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Abstract. A method is presented permitting one to find in principle all the non-
decreasing terms of the asymptotic expansion of the logarithm of the partition
function when the volume of region increases. The constructions are carried
out at low activity for lattice systems with general n-body interactions, and
continuous systems with two-body interactions.

1. Introduction

The aim of this paper is to study the asymptotic behaviour of the logarithm of a
partition function InZ(A) when the volume of the region A increases. Under
natural assumptions about the grand canonical Gibbs ensemble and for appropri-
ate classes of regions all the non-decreasing terms of the asymptotics are obtained
in both cases of continuous and lattice systems.

The main term of this asymptotic (proportional to the volume |A| of the region
A) follows from the theorem by Lee and Yang [1]. For the lattice case the second
term (proportional to the area of the boundary I'(A) of A] was obtained by
Dobrushin under assumptions which provide the absence or the presence of a
phase transition [2]. In the case of continuous systems the second term turns out to
be proportional to the area of the boundary I'(4). The next terms depend on
geometrical characteristics of I'(A).

The asymptotic expansion for the logarithm of the partition function is
obtained in this paper as a special case of expansions for the integrals of the so-
called clusterwise smooth translation-invariant functions over all finite subsets of
the bounded region A. These asymptotic expansions are obtained for lattice
systems with general n-body interactions and for continuous systems with two-
body interactions.

2. Preliminaries

Consider a continuous system of particles in some bounded region A of the
v-dimensional Euclidean space RY (v=1) interacting via pair potential &(x),
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x e R*\{0}, where & is an even function. The space of states of the system is the
space C(A) of all finite subsets (configurations) of the region with a naturally
defined o-field &(A4) and the Lebesgue measure dc (see [3,4]). Analogously by
C(IR") we denote the space of all finite configurations ¢ CR” with the o-field £(IR”)
and the Lebesgue measure, so that their restrictions to the space C(A4)CC(R”)
coincide with the o-field £(A) and the Lebesgue measure on C(A) for any bounded
region ACIR".
The Gibbs probability distribution on C(A) is given by the density

VO~ BUO
== - 1
pA,ﬁ,z(c) E(A, ﬂ, Z) ( )

with respect to the Lebesgue measure on C(A). Here N(c) is the number of points of
¢, Ulc)= Y P(x—y)is the energy of the configuration c, z (activity) and f

{x,y}Ce,x+y
(inverse temperature) are positive parameters, and finally

= — N(c),~BU()
s M -
B, B,z)= | ZN¥e dc
C(A)

is the grand partition function.

In a similar way we shall consider the case of a lattice system with n-body
interaction ®(c), c € C(Z"), D(@) =0, where C(Z") is the set of all finite subsets of the
v-dimensional integer lattice Z". In this case the probability of the configuration ¢
is given by formula (1), where A CZ” is any bounded set, U(c)=>_ &(¢), and

cCe

(A, f,2)= ¥ N0 IO,
cCA
It is well known that under general assumptions on the potential ¢ and on the
sequence of regions A, CA, C ... the following asymptotic (Lee-Yang theorem [1])
holds

InE(Ay 5, .) = col Al +0(|4yl),  k—o0, 2

where co=cy(®P, f,z) is a constant depending only on the potential & and
parameters 5 and z (Gibbs specific free energy). In this paper the next terms of the
asymptotic (2) up to the constant term will be found.

3. Conditions on the Potential

In the case of continuous systems we consider potentials satisfying the following
conditions.

1. (Stability) There exists a constant B=0 such that for any configuration

2 P(x—y)z—BN().
{x,y}Cc,x*y

The following conditions 2—4 (except the case k=0 in condition 4) concern to
the smoothness of the potential.

2. The potential @ is finite-valued everywhere except possibly the closure G, of
some open set G, CIR¥ with smooth boundary where @ = + co0. For every >0 the
function e ~#® is piecewise smooth on the space IR”, with k'® degree of smoothness.
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Let us introduce the functions

&
el po(x))

X

b

ViE(x) =max
Is|sk

where s=(s,, ..., s,) is a multi-index, and let
gi()=max{Vf(x),le "*Y~1]}, kzl; git)=le "*¥~1]. (3
3. There exists a constant B such that for every finite set ¢cCIR”,
[T Vi(x—y)Sexp(N(c)B).

x,yec;x+y

4. There exists an Euclidean invariant metric 67 in R” such that
g¢(x) = Df exp(— (0, x)),
where
| exp(—30£(0, x))dx < o0
IRV

and Df are some constants.

Let us denote by %,(R") the class of potentials ®(x), x € R*{0}, satisfying
conditions 1-4, and by %?(R") the class of potentials & € %,(R") such that the
metric 8¢ in condition 4 satisfies the inequality: 84(0,x)=pln(1 +|x|) for some
integer p.

