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Abstract. After giving a global, constraint-free Lagrangian formulation of
the N = 1 superspace supergravity in terms of super fibre bundles and differ-
ential forms over a supermanifold, we show that the concept of body manifold
of a supermanifold provides a natural manner to reduce the theory to space-
time. This reduction, however, is not canonical, and the various ways in
which it can be done give rise to transformations of the field variables which
generalise the known invariances of the N = 1 spacetime supergravity under
supersymmetry transformations and spacetime diffeomorphisms.

1. Introduction

The introduction of superspace [1] allows us to regard supergravity as a geo-
metrical theory, contrary to spacetime supergravity, which is the theory of a
spin-3/2 matter field interacting with a geometrical (gravitational) field. Superspace
supergravity has been first formulated by Wess and Zumino [2]; as it stands, it
is a purely local theory. The analogy with general relativity suggests the introduc-
tion of a manifold M, locally modelled on superspace. This leads to the concept
of supermanifold, which in recent years has been the object of an intensive research
[3-7], and seems to be the key for a global geometric formulation of supergravity.

In this framework, a difficulty immediately arises: how to connect the space-
time theory with the theory formulated on the supermanifold. Actually, under
weak assumptions, a supermanifold M defines an ordinary manifold M, together
with a well-behaved projection @:M — M. It is quite natural to identify M, with
spacetime, but, since in general an immersion ::M, — M such that ®°1= idMO
fails to exist, one is not able to pull back the theory onto M ;. This can be done with
ease locally: given an open set V < M with local coordinates (x/, £%)(x* even, £* odd),
we may look at the points of ¥ with coordinates (x’eR*, 0) as the image of
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@(V) = M. Of course, this technique is local and coordinate-dependent.

In this paper we face up to this problem and show that it is related to a natural
geometrical interpretation of the supersymmetry transformations. After intro-
ducing a (4, 4)-dimensional supermanifold M, carrying a super fibre bundle Lor (M)
whose structure group is the Lorentz group, we consider on Lor (M) a connection
form p with values in gp = graded Poincaré algebra. Then a rewriting of the
Einstein—Rarita—Schwinger (ERS) Lagrangian 4-form on M yields field equations
written in terms of differential forms, which in local coordinates are equivalent
to the kinematical constraints and the field equations of Wess and Zumino’s
formulation. The problem of the reduction of the theory to spacetime is considered,
and it is shown that two “infinitesimally different” injections 7,7 :U = M, - M
give rise to transformations §1*p =1*p — 1*p which leave the action integral
over M, unchanged and generalise the usual susy transformations. Thus we
may say that supersymmetries arise from the non-uniqueness of the (local) im-
mersion of the spacetime into the supermanifold M.

Some difficulties are still present in this framework: for instance, the super-
manifold Einstein equation, obtained by varying the Lagrangian with respect
to the frame, is not consistent (of course, consistency is restored once the equation
is pulled back onto M). This drawback is related to the fact that the supermanifold
Lagrangian 4-form is not invariant under superdiffeomorphisms.

2. Fundamentals of Supermanifold Theory

In this section we give a brief resumé of the fundamentals of supermanifold theory
[3, 4, 7] that will be needed in the sequel. The basic object for the construction
of a supermanifold is a particular kind of Banach algebras, called Banach—Grass-
mann algebras [ 4], whose main property is graded-commutativity:

Q=Q0@le Q,-Qsz(_ l)rstQchr+s’ T,S=O, L.

Q, splits into @, =R@ Qy, and the projection ¢:Q — R is called body map.

After introducing the Q,-modules Q™" =(Q,)" x (Q,)", we say that a map
f:U— Q™" U open in Q™" is supersmooth [4] if it is C* and its first Fréchet
differential is Q-linear. If f is also analytic, it is said to be superanalytic (SA)
in U ; this allows us to write, for each u, ve U,

fw=f+ Y @—-o*. w-—0"C, ,,

n=1..0
Ai=1..m+n

where the constants C, , are Q-valued.

An (m, n)-dimensional supersmooth (superanalytic) supermanifold is a Banach
manifold [8], endowed with an atlas A= {(U_,¥, )¢, :U, - Q™"} whose
transition functions are supersmooth (superanalytic).

