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Asymptotic Expansion of the Logarithm
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Abstract. A method is presented permitting one to find in principle all the non-
decreasing terms of the asymptotic expansion of the logarithm of the partition
function when the volume of region increases. The constructions are carried
out at low activity for lattice systems with general n-body interactions, and
continuous systems with two-body interactions.

1. Introduction

The aim of this paper is to study the asymptotic behaviour of the logarithm of a
partition function lnΞ(yl) when the volume of the region A increases. Under
natural assumptions about the grand canonical Gibbs ensemble and for appropri-
ate classes of regions all the non-decreasing terms of the asymptotics are obtained
in both cases of continuous and lattice systems.

The main term of this asymptotic (proportional to the volume \A\ of the region
A) follows from the theorem by Lee and Yang [1]. For the lattice case the second
term (proportional to the area of the boundary Γ(A) of A~\ was obtained by
Dobrushin under assumptions which provide the absence or the presence of a
phase transition [2]. In the case of continuous systems the second term turns out to
be proportional to the area of the boundary Γ(A). The next terms depend on
geometrical characteristics of Γ(A).

The asymptotic expansion for the logarithm of the partition function is
obtained in this paper as a special case of expansions for the integrals of the so-
called clusterwise smooth translation-invariant functions over all finite subsets of
the bounded region A. These asymptotic expansions are obtained for lattice
systems with general n-body interactions and for continuous systems with two-
body interactions.

2. Preliminaries

Consider a continuous system of particles in some bounded region A of the
v-dimensional Euclidean space 1RV (v^l) interacting via pair potential Φ(x),



228 S. Pogosian

x e Etv\{0}, where Φ is an even function. The space of states of the system is the
space C(Λ) of all finite subsets (configurations) of the region with a naturally
defined σ-field S(A) and the Lebesgue measure dc (see [3,4]). Analogously by
C(RV) we denote the space of all finite configurations c ClRv with the σ-field <ί(]Rv)
and the Lebesgue measure, so that their restrictions to the space C(y4)cC(IRv)
coincide with the σ-field S(A) and the Lebesgue measure on C{Λ) for any bounded
region ΛcIRΛ

The Gibbs probability distribution on C(Λ) is given by the density

zN(c)e-βU(c)

^ z ( c ) = ~ £ U I T (1)

with respect to the Lebesgue measure on C(Λ). Here N(c) is the number of points of
c, U(c) = Σ Φ(x - y) is the energy of the configuration c, z (activity) and β

{x,y}Cc,x*y

(inverse temperature) are positive parameters, and finally

Ξ(Λ9β,z)= j zmc)e~mc)dc
C(Λ)

is the grand partition function.
In a similar way we shall consider the case of a lattice system with n-body

interaction Φ(c\ c e C(ΈV), Φ(0) = 0, where C{Έy) is the set of all finite subsets of the
v-dimensional integer lattice Έv. In this case the probability of the configuration c
is given by formula (1), where ΛoΈ* is any bounded set, U(c) = X Φ(c), and

cCΛ

It is well known that under general assumptions on the potential Φ and on the
sequence of regions Λ1CΛ2C ... the following asymptotic (Lee-Yang theorem [1])
holds

\nΞ{ΛkJJ = c0\Λk\ + o(\Λk\), fc->oo, (2)

where co = co(Φ,β,z) is a constant depending only on the potential Φ and
parameters β and z (Gibbs specific free energy). In this paper the next terms of the
asymptotic (2) up to the constant term will be found.

3. Conditions on the Potential

In the case of continuous systems we consider potentials satisfying the following
conditions.

1. (Stability) There exists a constant J5^0 such that for any configuration

Σ Φ(x-y)^-BN(c).
{x,y}Cc,x*y

The following conditions 2-4 (except the case k = 0 in condition 4) concern to
the smoothness of the potential.

2. The potential Φ is finite-valued everywhere except possibly the closure Go of
some open set Go C R v with smooth boundary where Φ = + oo. For every β > 0 the
function e~βφ is piecewise smooth on the space IRV, with kth degree of smoothness.
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Let us introduce the functions

\s\zk dxs

where s = (sl9 ...,sv) is a multi-index, and let

3. There exists a constant JB£ such that for every finite set ccR v,

Π Λ/r ( -y -i) I - ^ PVIΛ ( \ 7 | P I R^ I
fe \ ./ / ^ ^ v Λ U \1 V yL-JjLJjζJ .

4. There exists an Euclidean invariant metric δξ. in 1RV such that

where

I
and Z)f are some constants.

Let us denote by ^k(IR.v) the class of potentials Φ(x), x e IRv{0}, satisfying
conditions 1-4, and by ^(1RV) the class of potentials Φ e ^ ( R v ) such that the
metric δfc in condition 4 satisfies the inequality: <5f(0,x)^pln(l + \x\) for some
integer p.