Passing to the lattice case, we shall call the metric é on Z" symmetric if ¢ is
invariant under all automorphisms of the group Z*. We shall consider potentials ¢
satisfying the following conditions:

5. There exists a symmetric metric 6 on Z' such that

> exp(—30(0,x)) < oo,
xeZ¥

and
> |P(c)le*< 0,

OeceC(Z")
where L;(c) is the shortest length with respect to the metric § of all the trees (i.e.
connected graphs without closed loops) constructed on the points of ¢. [For
example 3(0, x) =y|x|, y>0; or 4(0, x)=dIn(1 +a|x|), d>2v, a>0].

4. Main Results

For any bounded region A CR” we denote by A, the region which is homothetic to
Awith |[4]=1. Let #% a>0,k=0,1,2, ... be the class of convex bounded regions
ACR” with (k +2)-smooth boundary I' = I'(A) such that in the neighbourhood of
each point xeI'(A,) in some Cartesian coordinate system I'(A,) is given by
equation n=f(&), where f(£) has partial derivatives, bounded uniformly in
modulus by the constant a. (Evidently the condition |4,|=1 gives a bound on a
from below, but it is not essential for us.)
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Theorem 1. Let ® € #F, (R”) withp=v + (k+ 1)*(k +2) (v +2), and the activity z be
sufficiently small. Then for any region A€ %%, 1<k<v, the following expansion
holds:

k

InZ(4, B, 2) =colAl + (;1 cAA)+Ry(4). @
Here cy=co(P, B, z) is a constant which will be explicitly written below (see (11)),

the quantities c{A)=c/ A, ®, B, z) have the form
clA)= r(fA) <n(x), xpbx; A, P, B, z)do(x) )
where n(x) is a unit exterior normal vector at the point xe I'(A), {-,- > is a scalar
product in R”, do is the element of (v— 1)-dimensional area of I'(A), and the explicit
form of coefficients b, is given by (16). In addition, the quantities c,(A) have the

Jollowing properties: if the region A is homothetic to A with the homothety coefficient
A (A=A4A), then

CAA B, B,2)=cAA, B, B,2)A" ¢, L=1,..,v,
and
e A, D, B,2)=c (A, D, B,z)InA.
Finally the quantity Ry(A)=R(A, @, B, z) satisfies the following estimate

ClA|* =DV <y —1,
R(DI=1C,—yInl4],  k=v—1, (6)
C,, k=v

with the constants C;=C(®, p, z, a).

Remark. As it follows below from Theorem 2 in the case v=2 the logarithmic term
in (4) vanishes. Apparently the same is true also in the case v >2, however we have
no proof.

In the case of the spherically symmetric potential @ the expressions for c,(A)—s
in (4) can be simplified. For example we consider ¢,(A) and c,(A).

Theorem 2. Let the conditions of Theorem 1 be satisfied and the potential ® be
spherically symmetric. Then

c(A)=d,S(I'(4)),

1
5 LMIW), v>2,

0, v=2,

where d;=d{®, B,z), i=1,2 are constants given explicitly by (32), (33), S(I'(A)) is
the area of the boundary I'(A) and the quantity M is given by

MUY= ] 6oy 3 (o)) () (o). g

i<j=v

c(A)=

where (kr)(x),j=1, ...,v—1 are the principal curvatures of the surface I'(A) at the
point x.



Expansion of Logarithm of Partition Function 231

As it follows from Steiner’s formula for the volume of a parallel body [5] the
quantity M does not depend on the choice of the origin of coordinate system.

Now consider the case of a region with piecewise smooth boundary. Let
E;:R">R’ be the homothety of the space R” with the coefficient L. For any
convex region A CIR” with a piecewise smooth boundary, consider the family of
homothetic regions {A;, =E; A, L=1} generated by A.

Theorem 3. Let the spherically symmetric potential @ € UJR"), p=50, and the
activity z be sufficiently small. Then for the family of regions mentioned above the
following expansion is valid

InE(Ayp, B, z) = cold|+d S(I'(AL)) + Ry(Ay),

where co=co(®P, B,z) and d,=d (D, B, z) are constants defined by formulae (11),
(32), respectively, and the quantity R,(A;)=R,(AL, ®, B, z) satisfies the estimate

IR, (A) =CL* ®

for some o <v—1, where the constant C = C(A, D, f, z) depends on the initial region
A.

Remark. One can choose a unique constant C in (8) for any suitably selected class
of regions with piecewise smooth boundaries.

In the special case of a convex polyhedron, using another method we shall find
explicitly all the terms of the asymptotic expansion including the constant term
(see Theorem 4 below). The first method does not allow one to find the constant
term explicitly.