A key concept for our interpretation of local supersymmetries is that of body
manifold M, of an (m, n)-dimensional SA manifold M. Let us consider the following
symmetric, reflexive relation R in M x M: xRy if there exists a chart (U,, V)
such that x, yeU, and ooy (x) = g2y, (). R fails to be transitive, but one can
extend it to an equivalence relation ~, defined as follows: x ~ y if there exists
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a finite sequence x,...x, such that x=x,,..x,Rx,, ,,x, =y[9]. We set
M, = M/~ and call ®:M — M the projection. M, is given the quotient topology
and, under suitable conditions, a C* differentiable structure by means of the atlas
Ao =1{(V,, ¢,)}, where V,=®U,), ¢, =0c°y,o®"". In this way M, becomes an
ordinary C® m-dimensional manifold, and the map @ is C®.

Let us remark that, if M is not superanalytic, but only supersmooth, there
are hints that a similar procedure applies, but in this connection no definite result
is known to us.

A super Lie group is an abstract group with an SA structure making it into an
SA manifold, such that the group composition is SA. An example of SL-group is
GL(m, n), the set of invertible (m + n) x (m + n) matrices X ,® with entries in Q
such that deg(X ,®) = deg(4) + deg(B)mod 2.

Given an S-manifold M and an SL-group G, a principal super fibre bundle
(PSFB) with base M and structure group G is a supermanifold P such that:

(i) there is a supersmooth action of G on P;

(ii) M = P/G, and the projection n:P — M is supersmooth;

(iii) P is locally trivial (in the usual sense).

Due to the similarity of these definitions to those of ordinary differential
geometry, one can easily proceed to develop further the theory of PSFBs, and,
in particular, the theory of connections on such bundles; thus, a connection is
a supersmooth, right-invariant distribution of subspaces of T(P) [ 7]. The covariant
derivative is Dy = hor(dy) Vne A(P).

If M is an (m, n)-dimensional S-manifold, the set GL(M) of the coframes of
M may be given the structure of a PSFB over M with structure group GL(m, n).
Let us consider the group L formed by the matrices of GL(4, 4) of the type

AS) 0
("5 s)

where S is an element of the (real) bispinor representation of SL(2C), and 4 is
the related Lorentz matrix. If M is (4, 4)-dimensional, by reducing the structure
group GL(4, 4) of the bundle GL(M) to L, we obtain a new soldered bundle,
that we shall call Lor(M) (this reduction is possible whenever M, the body of M,
admits a spinor structure) [ 7]. Lor(M) carries a soldering form w**.

Another bundle of physical interest is the graded Poincaré bundle, which is
obtained by giving to the product GP(M)= Lor(M) x H the structure of a
PSFB having the graded Poincaré group as structure group (here H is the super-
symmetry group[3]). Lor(M)is a reduced bundle of GP(M); letj: Lor(M) - GP(M)
be the injection. In the next section we describe a formulation of supergravity
in which the dynamical variable is a connection form (p/, p4) on GP(M)! such
that w? =j*p* (so to say, p is an “affine” non-generalised connection). The form
w* = j*p*is a connection form on Lor(M) [7]. After introducing the curvature and
torsion forms of w*, Q¥ =Dw* and @4 = Dw* (D being the covariant derivative in

1 Capital indices run over Q**, single small latin indices over Q*©, greek indices over Q%*, pairs of
small latin indices over the Lorentz algebra
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Lor(M)), we have the following structure equations and Bianchi identities (we shall
always omit the wedge product symbol):

QF =dowt — wwk, (2.1a)
O'=do' — o*w,, O =dw+iwcro™, (2.1b,¢)
DQ}=dQ}f + Q'w)f — wQF=0, (2.2a)
DO'=dO' + 0w, = w"Q,, DO =dO —10cko™ = — iwckQ*
(2.2b,¢)

(for conventions and notation see the Appendix).

3. A Geometrical Framework for Supergravity

Now we wish to exploit the concept of super fibre bundle over a supermanifold
in order to give a global formulation of superspace supergravity in terms of
differential forms which parallels the fibre-bundle formulation of the Einstein—
Cartan theory [10]. A formal variational principle, based on a 4-form which is
the rewriting on the supermanifold of the usual ERS Lagrangian, will yield both
the superspace field equations and Wess—Zumino’s constraints.