Passing to the lattice case, we shall call the metric δ on ΊLV symmetric if δ is
invariant under all automorphisms of the group 7Ly. We shall consider potentials Φ
satisfying the following conditions:

5. There exists a symmetric metric δ on Έv such that

Σ exp(-4<S(0,;c))<co,
xeZv

and

OeceC(Zv)

where Lδ(c) is the shortest length with respect to the metric δ of all the trees (i.e.
connected graphs without closed loops) constructed on the points of c. [For
example δ(09x) = γ\x\, y>0; or δ(Ofx) = d\n(l+oί\x\), d>2v, α>0].

4. Main Results

For any bounded region A C1RV we denote by Λί the region which is homothetic to
A with \Λ i I = 1. Let St\, a > 0, k = 0,1,2,... be the class of convex bounded regions
A CRV with (k + 2)-smooth boundary Γ = Γ(Λ) such that in the neighbourhood of
each point xeΓ(Ai) in some Cartesian coordinate system Γ(A1) is given by
equation η=f(ξ), where f(ξ) has partial derivatives; bounded uniformly in
modulus by the constant a. (Evidently the condition Mil = 1 gives a bound on a
from below, but it is not essential for us.)
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Theorem 1. Let Φ e %g+ ̂ W) with p ̂  v + (k + l)2(/c + 2) (v + 2), and the activity z be
sufficiently small. Then for any region A e SSk

ai 1 ̂  k ̂  v, ί/ie following expansion
holds:

z) = co|Λ| + £ ce(Λ) + RM) • (4)
• 1

Here c0 = co(Φ, β, z) is a constant which will be explicitly written below (see (11)),
the quantities c^A) = c^Λ, Φ, β, z) have the form

cM)= ί <n(x),xybJx;Λ9Φ9β9z)dσ(x)9 (5)
Γ(Λ)

where n(x) is a unit exterior normal vector at the point x e Γ(A), < , > is a scalar
product in R v, dσ is the element of(v— 1)-dimensional area of Γ(A), and the explicit
form of coefficients be is given by (16). In addition, the quantities c^(Λ) have the
following properties: if the region A is homothetic to A with the homothety coefficient
λ(A = λA), then

c,(A, Φ, β9 z) = cM, Φ, β, zW~\ S=l,...,v,

and

Finally the quantity Rk(A) = Rk(A, Φ, β, z) satisfies the following estimate

(Ck\A\(v~k~1)!\ k<v-U

v^\n\Λ\, fc = v - l , (6)

I C V , k = v

with the constants C^C^Φ.β.z.a).

Remark. As it follows below from Theorem 2 in the case v = 2 the logarithmic term
in (4) vanishes. Apparently the same is true also in the case v > 2, however we have
no proof.

In the case of the spherically symmetric potential Φ the expressions for c^(A) — s
in (4) can be simplified. For example we consider cx(A) and c2(A).

Theorem 2. Let the conditions of Theorem 1 be satisfied and the potential Φ be
spherically symmetric. Then

1 ~d2M{Γ{Λ)), v>2,

ί7
where df = ̂ -(Φ, j8, z), i— 1,2 are constants given explicitly by (32), (33), S(Γ(A)) is
the area of the boundary Γ(A) and the quantity M is given by

M(Γ(Λ))= J <n(x),x> Σ (κΓUxHκΓ)/x)dφ), (7)
Γ(Λ) l^i<J^v-l

where (κΓ)j(x), 7 = 1 , . . . , v — 1 are the principal curvatures of the surface Γ(A) at the
point x.
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As it follows from Steiner's formula for the volume of a parallel body [5] the
quantity M does not depend on the choice of the origin of coordinate system.

Now consider the case of a region with piecewise smooth boundary. Let
£L:RV->]RV be the homothety of the space R v with the coefficient L. For any
convex region /tclRv with a piecewise smooth boundary, consider the family of
homothetic regions {ΛL = ELΛ,L^ 1} generated by A.

Theorem 3. Let the spherically symmetric potential Φ e ^f(]Rv), p ^ 50, and the
activity z be sufficiently small. Then for the family of regions mentioned above the
following expansion is valid

lnΞ(AL, β, z) = co\ΛL\ + d^SiΓiΛj)) + RMΰ >

where co = co(Φ,β,z) and d1=d1(Φ,β,z) are constants defined by formulae (11),
(32), respectively, and the quantity Rί(AL) = R1(AL,Φ,β,z) satisfies the estimate

\RML)\^CU (8)

for some α < v — 1, where the constant C = C(Λ, Φ, β, z) depends on the initial region
Λ.