For any convex polyhedron ACIR”, denote by A¥,i=0, 1, ...,v—1, the family
of all i-faces of the polyhedron A and by |4, 4 € A?, the i-dimensional volume of A.
Define

o(A)=min{o(A, 1'): e A%, N e AU, 1 X'},

where g(4, 4') is the distance between the vertex 4 and the face A". Let 4(r, ', n,) be
the class of all convex polyhedrons satisfying the conditions:

(1) a(A)zriA]'",

(2) diamA <74,

(3) cardA®~V<n,,
where r,#'>0 and n, is an integer.

Theorem 4. Let the spherically symmetric potential ® € UJ(IR"), p=2v+1, and the
activity z be sufficiently small. Then for any A€ G(r,v’, ny) the following expansion
holds:

lnE(A’ﬂaZ):COIAI_'—Cll 2 .. to-r 2 W+e,+R(), )

eAvV— eAD)

where cy=co(P, B, z) is the same constant as above, c;, i=1,...,v are constants
depending on the potential ® and parameters f3, z, while ¢, also depends on the set of
all angles of the polyhedron A. Finally the quantity R(A)= R(A, @, B, z) satisfies the
estimate

IR(A)I=ClA|~

with the constant C=C(®D, 3, z,r, ¥, ny).
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Now consider the case of lattice systems. Let 4(r), »>0, be the class of
parallelepipeds A CZ" satisfying the condition: diam A <r|A|'/".

Theorem 5. Let the activity z be sufficiently small and the potential @ satisfies
condition 5. Then for any A€ %(r) the following expansion holds:
InE(A, B, z)=aglA|+a,. Y A+ ... +a,_; X |A+a,+R(A),
A

eAv-1) AeAD)

where a;, i=0,1, ..., v are constants depending on the potential ® and parameters
B, z, the quantity R(A)=R(A, D, B, z) satisfies the estimate: |R(A)| < C|A|~ 1", with
the constant C = C(®, B, z, r) while the remaining notations have the same meaning as
in Theorem 4.

5. Strong Cluster Estimates.
Cluster and Clusterwise Smooth Functions

The proofs of Theorems 1-5 are based on the strong cluster estimates of Ursell
functions, truncated correlation (group) functions [6, 7] and their derivatives [8].
We describe the corresponding techniques below.

Let 4%, p>v, be the class of functions on IR defined by the formula: f(x)
=f,.(Ix]) (1 +|x|) "2, where f, is any non-negative bounded integrable function on
[0, + o). Define

NP = {qe/%i | q)dx < %, supq(x)<2""‘} , m=1,2,....
RY x
Lemma 1 (see [8]). Let g NF. Then the equation
3 T Walx=y)dy=f()=q0)
has the unique solution f=Vq. Moreover, Vqe /% and

| (Vg) (x)dx= | Q(x)dx<1— | Q(x)dx>_1-
RY RY RY

Corollary. Let g € A;?. Then the functions V¥qe M2, k=1, ...,n, and the following
equalities hold:

| (V*q) (x)dx = | q(X)dX<1—k ] 61(>€)dx>~1 :
RY RY RY

For any ge ./#% and A>0 we denote by #?, the class of functions (c),
ce C.(R")=C(R")\{0}, satisfying the estimate

=4 T TI ax—y), 10
veLe (x,y)ey
where %, is the set of all chains constructed on c. The estimate (10) we shall call the
strong cluster estimate and the functions of the class 7, we shall call cluster
functions.
For any region A CIR” define an operator H 4 acting on the set #? ,, g € /P, by
the formula:

(Hap) ()= f(A)w(CUC‘)dfa ceC.(R).
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Lemma 2 [9]. Let we #F 4, qe NF. Then for any regions Ay, ..., A,CR”:
1) the function H,, - ... - H, € Hfn, 4, Where
n—1
A=A, [1 [1— | q(X)dX<1—k | Q(x)dX)_l]_z;
k=0 RY RVY
2) for any xeIR”
(Hy, ...  Hy lwl) (xwe)de S Ay g 1211 (r),

ceC(RV):cnSix(r) 90

where S'(r) =R"S,(r), S,(r) is the ball of radius r about x, A, is the constant defined
above, and

Ani1(r)= j (V" lg)(y)dy.

yeRv:|y|zr

Corollary. Let we A7 4, ge NF. Then for any xeR®

colx,p)= C(]j;m K;Ej)kf)l dc<A,. (11)

If in addition the function v is translation-invariant then the quantity cq(x, )
=co(p) does not depend on x.

Now note that the set CY(R"), N=1,2, ... (N-point configurations in R") is
naturally endowed with the structure of an (v x N)-dimensional smooth manifold.
A function y(c), ce C,(R") will be called k-smooth if all the functions yy(c),
N=1,2, ... are k-smooth, where yy is the restriction of y to the subspace CY(R").

Finally, for any integer k, A>0, and ge .#%, p>v, we denote by #;?, , the
class of k-smooth functions (c), c € C . (R”) all partial derivatives of which belong
to the class #77 ,. The functions of the class #}?, , we will call clusterwise-k-smooth
functions.