Let M be a (4, 4)-dimensional S-manifold, carrying a Lorentz bundle Lor(M)
with a connection w;* and a soldering form w*. We consider on M the Lagrangian
4-form:

A =g, 0"0'Q* +40Cyy 0" o' (3.1
(Here and in the following, in order to simplify the notation, we confuse the

horizontal forms on Lor(M) with the corresponding forms on M obtained through
local sections.) Variation of the Lagrangian with respect to o™, o' and w yields

0N = 480/ (E, + 1,) — 200™(C,, + 5,) + dwGT, (3.2)
with
E =1¢,,0'Q" f=—0Cyy0l, (3.3a,b)
Gy = Eg 0"y §y = — (1)) (@CPo")o", (3.3¢, d)
G =220'0 — 0®)Cy,ys, (3.3¢)

(here use of Fierz identities is necessary). Obviously, we obtain the following
field equations, written in terms of 3-forms on M :

¢, s, G=0 (3.4a, b, ¢)

In order to show that Eqns. (3.4) are actually equivalent to Wess and Zumino’s
equations, it is necessary to introduce the components of the geometrical quantities
(2.1) over the basis of T*(M) given by the w*’s:

0" =30 T + W0t T, + 0o’ T,
0* =300, + o' T, + 0o’ T,

Q* =300"R,* + "R, * + J0*o'R, "
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Equations (3.4) then yield

Tuvi = —(CY), Tjhi = Tjui = Tuv'1 = 'Tju/1 =0 (3.5)
e T Cru = 0 (P Tl = 0, (3.62)
R, -30,R,} =0, R, =0, (3.6b,¢)

Ry, = = 5" T,(Cypps), (3.6d)

In particular Eqns. (3.5), here obtained from the formal variational principle
based on A, are the kinematical constraints of Wess and Zumino’s formulation.

We conclude this section giving some differential identities we shall need later
on. They are:

Déy = w,E, — o,E,, (3.7a)
D3, = of, — of, — toslGT, (3.7b)
DG = —20Cyy,(0' + LwCyoT) + 20Cy(E, + 1,). (3.7¢)

Equation (3.7a) is a rewriting of the Bianchi identity (2.2b). Eqns. (3.7b, c) are
the analogs on M of the identities that on ordinary spacetime yield respectively
the conservation of spin—angular momentum [10] and the consistency of the
Rarita—Schwinger equation ([11], Eqn. (11)). Finally, let us note that the identities
(3.7) allow us to prove the consistency of Egs. (3.4b, ¢) while the supermanifold
Einstein equation (3.4a) is not consistent. (Here by consistency we mean only the
formal requirement that the equations obtained by exterior differentiation of the
field equations are fulfilled on shell.)

4. Geometric Derivation of Supersymmetry Transformations

Let us assume that the supermanifold M of the previous section admits a body
manifold M ; it is quite natural to identify M, with the spacetime. Now, the
geometric structure of M (frames, connection) induces (locally) geometric structure
on M, too. However, this procedure is not canonical, and the various ways in
which it can be done give rise to certain transformations of the field variables,
that we now proceed to deduce.

As we have already noticed in the Introduction, given an open set Uc M,
we may always define an immersion 1:U— M. Thus we may pull back the
forms o', f and w on U, obtaining the coframe €', the connection form I'* and
the gravitino 1-form y:

e =r*at, T}=r*w), V=r*o. 4.1)
Moreover, setting Di*y =1*Dy for each ne A(M), we have
*QF=Dr*=R} (4.2a)
*@'=De' = T, (4.2b)
*@ =Dy =T. (4.20)
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Pulling back the field equations (3.4) we have on U the equations
E,=—t, c,=—5, G=0. (4.3a,b,¢)

Equations (4.3) are the usual field equations of the spacetime supergravity, and
are the Euler equations of the ERS Lagrangian 4-form,

L =¢,,'e/R"™ + 4T CyyTe = 1* A (4.4)

Now, let /':U —» M be a different immersion. We expect that the physics in U
is the same as in the previous case. Indeed, we can show that the changes induced
on ¢y, I'}* by changing the immersion are symmetries of the Lagrangian (4.4).
Since we want to consider only “infinitesimal changes,” we take a 1-parameter
family of immersion {1,: U — M}. Itis easy to see that, at least locally, there exists a 1-
parameter group of S-diffeomorphisms of M, {y,}, such that i, = y,°1. Defining, for
each ne A(M).

or* ;1—11m~(z n —1*n),

t—>0
one has
Sr*n = r* lim— (Xt —n)=1"E41, 4.5)
t-’O

where £ is the Lie derivative. The field XeT(M) generates {y,} and has vanishing
body (@, X =0). Applying Eq. (4.5) to the field variables (4.1) we obtain

se = *[D(X L)+ X 10 — o*(X L], (4.62)
=1 [DX Jw)+ X 10 +wck(X Jo™)], (4.6b)
ST =1 [X 10/ + DX L], (4.6¢)