Remark. One can choose a unique constant C in (8) for any suitably selected class
of regions with piecewise smooth boundaries.

In the special case of a convex polyhedron, using another method we shall find
explicitly all the terms of the asymptotic expansion including the constant term
(see Theorem 4 below). The first method does not allow one to find the constant
term explicitly.

For any convex polyhedron A C Rv, denote by A{1\ i = 0,1,..., v — 1, the family
of all /-faces of the polyhedron Λ and by \λ\, λ e A(i\ the z-dimensional volume of λ.
Define

σ(Λ) = mhi{ρ(λ,λ'):λeΛ0

9λ'eΛiv-1\λφλ'},

where ρ(λ, X) is the distance between the vertex λ and the face λ'. Let <£(r, r\ n0) be
the class of all convex polyhedrons satisfying the conditions:

(1) 'l
(2)

(3) c a r < U ( v - ^ n q ,
where r , / > 0 and n0 is an integer.

Theorem 4. Let the spherically symmetric potential Φ e t J ( R v ) , p^2v + 1, and the
activity z be sufficiently small. Then for any A e #(r, r\ n0) the following expansion
holds:

(9)

where co = cQ(Φiβ,z) is the same constant as above, cb / = l , . . . , v are constants
depending on the potential Φ and parameters β, z, while c v also depends on the set of
all angles of the polyhedron A. Finally the quantity R(A) = R(Λ, Φ, β, z) satisfies the
estimate

with the constant C = C(Φ, β, z, r, r\ n0).
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Now consider the case of lattice systems. Let #(r), r > 0 , be the class of
parallelepipeds AdΊLx satisfying the condition: diamvl^r|yl|1 / v.

Theorem 5. Let the activity z be sufficiently small and the potential Φ satisfies
condition 5. Then for any Ae%>(r) the following expansion holds:

\nΞ(AJ,z) = ao\A\ + av Σ \λ\+...+av-t Σ \λ\ + av + R(Λ)9

where air> z = 0, 1,..., v are constants depending on the potential Φ and parameters
β9 z, the quantity R(Λ) = R(Λ, Φ, β9 z) satisfies the estimate: \R(Λ)\ S C\Λ\"1/v, with
the constant C = C(Φ, β, z, r) while the remaining notations have the same meaning as
in Theorem 4.

5. Strong Cluster Estimates.
Cluster and Clusterwise Smooth Functions

The proofs of Theorems 1-5 are based on the strong cluster estimates of Ursell
functions, truncated correlation (group) functions [6, 7] and their derivatives [8].
We describe the corresponding techniques below.

Let M\, p>v, be the class of functions on R v defined by the formula: f(x)
=/+(|x|) (1 + M)~ p

? where/+ is any non-negative bounded integrable function on
[0, + oo). Define

l q(x)dx<-,supq(x)<2~m\, w ι = l , 2 , . . . .
RV m x J

Lemma 1 (see [8]). Let q e Jf£. Then the equation

ί f(y)q(χ-y)dy=f(χ)-q(y)
R v

has the unique solution f= Vq. Moreover, Vq e Jip

+ and

ί (Vq)(x)dx= J q(x)dx(l- J ί W

Corollary. Let q e Jf*. Then the functions Vkq e Jί\, k = 1,..., n, and the following
equalities hold:

ί (Vkq)(x)dx= J β(x)dx/l-fe J β ί x ) ^ " 1

I R V I R V V I R V

For any q e Jt% and A > 0 we denote by C^ξtA the class of functions ψ(c),
ceC+(Rv)-C(RV)\{Φ}, satisfying the estimate

\ψ(fiMA Σ Π q(x-y), (10)
γe&c (x,y)eγ

where JS?C is the set of all chains constructed on c. The estimate (10) we shall call the
strong cluster estimate and the functions of the class 3f£A we shall call cluster
functions.

For any region A CRV define an operator HΛ acting on the set J Q ^ , q e Jίξ, by
the formula:

(HΛψ)(c)= J ψ(cuc)dc, C 6 C + ( R V ) .
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Lemma 2 [9]. Let ipeX£Ao, qeJfp. Then for any regions Λl9 ...,/twclR v:

1) the function HΛι ... HΛnφ e tfv»q,An>
 w n e r e

An = A0 " π Γ l - ί «(x)d

2) /or any xeR"

^ ( r ) = 1Rv\SJr), Sx(r) is the ball of radius r about x, 4Π is the constant defined
above, and

λn + 1(r)= ί (V+Iq)(y)dy.
yeWίv:\y\^r

Corollary. Let ψ e Jίίq

p

Ao, qs JΓξ. Then for any

Co(*,VO= ί
C(RV)

If in addition the function ψ is translation-invariant then the quantity co(x, ψ)
— co(ψ) does not depend on x.