Theorem 6 [8]. If the potential ® € UP(R"), then the corresponding Ursell function
and truncated correlation function are clusterwise-k-smooth.

We have the following analogy to Lemma 2.

Lemma 3. [9]. Let we #}?, 4., g€ NF. Then for any regions A, ..., A, CR":
1) the function H,, ... - H, W€ H Pyny 4,;
2) for any xe R4,

|(D"H 4, - ...  Hyw) (xUO)lde S Ay 120 41(7)
ceC(RY):cnSi(r) 0
where n,= {n(x); x € c} is a multi-index with [n|= Y n(x)=k and D" is the symbol of
differentiation ( for details see [8]).

Remark. For the lattice case by the techniques used above and by the strong cluster
estimate of the truncated correlation function [6] one can define the class #? 4 of
cluster functions with the same properties as in the case of continuous systems.
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6. The Expansion for the Regions with Smooth Boundary

As was mentioned in the Introduction we shall consider a more general problem. It
is known [9], that

IIIE(A, ﬂ5 Z)=C£4) 1Pq>,1;,z(c)d0, (12)

where g 5. is the Ursell function corresponding to the potential @ and
parameters § and z. This representation suggests a natural useful generalization.
Let

0(.y)= { wiHe,

where y is an arbitrary cluster function.

In this paper we shall investigate the asymptotic behaviour of the quantity
0(4,y), when A— oo, for various classes of regions. The expansions for lnZ(A)
(Theorems 1-5) will be special cases of the corresponding expansions for Q(A, y)
when Y=vyg 4 ,.

Let for any bounded convex region ACR’, V(A)={xeA:o(x,'(A))<1},
where o(x, I'(A)) is the distance between the point x and the boundary I'(A).

Theorem 7. Let the translation-invariant function ye A}, ge /¥, p=2v+1.
Then for any bounded convex region ACR”, Q(A, p) = co()|A| + R(A), where co(y)
is defined by formula (11) and |R(A)| £ C(A4,, @)|V(A)|.

Proof. We have

_ p(xuc) _
0(4,y) —£ dx C(]{m Wdc + R(A) = co(p) |4] + R(A),

where

w(xuc)
R(A)=—-)d . d A'=R"\A.
) é; xceC(]R")!'an’#(DN(C)‘Fl ¢ \

Using Lemma 2 we obtain
IRDISA; [ Ailelx, T(A))dx+A; | Aylalx, T(A)))dx.
V(4) A\V(4)
Now from the monotonicity of 4,, it follows that for any xe AnV(A) and
r=e(x,I'(4),
W@O=VD)nS, I | L)y =IS ) VQ"A) Ay(e(x, y)dy .

V(A)NnSx(r)

Thus
IRDISANVDIA0)+A; [ dx | A(e(x,y)dy
Vid) AV

<4, <zl(0>+ T’zl(r)dr) V().

which concludes the proof of Theorem 7.
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Under additional assumptions concerning the function y and region A, we
shall study the form of the remainder R(A) below.

Next let us describe in detail the class of regions to be considered. Let ACIR” be
a bounded convex region, the boundary I'=I'(A4) of which is (k+2)-smooth,
(v—1)-dimensional submanifold in R". For any xe I’ we denote by Ty(x) the
tangent hyperplane of I' at x. Choose an orthogonal coordinate system
(EM, .., E¥ D )= (&, y) in RY with the origin at x such that the axis # is directed
along the interior normal of the surface I' and axes &), ...,E07 Y lie in the
hyperplane Ty(x) along the direction of the principle curvatures (xp)(x),
i=1,...,v—1 of the surface I' at the point x. By 2(x) we denote the set: D (x)

={¢e Tp(x):|¢| <y}, where 6= inI( {(2 max (x r)i(x)> - 17;. Let I, be the connected

component of the set {(£,n) e I': £ € D (x)} containing the point x. It is evident that
forany x e I', I, is given by the equation: n=f; ({), & € Z(x), where fr , is (k+2)-
smooth function on 2 (x) with the following Taylor expansion:

fr,x(é)=s.|s|§k+ ) ar (X)E +7p 426, %) (13)
with the coefficients
&’f1,(0)
aT,s(x)= S!dés )

where s=(sy, ..., 5, - ;) is multi-index. Moreover there is a constant F(k), such that
uniformaly in x €I, [rr, .+ o(& )| S Fr(k) €72,

Let
I(4)=sup max {ar, COIAIMI=DP, |s| <k +1; Fr(k) |4]* Dl
Note that for any homothetic regions A and A, I,(4) =I,(A). Now denote by %*
the class of convex bounded regions A CIR" with a (k +2)-smooth boundary such

1/v
that I (A)<a. It is evident that 6= l for any A e %

4a
Let M¥(4,) be the collection of all non-negative integer-valued finite functions
with the supports in 4,,