We set
P =X Jof), *X Jo)y=a+p'o, Y, & =X Job),

where {0;eT(M,)} is the frame dual to {¢*}. Note that the quantities p' and «
are Q*°- and Q°*-valued, respectively. From Egs. (4.6) one has

de' =Dp' + P T} + ot (* T, W — (i Tul)ek — e, (4.72)
Oy = D(a + p'o; ) + p" Ty, + 0¥ T W — o T p)ek + 3yole™,  (4.7b)
oIk = thhzk + a“(l*R ik W — o ,*R lk)e + D™, 4.7¢)

where we have introduced the 1-forms R/* TF T, according to R/" = g; IR
etc. Insertion of the field Egs. (3.5, 6) yields

8e' = Dp' + p'T;! — aCyy T —e"e/, (4.8a)
Oy =D(p'd; ) + p"T, + Dot + hpois”, (4.8b)
oI’ = e"Bif — 5Bl + 3¢'Bjf + De™* + p"R,*, (4.8¢)

with Bif = — 1/2 e*"(aCysy,), Tjn".
Note that B =0 by virtue of the field equations, and the quantities p' are
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subject to the constraint & X =0=0(p) =0. On the other hand, a different
way of varying the immersion 1: U — M is given by 1’ =1°f, f being a diffeomor-
phism of U. The calculation of the variations of the field variables in this case
leads to Egs. (4.8) again, but with « =0, p'eR*, ¢ = p"d, | I'*. Thus, provided
that we leave aside the constraint o(p’) = 0, we may consider the variations due
to (infinitesimal) diffecomorphisms of spacetime as already included into Egs. (4.8).

5. Discussion

Finally, we want to show that the transformations (4.8) are a symmetry of the
spacetime supergravity, and that they contain the usual local supersymmetries
as a particular case. First we note that, varying the Lagrangian according to
Egs. (3.1, 3.2, 4.8), the terms with &* cancel each other (indeed they “simulate”
a Lorentz transformation). Moreover, since the parameters p* and « are GL(4,4)-
related to the components of the field X € T(M), they are independent, so that the
case o = 0 and p' = 0 may be treated separately.
1) p' =0. We have

del = —aCyy”, &y = Da, (5.1a)
OI'™* = e"Bi* — 1eBit + 1¢' B, (5.1b)
Thus for p' =0 the transformations (4.8) yield the ordinary supersymmetries

of supergravity.
2) o = 0. In this case we obtain

OL =4(Dp' + p"T,)(E; + t;) — 2p"R,M(cy + sy) + [P" T, + D(p"0, ) ]GT
+ an exact form = 4p'[ — DE; + T"E, — 4R /"¢, ] +
+4p[ - Dt, + T"t, — R M5, + (1/4)T,G — (1/4)(9; _| y)DGT] +an ef..
The identities
DE; = TE, — 3R ¢y, (contracted Bianchi identity) [10], (5.2a)
Dt; = Ti*t, — 4R sy + (1/4)T,.GT — (1/4)(6; Jy)DGT, (5.2b)

yield 6L = an exact form, thus proving that the transformations (4.8) are a symmetry
of the ERS Lagrangian. Let us note that both identities do not hold on the super-
manifold M.

Thus we come to the conclusion that the supersymmetry transformations of
the N = 1 spacetime supergravity are a particular case of a more general symmetry;
this enlarged symmetry is to be related to the various ways in which space-time
can be locally immersed in a (4, 4) dimensional S-manifold where the supergravity
field equations hold. It should be noticed that in this scheme susies are not regarded
as gauge transformations (at least not in the fibre-bundle sense). This is in partial
agreement with some remarks of other researchers [12, 13].

Appendix

We use a Majorana representation for the Dirac matrices, so that the y* are purely
immaginary, a Majorana spinor is real and the bispinor representation of SL(2C) s
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real too. Spinors are to be regarded as row “vectors.” Other conventions are:
Cy'C=—9T, C*=1, C=-CT,

(P (1/4)['))i, '}’k], Vs = = VY2734, €1234 = 1,
4 = Minkowski metric = diag(—1, —1, —1, +1).

The following Fierz identity and Fierz rearrangement are often used:

20’::;‘75')’;. = &gV + Ny sVi — NinVsVj»
Yolt,=(1/2)yy,0T(@Cy'wT).
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