Now note that the set CN(RV), N= 1,2,... (iV-point configurations in R v) is
naturally endowed with the structure of an (v x iV)-dimensional smooth manifold.
A function ψ(c), c e C + ( R v ) will be called fc-smooth if all the functions ψN(c)9

N= 1,2,... are fc-smooth, where ψN is the restriction of ψ to the subspace CN(1RV).
Finally, for any integer fc, A>0, and qeJί\, p>v, we denote by JF£qtΛ the

class of fc-smooth functions ψ(c), c e C+(1RV) all partial derivatives of which belong
to the class Jf£A. The functions of the class ^ q A we will call clusterwise-k-smooth
functions.

Theorem 6 [8]. // the potential Φ e ^(IR V ) , then the corresponding Ursell function
and truncated correlation function are clusterwise-k-smooth.

We have the following analogy to Lemma 2.

Lemma 3. [9]. Let ψeX^tqtAo9 qeJί*. Then for any regions Λu ...,ylnClRv:
1) the function HΛl-..'. HΛnψeJίΓk

p

vnqfAn;
2) foranyxeWCA,

j \(D»°HΛί. ...
CQSv)S'()*$

where nc = {n(x) ;xec}isa multi-index with \nc\ = Σ n(χ) — k an^ DHc ™tne symbol of
xec

differentiation (for details see

Remark. For the lattice case by the techniques used above and by the strong cluster
estimate of the truncated correlation function [6] one can define the class Jίq

p

A of
cluster functions with the same properties as in the case of continuous systems.
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6. The Expansion for the Regions with Smooth Boundary

As was mentioned in the Introduction we shall consider a more general problem. It
is known [9], that

lnΞ(Λ9β9z)= J tpΦtβtS(c)dc9 (12)
C(Λ)

where ψφ,βίZ is the Ursell function corresponding to the potential Φ and
parameters β and z. This representation suggests a natural useful generalization.
Let

Q(Λ,ψ)= J ψ(c)dc,
C(Λ)

where ψ is an arbitrary cluster function.
In this paper we shall investigate the asymptotic behaviour of the quantity

Q(Λ,ιp), when Λ->oo, for various classes of regions. The expansions for lnΞ(A)
(Theorems 1-5) will be special cases of the corresponding expansions for Q(Λ, ψ)

Let for any bounded convex region ΛclRΛ V(A) = {xeA:ρ(x,Γ(A))<l}9

where ρ(x, Γ(A)) is the distance between the point x and the boundary Γ(A).

Theorem 7. Let the translation-invariant function ψeX£Ao, qeJίf, p ^
Then for any bounded convex region A C Rv

? Q(A, ψ) = co(ψ)\A\ + R(A), where co(ψ)
is defined by formula (11) and \R(Λ)\£C(Aθ9q)\V(Λ)\.

Proof We have

where

R{Λ)=-\dx J g * u c > dc

A ceC(IRv):cnyl'Φ0iV(c)+I

Using Lemma 2 we obtain

\R(A)\^Aί J λi(ρ(x,Γ{A)))dx-\-A1 J λί(ρ(x,Γ(A)))dx.
V(A) A\V(A)

Now from the monotonicity of λu it follows that for any xeAnV(A) and
r = g(x9Γ(Λ))9

V{A)nSx{r) ~~ V(A)

Thus

li ί dx J

which concludes the proof of Theorem 7.
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Under additional assumptions concerning the function ψ and region Λ, we
shall study the form of the remainder R(Λ) below.

Next let us describe in detail the class of regions to be considered. Let A C R v be
a bounded convex region, the boundary Γ = Γ(Λ) of which is (k + 2)-smooth,
(v-l)-dimensional submanifold in R v. For any x e ί w e denote by TΓ(x) the
tangent hyperplane of Γ at x. Choose an orthogonal coordinate system
(ξil\...,ξ(v~1\η) = (ξ,η) in R v with the origin at x such that the axis η is directed
along the interior normal of the surface Γ and axes ξ{1\ . . .,ξ ( v~ 1 ) lie in the
hyperplane TΓ(x) along the direction of the principle curvatures ( K J ^ X ) ,
i= 1,..., v— 1 of the surface Γ at the point x. By Q)r(x) we denote the set: 3)τ(x)

= {ξe TΓ(x) :\ξ\< <5r}, where δΓ = inf ί/2 max (κΓ)i(x)\~ 1 1. Let Γx be the connected

component of the set {(ξ, η)eΓ:ξe 3)Γ{x)} containing the point x. It is evident that
for any xeΓ,Γx is given by the equation: η =fΓtX(ξ)9 ξ e 2fΓ{x\ where fΓx is (k + 2)-
smooth function on 3)Γ(x) with the following Taylor expansion:

fr,x(ξ)= Σ aΓtS(x)ξ> + rΓtk+2(ξ,x) (13)

with the coefficients

a

where s = (s t , . . . , sv _ x) is multi-index. Moreover there is a constant Fr(fe), such that
uniformaly in fc

Let

Ik(Λ) = sup max {aΓ s (x)M| < | s | " 1 ) / v , |s| ̂  /c + 1 FΓ(k) \Λ\(k+ 1)/v} .