Ay={sel ' : 2L |s|Sk+1}, keZ',
and let
M,(4,)= {mEW(Ak)IZ(lSI—1)M(S)=/}, tel’,

where Z/,,j=1,2, ... is the semi-group of multi-indexes s=(s,, ..., s - In addition

we put: (x)n = (x19 ceey Xn) € (]Rv)n’ (ﬁ)n = (éla sy én) € (]Rv— 1)"’ (”)n = (’715 rey nn) € ]Rn,
and (x),=((9),, (n),). We also define

é?'mi(s)
Won, (E)n) = > I, (14)
miewt(fk):krui|==ri+1,z s mg
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where r=(rq,...,r,) €Z", meWY(4,), |m|=|r|+n, m!=T]m(t)!. Finally for any
t
cluster function y and unit vector v € R”, we define
={xeR": {x,v)>0}; wv(c)=(HR;’,1P) (©, ceC(R).

We shall give below the proof (without details, which can be found in [8]) of
Theorem 1’ generalizing Theorem 1.

Theorem 1'. Let Ae B 1<k<v, e,y , 4 Where

p2v+(k+1)*k+2)(v+2), qeN¥

and the quantity sup q(x) is sufficiently small. Then

O, )=o) A1+ . cdA )+ R4, ), (13

where co(p) is defined by the formula (11),
cAA, p)= I () b A p)o(x), - £=1,. ks

bx: A )= % fz’( 2 T (a7, ()"

_/J On=1 n! meMAAx):|Im|=j+n s

(D(n),. n(x)) (X, (é)n’ (O)n) Wm,r((i)n)d(é)n > 1 é f é V— ! N (16)

b A=’y ¥ T (ar. ()™

j=0n=1 n! meMy(dr): [m|=j+n s

j (D(q),l n(x)) (X, (g)m (0)n) Wm,r((é)n)d(é)n .

reZ’ :r|=j (Trx)"

reZ’ :|r|=j (Tr(x)"

Finally
Bl(Aoaqaa)IAlv_k_llva k<v"19
IRW(A, p)| = | By(40, g, @) In]4], k=v-1, (17)
B3(Ag,q,0a), k=v.

Proof. Without loss of generality we suppose that A contains the origin. Consider
the family of extended regions {4, =E;A;,L=1}. It is easy to see that

Qp g, w)= | oy(c)de=Q(AL,w)+ | oy (x)dx+R,
C(K4L) KaL
Whel’e KAL =AL+AL\AL’ AL> 0,

oe)= | wlcudde,
C(AL)

R=Y [ oy cde=0(dL), AL=0.

n=2 C"K4L)

Next

S odx= T 0,09 ), xdotx)
=AL-L™' | o, (x){n(x),x>do(x)+o0(4L), AL—-O0.
Iy
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This implies the following formula
d -
77 4w =L ! TI {n(x), xpwr(x)do(x) . (18)

Therefore to obtain the desired expansion for Q(A, ), it is sufficient to obtain the
asymptotic expansion for the function w;(x).

Let 9 (x)={fe Ty, (x): €| <6y, L *2}. Then the functions f; ,=f;, , and
f1,xp Where x; = E; - «(x), x € I}, are connected by the equality:

fudd=Lfi (L710), edi(x). (19)

By virtue of formula (13) we have

S, =pL L) +r (&x), (e I(x),

where the Taylor polynomial for the function f; .,

PLAl)= 2 a.0)-&,
Is] Sk+1

and the remainder term satisfies the estimate:

rp k(& 0= Fr,(k)L_k~ HEEE2,
Then using the following equality [4]:

I ( 2 <0(61)) f(e)de=

C(RY) \c1Cc

] f @(cy) f(cqucy)de,de,,
C(RY) C(RY)

we obtain that
o (x)= f P(xu) [T —ppm®)e= | (=D, (xuc)de,

C(Rn(x)) tec C(AL(x))
where A7(x)=IR},,)\4;. Define
Px)={(&meR":{eTr,(x),0<n<pL (&)},
and

PUx)={(E e P(x): Ee Ty(x)} .
From (20) we obtain that

COL(x) = jl ( - I)N(‘)wn(x)(xuc)dc + %y (x’ L) s
C(Z1(x))

where by means of Lemma 3 it can be shown that
lal(xa L)I < B4(A0, q, a)Lﬁk— L

By the same Lemma 3 one can show also that
*k+1)(v+2)
o= X (=" [ oymxue)etay(x, Lk, (21)

n=0 cNP(x)

where C"(2(x)) is the set of all n-point configurations in 2(x) and

lotz(x, L, k)| < Bs(Ag, g, a)L™* . (22)
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Next let us consider the integrals

L, L)= | o,mxuc)de

CHP(x))

= | d@®,

PL,:r(él)
(T ()" 0

PL, x(én)
d?’h Teeet £ a)n(x)(xﬂ (é)m (n)n) (n)::dﬂn s

where (17), = '] #7. Expansion of the function w,,(x, (£),, (11),) in powers of (), in
j=1

