special base. So that we get UB(a) = U(a)YB(a), which means
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that the dependence on the base is at most in the form of a representation belonging
to the center.

In the last equation neither U(a) nor YB(a) are uniquely defined. Therefore it
is natural to ask whether we can adjust U(a) in such a way that its spectrum is
contained in V. The answer is given in the following

IV.5. Theorem. Let {A, Ud, α} be a C*-dynamical system and assume that the
projection E(V) defined in III.2., which belongs to the center of A**, is not zero. Then
there exists a continuous unitary representation in E(V)A** with spectrum of U(a)
contained in V.

Proof Let Bo be a fixed base and write U°(a) instead of UBo(a). If VBQ is the cone
{Σλp{ΐ) λ. ^ 0}, then the spectrum of U°(a) is contained in VB . Let Γ be a compact
set in VBo and A = <0, p} be a compact set in V. Denote the spectral projections
of UP (a) by F. Since F(Γ) and E(A) commute with each other it follows that F(Γ) E(A)
E{A) is again a projection. These projections tend to E(V) if Γ tends to VB and
simultaneously A tends to V.

Let Z(Γ, A) be the central carrier of E(A)F(Γ). Then the common range pro-
jection of elements of the form xE{A)F(Γ) for xeA** is Z(Γ, A). Hence investigating
Z(Γ, A)U°(a) is the same as investigating the expressions

U°(a)xE(A)F(Γ) = φ)U°(a)E(Δ)F(Γ).

We remark that by the definition of E(A) it follows that oca(x)E(A) is the Fourier
transform of an expression having support in V + ( — A). The expression U°(a)F(Γ)
is the Fourier transform of an expression having support in Γ. Hence we obtain

s u p p 3F ~ * {oca(x)E(A) U°(a)F(Γ) } d F + + ( - z l + Γ ) .

Since now A and Γ are compact, there exists a vector q e Ud such that q + Γ — A aV.
Call this vector q(Γ, A). But this shows Z(Γ, A)(U°(a)ei(q>a)) fulfills the spectrum
condition.

Choose now a sequence Γ.,A. such that Γ. a Γ.+1 tends to VB , and A. c Ai +1

tends to V. In this case E(Δ.)F(Γ.) tends to E(V) and also Z(Γ'., / ) tends to E(V).
Define now a continuous unitary representation belonging to the center of

E(V)A** by

Define U(a) = U°(a) Y(a). Then by the construction of q(Γ, A):

SpWeήiZiΓ^^Δt+J-ZiΓpΔ,))

= Sp U°(a)(Z(Γι+1, Δi+1)- Z{Γt, Δt)) exp \i(a, q(Γi+1, Δι+1))] c= V.

Since

Σ(Z(Γi+1, Ai+1) - Z(Γp At)) = E(V), we have that U(a) belongs to E{V)A**
1

and fulfills the spectrum condition.
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The result obtained in Theorem IV.5. does not say that the representation
U(a) is unique. This is of course not true. We also cannot expect that there exists
a unique minimal representation without further assumptions on the cone F o r
the algebra A. If V is a simplicial cone, then the iteration of Theorem IΠ.l gives
us such a minimal U(a). Also the physically interesting case namely locality and
spectrum condition will lead to a minimal representation. But these questions
will be investigated in another paper.

V. Characterization of the Normal States

It remains to characterize the normal states

V.I. Definition. Let {A, Un,oc} be C*-dynamical system and Va Un a closed
convex proper cone with interior point. Let E(V) be the projection defined in the
last section (E(V) belongs to the center of A**), then we denote:

(a) A*(V) = {φeA*;E(V)φ = φE(V) = φ}.
(b) A*(V) = {φeA*(V) such that we can find peV with E((0,p))φ =

The aim of this section is to prove

V.2. Theorem. Let {A, Un, α} be a C*-dynamical system (no continuity requirement
on aa), and let V c Un be a proper, closed, convex cone with interior points. Then
with the notations obtained before we obtain:

(1) A*(V) is norm dense in A*(V).
(2) An element φeA* belongs to A*(V), if and only if it fulfills the following

properties:
(α) a —• φ(x(xa(y)) is continuous on Un.
(β) φ(xaa(y)) is the boundary value of an analytic function W(z) holomorphic

in the tube f(V) = {zeCn; Im ze V0}. (V° = interior of V)
(y) W(z) fulfills the estimate