Note that for any homothetic regions A and A, Ik(A) = Ik(A). Now denote by J *
the class of convex bounded regions A C R v with a (fc + 2)-smooth boundary such

M|l/v

that 7fc(i4)gα. It is evident that δΓ^> x—±— for any

Let 9Dt(zlfc) be the collection of all non-negative integer-valued finite functions
with the supports in Ah

and let

\ : Σ (\s\ - \)m(s) =
I

where Ej+,j= 1,2,... is the semi-group of multi-indexes s = (5!,..., sy). In addition
we put: ( 4 = (xi x J e ( R T , (ί)» 5 R 1

and (x)M = ((α?(^)«). We also define
s mj(s)
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where r = ( r 1 , . . . , r J e P + , mG9K(zlfe), |m| = |r| + n, m\=Y\m(t)\. Finally for any
t

cluster function ψ and unit vector v e R v, we define

; ωv(c) = (H^ψ) (c), c e C + ( R v ) .

We shall give below the proof (without details, which can be found in [8]) of
Theorem Γ generalizing Theorem 1.

Theorem V. Let Λ e J ζ , l^fc^v, ψeJfi+UqtAo, where

£/ιe quantity sup g(x) is sufficiently small. Then
X

Q(Λ, ψ) = co(v) Ml + Σ cM, Ψ) + RM, ψ), (15)

where co(ψ) is defined by the formula (11),

e ' ' v — (fj=o»=i n\ ,

• r β z Σ _ J ΦwΛ))(x,(α.(0)π)^./(OWα, l^/^v-1; (16)

V j = o « = l n\ meWlv(Ak):\m\=j + n s

Σ ί (£>(„) ω π ( J C ) ) (x ,

F/nα//y

^i(^θJ^? Λ )Ml v ~ f c ~ 1 / V 5 fc<v—1,

|K fc(yl,φ)|^ β 2 (Λ,^ , f l ) lnμ | , fc = v - l , (17)

B3(A0,q,a), k = v.

Proof. Without loss of generality we suppose that A contains the origin. Consider
the family of extended regions {AL = ELAuL^t 1}. It is easy to see that

Q(ΛL+AL,ψ)= ί ωL(c)dc = Q(ΛL,ψ)+ J ωL(x)dx
C(KAL) KΔL

where KAL = ΛL+AL\AL, AL>0,

C(ΛL)

Σ ί ωL(c)dc = o(AL), AL-+0.
n = 2 Cn(KAL)

Next

J ωL(x)dx = J — J ωL(x) <n(x), x>rfσ(

= ΔLL'1 \ ωL(x) <n(x),
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This implies the following formula

^ φ ) = L-1 f <n(xlx)ωL(x)dσ(x). (18)

Therefore to obtain the desired expansion for Q(Λ9 ψ)9 it is sufficient to obtain the
asymptotic expansion for the function ωL(x).

Let §L(x) = {ξeTΓL(x):\ξ\<δΓίL
1/v + 2}. Then the functions fL,x=fΓL,x and

/ifJCl, where x1 = £L-i(x), xeΓL are connected by the equality:

fL,M) = LfUxi(L-H), ξeSL(x). (19)

By virtue of formula (13) we have

fUξ) = PUO + rLtk(ξ, x), ξe §L(χ),

where the Taylor polynomial for the function fLx,

PL,M)= Σ aL,Jtx) ?,

and the remainder term satisfies the estimate:

Then using the following equality [4]:

ί (Σ9(ci)y(c)dc= ί ί Ψicjfic
C) J C C )

we obtain that

ωL(x) = ί ψ(xvc) Π (1 -XΛuχ)(t))dc = ί ( - l)Nic)ωn{x)(xvc)dc,
C(1R^(X)) t e c C(ΛL(x))

where yl̂ (x) = lR^ix)\ΛL. Define

and

From (20) we obtain that

ωL(x) = ί ( - 1)N ( \ w ( x u # + α i(x, L),
C(^χ.(x))

where by means of Lemma 3 it can be shown that

By the same Lemma 3 one can show also that

(Λ+l)(v + 2)