=
a neighbourhood of the point (x, (£),,(0),), and following integration over (),
implies

n -1
Jn(x’ L) - l!reZ"Z:h‘ISk(I;[ (ri+ 1)'>

f D:n)nwn(x)(xa (é)m (O)n) I:[ (pL,x(éi))ri * 1d(é)n

(Tr ()"
1 1 pr, x(81)

nlrez? fr=k+17! (T (x)"

pL, x(8n)
T Dl 0 (D) (O),) (i

where (61),=(014, ...,01,), 0<0<1. Denote the first and second sums in (23) by
Jr(x, L) and J;(x, L), respectively. Using the following evident identity:
k(|r| +

YLy (TG0 ().

Z=|r|+n meMy(Ar): \ s
4 1 =r|

L&)y =TT+ 1)!

where the quantities W,, ,((£),) are defined by formula (14), we get
k+1)(v+2)

'El (= 1)"Ju(x, L k)= lél CAx, Ap, ) +os(x, L, k). (24)
Here
loes(x, L, k)| < Be(Ao g0 L "1, (25)
and the quantities ¢, are equal to:
Clx, A, p)=(v—=0(x, A, ), £=1,..,v—1;
&,(x, A, ) =vby(x, A, w)In~ Al
where b, are defined by formula (16). Note that the following relations are valid:
Clx, A, w)=L"C(x, Ay, ), £=1,..,v,

with x; =E - (x).
On the other hand

k+1)(v+2)
Y (=DVx, L k)| <B"(Ao.q.a)L7* . @7

n=1

(26)
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Thus from (21)27) we obtain the asymptotic expansion for the function w;(x):

k
(DL(X) = ; Col(x, Ay, ‘P) + 064()6, L, k) s (28)
where
loax, L, k) < By(Ao, g, )L7F 1, (29)
and the quantity ¢, has the form
Co(x, A, ) =Co(x, )= | p(xuc)de. (30)

n(x)

Substituting (28) in (18) one finds that

jA[LY

o, p)="| ;fz 0L, p)dL+Q(Ay, p) = F(IA)CNo(x, ) {n(x), xpdo(x)

+/§1 c A, p)+R(A,P), 3D

where

k
R4, p)=0(4w) = X cf(Alaw)_j Co(x, ) {n(x), xpdo(x)

|A 1/v

+ f L™ YL f a4(x, L, k) {n(x), xyda(x) .

The estimate (17) for the quantity R,(A,v) can be obtained with the help of
Lemma 3 and the well-known Gauss-Ostrogradsky’s formula. Finally note that
the comparison of Theorem 7 with expansion (31) implies the equality

J o(x,w) {n(x), xyda(x) = co(y) .
I'(A)
Thus Theorem 1’ is proved.

Proof of Theorem 2. Evidently from the spherical symmetry of the potential & it
follows that the corresponding Ursell function is Euclidean invariant. Hence for
any ve RY ™! the function w, is also Euclidean invariant. Therefore by virtue of (26)
and (31),

“Uw==g LT il o0z
. dsfl" X
rf e —5 - (0)<n(x), x)do(x) .

Now put
hp)=—1 [ <&y, 0.0d, (32)
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where e and v are arbitrary unit vectors in R~ !, Then

di(p) o
(A p)=-"75 r(fA)<n(X),x> i; (kp)i(x)da(x)=d,(y)S(I'(A)).

Here we use Minkovsky’s formula for the area of the surface of convex region
with smooth boundary (see [5]).
Next for the case v>2 we have

1 &Efr x s
CZ(A> 1P) = v—2 {_s |s| 3 ; I <n(x) .X> 6{2; (O)dO'(X) Tg(x) a)n(x)(xa éa 0)5 dé
1 & rx 38 rox
T2 susaifsil=lsa=2 S 185! r<jA Cnlx)s x és‘ © d¢y (O)dotx)

[ (s Exs g, 0, 0)E2E2AELdEy — :

Tr(x) Tr(x) 231 satlsii=lsal=2 8118, !

]y DI )T rx gy D,,w,.m(x,é,O)éS‘“”dé}.
) ag d&s Tr(x)

On the other hand, since
T}(x) Opy(%,E,0)°dE=0, for [s|=3 and D,w,u(x,0)=0.

Then

ex(A,p)= - [d,(W)M(T(A)) + d,(w)M(I(4)],

where the quantity M is defined by formula (7) while

- v—1
M(I'(4)) =F(JA) nlx), x> 2 (k)i (x)do(x),
dz(w)=%mi1 va_ K&re) (& e2)% 0,0, &4, E)dE dE (33)
L=t [ [ €00 0,0.6.6)de,

where e, e, e R¥"! is an arbitrary pair of orthonormal vectors. (It is evident that
d, and d, do not depend on the choice of this pair.) From the translation invariance
of the potential @ it follows that ¢,(4, v) is also translation invariant. Combining
this with the easily checked fact that in general the quantity M depends on the
choice of the origin, we obtain that d,(y)=0.