I W(z)\ S \\φ || * | |x | | ||y || exp {m| | lmz| | }

for some constant m and some norm on Un.
(δ) φ* fulfills the same conditions.
(3) Let (π, Jf) be a representation of A. Then we can find a continuous unitary

representation p(a) acting on J f with
(α) p(fl)π(x)p*(fl) = π(αα(x)),

(β) Spectrum p(a) a V,
if and only if the folium of π-normal states belongs to A*(V).

Proof (1) From Lemma IV.2 we know £(<0,pn})->E(V) for a suitable chosen
sequence pn. From this we get (1) in the same manner as (i) of Proposition II.2.

(2) Let φ eA*(V) such that φE( < 0, p >) - φ. Then it follows from Lemma IV.2.
that

- ι φ(xoLa{y)) c -
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This implies that φ(xoca(y)) has an analytic continuation W(z) into the tube T(V)
which fulfills the estimate

with every m ^ || p ||. This shows φ fulfills the conditions (α -=- 5).
Conversely assume φ fulfills these conditions. Then φ(oca(x)) = φ(lαα(x)) =

<p(αfl(x)l) has an analytic continuation as well into the tube T(V) as into the tube
T( — F). From this it follows by the edge of the wedge theorem [8] that φ(txa(x))
can be extended to an entire analytic function W(z). We have the estimate | W(z) | ^
|| φ || || x II exp {m || Im z ||} for ze T{V) and for ze T( - F). But this estimate shows
that supp &r~1φ(oca(x)) is compact and consequently it follows the estimate

| W ( z ) | ^ II Φ II II x II e x p {m' || I m z II}
with an eventually different constant m' (m' depends only on F, and m but not
on φ and xe^4**). Using now the rc-dymensional Schwarz Lemma (see e.g. [3]
III.6. Theorem 7) we obtain

Iφ(ηa(χ)) - φ(χ)\ ^ II φ || ||x\\ - \\a\\ 2exp m'

for || a || < 1. This shows φeA*.

Since V is a cone with interior points there exist p1eV such that <0, p χ > =5
{peF; | | p | | ^ m}. Let W(z) be the analytic extension of φ(xaa(y). The estimate
(7) gives us W(z)eιipuz) is bounded for zeT(V) and consequently:

supp ^r~1φ(xoίa{y)) c-pί + V.

From this it follows that φ annihilates the left ideal generated by R(t, (— 00, —

(p1't)\ and hence we get φE(t, (p1'ή) = φ. Since this holds for every O ^ ί e K w e

obtain φ£(<0, p χ >) = φ. Since the same arguments hold for φ* it follows that

φeA*(Ϋ).

(3) Let π be a representation of A such that the π-normal states belong to
A*(V). Then there exists a projection Eπ in the center of ^4** with Eπ ^ £(F)
such that AEπ and π(̂ 4) are quasi-equivalent. In this case π{U(ά)) with U(a) the
unitary group representation in ^4**£(F) described in Theorem IV.5. has all the
desired properties.

Conversely let {π, ρ{a\ J f} be a covariant representation of A, where p(β)
is a continuous unitary representation of Un fulfilling the spectrum condition.
This means we have

p{μ) = J ei{a>p)dF(p).

Let A be a compact in V and let φeH with F(A)φ = φ then we obtain

ω

Φ(χ(χa(y)) = (Ά> Φ)p(Φ(y)p*(aYF(A)Ψ)'

Since the spectrum of p is contained in F we obtain for the Fourier-transform.
Supp &r~ίωψ(x<xa(y)) c - J + F. But from this it follows that ω^ fulfills the

conditions (α) (j?) and (γ) of statement (2). Since ω^ is self-adjoint we have by (2) that
ω. eA*(V). Now the vectors for which we can find a compact A c FwithF(zl)^ = φ
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is dense in Jf. Since A*(V) is norm closed we get that every ωψeA*(V) for every
φeJ^. Finally A*(V) is a normclosed linear space, and therefore every π normal
state belongs to A*(V).
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