ωL(x)= Σ (~l) n ί ωB(JC)(xuc)dc + α2(x,L,fe), (21)
« = 0 C » ( ^ ( J C ) )

where Cw(^(x)) is the set of all n-point configurations in ^(x) and

|α2(x, L, fc)| ̂ B5(X0,«, α)L" f e- x. (22)
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Next let us consider the integrals

Jn(x9L)= J ωnix)(xvc)dc

= ί d(ξ)n 7 dη,'...- 'J ωn{x)(x,(ξ)n,(η)n)(ηγndηn,
(Γr L W) n 0 0

n

where (?/)£ = Π rff- Expansion of the function ωπ(JC)(x, (ξ)n9 (η)n) in powers of (η)n in

a neighbourhood of the point (x, (£)„, (0)n), and following integration over (η)n

implies

JB(x,L)=-^( no-

1 1T.,*(

-7 ί d(α ί
r] (TrL(x))n 0

where {θη)n = (θηu...,θηn\ 0<θ<ί. Denote the first and second sums in (23) by
J'n{x,L) and J^(x,L), respectively. Using the following evident identity:

k(\r\+n)

i i «?=|r|+« meffllt(Ak): y s J

where the quantities Wmtr((ξ)n) are defined by formula (14), we get

* + ] Σ + 2 ) ( " l)"j;(x,L,fc) = ̂ Σ ^ ? Λ L , ψ ) + α3(x,L,k). (24)

Here

and the quantities Q are equal to:

c/x, i4L, φ) = (v - /)ί?Xx, /LL, φ ) , / = 1,..., v - 1
(2o)

cv(x,y4L,tp) = vfev(x,ylL?v;)ln x |vl|

where b£ are defined by formula (16). Note that the following relations are valid:

with xί=EL-ι(x).
On the other hand

Σ (-1 (27)
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Thus from (21)-(27) we obtain the asymptotic expansion for the function ωL(x):

coL(x) = Σ cXx, AL9 ψ) + α4(x, L9 k), (28)

where

and the quantity c 0 has the form

co(x, AL, ψ) = co(x, ψ) = J ψ(xuc)dc. (30)

Substituting (28) in (18) one finds that

Q(Λyψ)= J -τj-Q(ΛL,ψ)dL + Q(Λ1,ψ)= J co(x, ψ) <w(x), x)dσ{x)

k

+ Σ Q(^ ? V) + Rh(Λ> ψ)> (31)

where

-RfcC/1, φ) = 6(^i5 ¥*) — Σ cX-^i? V)~ ί ^o(χ? ¥*) <w(x), x>dσ(x)

L - 1 d L J α4(x?L,fe)<^(x),x>rfσ(x).
1 rr.

The estimate (17) for the quantity Rk(Λ9ψ) can be obtained with the help of
Lemma 3 and the well-known Gauss-Ostrogradsky's formula. Finally note that
the comparison of Theorem 7 with expansion (31) implies the equality

Γ(Λ)

Thus Theorem Γ is proved.

Proof of Theorem 2. Evidently from the spherical symmetry of the potential Φ it
follows that the corresponding Ursell function is Euclidean invariant. Hence for
any v e Rv~~x the function ωv is also Euclidean invariant. Therefore by virtue of (26)
and (31),

cM,ψ)=-~\ Σ ~ ί ωH{x)(x9ξ90)ξ°dξ

Now put

<*i(v>)=-i ί <ξ9ey2coυ(p9ξ)dξ9 (32)
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where e and v are arbitrary unit vectors in R v - 1 . Then

d (w) v~1

cM,ψ)=^γ ί <Φ),x> Σ (κΓ)i(x)dσ(x) = dί(ψ)S(Γ(Λ)).
V — 1 Γ(Λ) i = 1

Here we use Minkovsky's formula for the area of the surface of convex region
with smooth boundary (see [5]).

Next for the case v > 2 we have

- Σ "\ ί <n(x),x}^φ)dσ(x) f ωβ(?t)(x,ξ,0)ξ'dξ
s:\s\ = 3Sl Γ(Λ) dξS τr(x)

- y f / ( \ \ ίX (0) Jr'x

2si,s2: |sii = |s2 | = 2 s 1 ! s 2 ! Γ(Λ) dξ^ dξs

2

I ί ω^)(x,ξ1,ξ2,O,O)ξ2

ιξ
2

2dξίdξ2-\ Σ - / - 7
>(x) Tr(x) / s 1 , s 2 : | s 1 | = | s 2 | = 2 S1\S2\

f
rΓ(χ)

On the other hand, since

f ωn{x)(x,ξ,0)ξsdξ = 0, for |s| = 3 and Dηωn{x)(x,ξ,0) = 0.
TΓ(x)