In a similar way one can consider the case v=2. So Theorem 2 is proved.

Remark. For simplicity we will prove following Theorems 3-5 for the case v=2.

Proof of Theorem 3. Let ACIR? be a convex region with piecewise smooth
boundary. In every curvilinear angle corresponding to the point of discontinuity
of I'(A) we inscribe an arc of a circle of radius r|4|'/%, where r >0 is a constant. The
“smoothed” region obtained in this way is denoted by A.



Expansion of Logarithm of Partition Function 241

Lemma 4. For any Euclidean invariantp e 4%, 4., p =50, where the upper bound of
the function q € A¥ is sufficiently small, we have:

QAL w) = co(p) [ ALl +diW)ST(AL) + R (AL, w), (34)

where the coefficients c, and d, are defined by formulae (11) and (32) respectively.
Moreover

IR, (AL, w)| S B(AL'2. (35)

Proof. Without the loss of generality one can suppose that I'(A) has only one point
of discontinuity. Let x, and x, be the points of tangency of the inscribed arc with
I'(A). Define:

={xel,:0(x,x;)<dL"*}U{x el o(x, x,) <SL'*},
Iy =\, L=1, where 6=y, [ = I'(A;). By repeating the arguments used in the
proof of Theorem 1 one can show that
Dy(x) =Co(X)+ (K7, () +Ri(x, L), xelp, (36)
where ¢y(x) =Co(x) [see formula (30)], &, =w,,
é(x)=—3 Tﬁf(x) O (X5 &, 0)E%dE

and

BI(AO, q, a)rc%L(x) ’ X€E fI:/ >

R (6, L)1 4 !
|R1(x’ )[_{BZ(AO,q,a)L_l/sa XETZ'

(37

The formulae (36) and (18) imply expansion (34). To obtain the estimate (35) note
that by virtue of (37) and (18)

ff IRy (x, L)[ <n(x), xydo(x) < By (A, g, )L™ [ (n(x), x)rcp, (x)do(x)

I

+B,(Ao,q,a)L ™' [ (n(x), x)do(x) < By(Ay, g, a, A)L12.
I
On the other hand
Ry (AL, w)=0(Ay, p)—co(w) —dy(w)S(I(Ay))

+ MI]JUZL_IdeI R, (x, L) {n(x), x>do(x).

So Lemma 4 is proved.
Now it is easy to see that the following estimates are valid:

AN SB,(DL*3,  S(N(AN(AL) S B,(A)L'A. (38)
Moreover

1Q(Ay, w)— Q(/iL, YI= § dey j p(eguey)de,

C(Ar\AL) C+(dr)
< [ dx (H.i, w)) (xve)

< de < By(Ag, QIA N\,
Tadde cupdy  N()+1 c=By(Ao, )4\l
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Together with (38) this implies the estimate:

|Q(AAL5 W) - Q(ALa 1P)| é B4(A07 9, A)L2/3 . (39)

Combining (38) and (39) we obtain Theorem 3.
Proof of Theorem 4. Consider a convex polyhedron A CIR? of the class €(r, 1, ny).
Let M,, ..., M, be the vertexes and 0, ...,0, be the corresponding angles of A.
Denote by II; the half-plane which is defined by the straight line M;M;, ,, and
which does not contain A (M, =M,).

Let us put: Gi=]R2\(HiUHi+ 1), G5=HiﬁH‘-+ 1s l= 1, ceny n; Hn+l =H1.

For any Euclidean invariant y € #? 4, p= 50, if the upper bound of the function
q e N7¥ is sufficiently small, we have:

QA p)=fdx | P(xuc)dc, (40)
A c@)
where A'=R?\4,

HO=(—Dest [ _YEYD o R,

c®y N(c)+N(¢)
Then
f w(xuc)dc co(zp)+§ . { )w(xuc)dc—lil . f( P(xuc)de
+Y ] Bxucde+R(A, ), 41)

i=1C+ (LU 1)
where cy(p) is defined by formula (11),
C.null,, D=C. (Lol NC+(IT)VC (l;1y)), i=1,...,n.
Let us estimate R(A, y):
IR(4, p)| = | [P(xvo)lde = I p(xwelde.

ceC(A’):diamc = a(A) ceC(R?):cnSx+0

( )

Here S, =R?\S,, where S, is the ball of radius —— about x. By Lemma 2 we obtain

IR(4,w)| = C(g, r)l/ll‘2 -2 (42)
Now substituting (41) in (40) we get:

Q(A,w)=co(w)|/1l+i§1 [dx [ fexoade= ¥ (dx | xoode

+(IT3) i=14  C+(Gy

uM:

/jn ] P(xuc)de+ R (A, p), (43)

C (UM 4 1)
where
IR (A, p)|=C(g,r) |A| ¢~ D02,

Let us investigate the first sum of (43). Let e,ve€IR? be an arbitrary pair of
orthonormal vectors and (&,n) be the corresponding system. For any
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0, — % <f< g consider the ray drawn from the origin which makes with 5 axes

angle 6. Let us denote the obtained angular region by Y,. Now put

aw)=ldn [ (& muode.
0 C+(R2)

It is evident that this integral converges and does not depend on the choice of & and
v. Furthermore

fdx | w(XUC)dC ¢ () MM 1| —sgn(cosf) [ dx | w(XUC)dc

4 C+ Yo,-z  C+(R

—sgn(cosB,H) [ dx I w(xuc)dc+R(/1 V), (44)

YZ-e,, C+(R

i=1,...,n, where [M;M,; | denotes the length of the side M;M, , ; and it is easy to
check that the quantities R; satisfy the following estimates

IRI(A, W)= ColA| 47 P72,

with the constant C,=C,(q,, 7).
Similarly for the second and the third summands of (43) we obtain that for

fdx | (xucyde=[dx [ P(xuc)dc+Ri(A,v),

/R () Gi  C+(G 45)
{ax f P(xuc)de= | dx f P(xuc)de+ R (A, ),
A Ci(IT,ul;+ ) G C(II;uI, +4)
where
IR{ (A, p)| £ C{(g,1,7)|A|* P12,
and

IR} (A, W) = CY'(q,7,7) |A|* P12
Hence combining (43){45) we get:
Q(A, p)=co() [Al+c,(W)ST(A) + 50y, ..., 0, ) + R(4, v) .

Here
G015 0, p)=— Z sgn(cosf) | dx [ P(xucyde
= Yo, uY -, C+(R2)
+ 3 fdx | Peuc)de+ Z | dx { P(xuc)de.
i=1 Gy C+(G i=1G; Cy(II;vl;+ )

In addition
IR(A, p)| S C(g, 7,7, np) |A] 712

Thus Theorem 4 is proved.
Now consider the lattice case. For this case we have the following analogy of
the formula (12):

_ x
VN PR -
XeM(Zv) .

(46)
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where ;. is the corresponding Ursell function. We recall that 9(Z’) is the
collection of all non-negative integer-valued finite functions on Z°. So we
investigate the asymptotic behaviour of the quantity

p(X)
xemazy X!’

o4, p)= @7

where p is a cluster function and X!= [T X(¢)!.
teZv

Proof of Theorem 5. Suppose that the cluster function p e #? ,, p= 5, where the
upper bound of the function ge A7 is sufficiently small. For any function
X € M(Z?) we denote the support of X by X. Then

Q4 ¥)= 2 (),

where
_ p(X)
gD(C)—_-Xefliit(lz):)?:c X!
Hence
p(xuc)
A, p)= .
A, w) x:;A Ax N()+1
On the other hand
xuc
POV _ s xu0),

cCA\x N(C) +1 _ceC(A’)
where

p(xucu?)

xXuc)= '—1 NE) P ——
Px0)=(=DT o MO N@ +1

It is easy to see that

1 P(X;+X5)
=(—=1)NO - LAl N4
oo =(=1) —cec@nxuagy N(c)+N(¢)+1 X1, Xzem@?): X 1X,!

1=cux,Xa2=c

=(_1)N(c) Z (Pz(X)

XeM(Z?): X=cux X!’

where
_ 1 PX+Y)
020)=, iz NO+NT) !
Thus
oA, w)=2 X f[f(xuo), (48)

xed ceC(A’)
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where
fxue)=(=1HN® > 0X)
XeM(Z?): X =cux *X'- .

Now from the strong cluster estimate for truncated correlation functions
obtained in [7] it follows that f(c) is also a cluster function. From this and formula
(48) by repeating the previous arguments in the proof of Theorem 4 one can obtain
the following asymptotic expansion:

(A4, p) =co(W) 14|+ ¢, (W)S(I'(A)) +¢,(y) + R(4)

where
_ p(X)
o= | Bt —cos (N + DXL
cl(w)=xe(};l) CGCZ(ZZ)f(XUC),
W)= X ( >, fxuog+ ¥ f(xUC)>-
xeZ?,+ \ceC(Z2, -) ceC+(G)
Here

ZY, ={(x',x*>)eZ?:x'=0,x>=20}, Z2={(x',x?)eZ?:x*<0},
73 _={(x"x)eZ*:x'>0,x*<0}, Z2 ,={x",x)eZ*:x'=0,x2=0},
G={ceCZ \Z3% ,):cnZ* _+0, cnZ% _=+0},

while the notations Z> ,, Z% ,, and Z> _ have an analogous sense. So
Theorem 5 is proved.
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