Then

where the quantity M is defined by formula (7) while

M(Γ(Λ))= J <n(x),x>V (κΓ)f(x)dσ(x)9

Γ(Λ) i=l

d2(ψ)=τ ί ί <ξ 1 e 1 > 2 <ξ 2 ? e 2 > 2 ω l ; (0,ξ 1 ^ 2 )^ 1 ^ 2 ? (33)

d2(W)=i ί ί <5i,e> 2 <5 2 ^>X(0,Si^ 2 )^id5 2 ,
Rv-l R v - 1

where β l5 β2 eR v ~ x is an arbitrary pair of orthonormal vectors. (It is evident that
d2 and d2 do not depend on the choice of this pair.) From the translation invariance
of the potential Φ it follows that c2(Λ, ψ) is also translation invariant. Combining
this with the easily checked fact that in general the quantity M depends on the
choice of the origin, we obtain that d2(ψ) = 0.

In a similar way one can consider the case v = 2. So Theorem 2 is proved.

Remark. For simplicity we will prove following Theorems 3-5 for the case v = 2.

Proof of Theorem 3. Let ylclR2 be a convex region with piecewise smooth
boundary. In every curvilinear angle corresponding to the point of discontinuity
of Γ(A) we inscribe an arc of a circle of radius r|Λ.|1/6, where r > 0 is a constant. The
"smoothed" region obtained in this way is denoted by Λ.
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Lemma 4. For any Euclidean invariant ψ e <%~2,q,Aoi P = 50, where the upper bound of
the function qeJfξ is sufficiently small, we have:

Q(ΛL9 ψ) = co(φ) \ΛL\ + dάψWnλj) + R,(AL9 ψ), (34)

where the coefficients c0 and dγ are defined by formulae (11) and (32) respectively.
Moreover

\RML,w)\ύB{Λ)l}^2. (35)

Proof Without the loss of generality one can suppose that Γ(A) has only one point
of discontinuity. Let xx and x2 be the points of tangency of the inscribed arc with
Γ(Λ). Define:

ΓL
 =

 ΓLVL> L ̂  1, where δ = δfί,fL = Γ(AL). By repeating the arguments used in the
proof of Theorem 1 one can show that

/\ /v Λ Λ f v Λ _1_ n (\r\is - /'ΛA _L J? ί\r T \ v a T1 CXfΛ

VJ^yX) — CQ\X) ~Γ C^\X)KfL\X) ~τ iv^^Λ, LJ) , A c i ^ , W^v

where co(x) = co(x) [see formula (30)], ώL = ω^L,

^i(x)=-i ί ωn(χ)(x,ξ,0)ξ2dξ,
TrL(x)

and

(37)

The formulae (36) and (18) imply expansion (34). To obtain the estimate (35) note
that by virtue of (37) and (18)

ί \Rί(x,L)\(n(x),x)dσ(x)<B1(Ao,q,a)L~ί/3 j" <w(x),x>κf (x)dσ(x)

On the other hand

RML,ψ) = Q(Auψ)-co(ψ)-d1(

L~ιdL J fl^x,,
1

So Lemma 4 is proved.
Now it is easy to see that the following estimates are valid:

\AL\AL\ S BM)L213, S(Γ(AL)\Γ(AL)) ^ B2(Λ)L1'3. (38)

Moreover

ψ) — Q(AL,ψ)\^ f dcί j ψ(c1uc2)dc2
C(ΛL\ΛL) C + (ΛL)

/ TT

^ ί dx f
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Together with (38) this implies the estimate:

\Q(ΛL, Ψ) ~ Q(ΛL, Ψ)\ ύ B4(Ao, q, Λ)L2^ . (39)

Combining (38) and (39) we obtain Theorem 3.

Proof of Theorem 4. Consider a convex polyhedron ΛcM2 of the class #(r, r\ n0).
Let M l 5 ...,MΠ be the vertexes and θu ...,#„ be the corresponding angles of A.
Denote by Πt the half-plane which is defined by the straight line MiMi+i, and
which does not contain A (Mn+1 = M1).

Let us put: G( = ̂ ( 7 7 ^ 7 7 ^ ) , G^Π^Π^^ i = l , . . . , n ; Πn+1=Πv

For any Euclidean invariant ψ e Jfq

p

fA, p ^ 50, if the upper bound of the function
qsJίξ is sufficiently small, we have:

Q(A,ψ) = Sdx J ψ(xuc)dc, (40)
A C(Λ')

where Λ' = R V ,

Then

c- Σ ί
i l C (G

^ ( ) o
C(Λ')

+ Σ . ί φ(xuc)dc + Λ(>l,V), (41)
i = l C + ίilϊUJTi+i)

where co(t/?) is defined by formula (11),

Let us estimate Λ(yl, ψ):

ί |φ(xuc)|dc^ J \ψ(xvc)\dc.
ceC(Λ'): diamc^ σ(Λ) ceC(lR2): coSχ * 0

2 ^ where S is the ball of radiusHere S£ = IR. 2 ^, where Sx is the ball of radius -^— about x. By Lemma 2 we obtain

)|yl|<2-p)/2 (42)

Now substituting (41) in (40) we get:

n n

Q(Λ, ψ) = co(ψ) \A\ + Σ ί dx ί ψ(xvc)dc - Σ i dx J
i = l τ l C + (iJi) i = l yl C + (Gf)

+ Σ ί ^ ί φ(xvc)dc + Rι(Λ,V>), (43)
i = l yl C + (J7ίuJI ί + i )

where

Let us investigate the first sum of (43). Let e.veΊR2 be an arbitrary pair of
orthonormal vectors and (ξ,η) be the corresponding system. For any
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0, — — < θ < — consider the ray drawn from the origin which makes with η axes

angle 0. Let us denote the obtained angular region by Yθ. Now put

00

Ci(ψ)=ldη ί ψ((ξ,η)uc)dc.
0 C + (RJ)

It is evident that this integral converges and does not depend on the choice of ξ and
v. Furthermore

ί dx J ψ(pvuc)dc = ci(ψ)\MiMi+ί\ — sgn(cos0j) J dx J ψ{χ\jc)dc
A C + (Πi) Yθ.-n C + ORJ)

-sgn(cos0ί + 1) j dx j v3(xuc)dc + Kί(Λ^)? (44)

i = 1,..., n, where IMj M,-+x | denotes the length of the side MtMi +1 and it is easy to
check that the quantities Rt satisfy the following estimates

with the constant C2 = C2(q,r,r/).
Similarly for the second and the third summands of (43) we obtain that for

ί dx J ψ{xκjc)dc= J dx J \p(χ\jc)dc + Rfl{Λ,\p),
A C + {Gt) Gi C + (Gi) (45)

$ dx j ψ(xuc)dc = f dx j ψ(xuc)dc + Λ}"(Λ., φ),
A C + (ΠιuΠi+ί) Gi C + (iIίuiI ι +i)

where

and

Hence combining (43)-(45) we get:

β(.l, ψ) = co(ψ) \Λ\ + Cl(ψ)S(Γ(Λ)) + c2(0 l 5..., ΘH, ψ) + R(A,ψ).

Here

C 2 (θ 1 , . . . ,θ Ϊ P φ)=- Σ sgn(cos0i) J dx J
2

In addition

Thus Theorem 4 is proved.
Now consider the lattice case. For this case we have the following analogy of

the formula (12):

n n

+ Σ ί dx J φ(xuc)dc+Σ j dx J v?(xuc)dc.
i = l G f C + (Gi) i=lGi C + (ΠiuΠi + 1)

lnΞ(Λ,β,z)= Σ ^ # ^ , (46)
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where ψβt2 is the corresponding Ursell function. We recall that 9Ji(Zv) is the
collection of all non-negative integer-valued finite functions on ZΛ So we
investigate the asymptotic behaviour of the quantity

Q(Λ,ψ)=χΣ^~r, (47)

where ψ is a cluster function and X\= Π X{t)\.

Proof of Theorem 5. Suppose that the cluster function ψ e 3f£A, p ^ 5, where the
upper bound of the function qsJΓξ is sufficiently small. For any function
X e 9W(Z2) we denote the support of X by X Then

<KΛ,ψ)=Σφ(c)9
cCΛ

where

ψ(X)

Hence

en.»>- Σ Σ ^
jceyl cCyl\x iV(Cj+ 1

On the other hand

cCΛ\χlV{C)+ 1 ceC(>l')

where

It is easy to see that

Xι=cux,X2 = c

where

_̂ 7!

Thus

Q(Aψ)=Σ Σ /(xuc), (48)
Λ eyl ceC(yl')
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where

Now from the strong cluster estimate for truncated correlation functions
obtained in [7] it follows that/(c) is also a cluster function. From this and formula
(48) by repeating the previous arguments in the proof of Theorem 4 one can obtain
the following asymptotic expansion:

Q(A, ψ) = co(v0 \Λ\ + Cl(φ)S(Γ(^)) + c2(ψ) + R(Λ),

where

CO(Ψ)= Σ . V ( }

Ci(v)= Σ Σ 2
xe(Z1)+ ceC(Zi)

c2(v)= Σ f Σ /(χuc)+ Σ /(χuc)V

Here

2 , + ={x 1 ,x 2 )e l 2 : x 1 ^ 0 , x 2 ^

while the notations Z i > + > 2^,+, and Z l _ have an analogous sense. So
Theorem 5 is proved.
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