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Abstract. The general structure and properties of recursion operators for
Hamiltonian systems with a finite number and with a continuum of degrees of
freedom are considered. Weak and strong recursion operators are introduced.
The conditions which determine weak and strong recursion operators are
found.

In the theory of nonlinear waves a method for the calculation of the
recursion operator, which is based on the use of expansion into a power series
over the fields and the momentum representation, is proposed. Within the
framework of this method a recursion operator is easily calculated via the
Hamiltonian of a given equation. It is shown that only the one-dimensional
nonlinear evolution equations can possess a regular recursion operator. In
particular, the Kadomtsev-Petviashvili equation has no regular recursion
operator.

I. Introduction

The inverse scattering transform method gives a possibility of investigating in
detail a wide class of both the ordinary and partial differential equations (see e.g.
[1-3]). The equations, integrable by the inverse scattering transform method,
possess a number of remarkable properties: solitons, infinite sets of conservation
laws, infinite symmetry groups, complete integrability, etc. In turns out also that
the equations, to which the inverse scattering transform method is applicable, have
the pronounced recursion structure. The so-called recursion operator plays a
central role in the formulation of these recursion properties. The role of the
recursion operator is two-fold. Firstly, it allows one to write out the families of
equations integrable by a given spectral problem in a compact form. For example,
the family of equations connected with the famous Korteweg-de Vries (KdV)
equation can be represented as follows:

^ 0, (1.1)
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where d= — , n = 0,1,2,..., and the recursion operator L is
ox

2 1
1ud. (1.2)

The KdV equation corresponds to n = 1. The recursion operator (1.2) for the KdV
family of equations was first introduced by Lenart (see [4]).

It follows from (1.1) that the recursion operator allows us to obtain the whole
family, starting from one equation (e.g. with n = 0). Recursion operators with such
a property exist for the other families of equations too: see [5] and subsequent
papers on this subject.

The second important role of recursion operators is associated with the
Hamiltonian treatment of integrable equations. The Hamiltonian structure of Eqs.
(1.1) and of the other equations, integrable by the inverse scattering transform
method has been investigated, starting from [6, 7] in a variety of papers (see
[1-3]). It was demonstrated in [8, 9] that the integrable equations have a very
special structure from the point view of Hamiltonian formalism, namely the whole
infinite sets of Hamiltonian structures correspond to these equations. For
example, each of Eqs. (1.1) is a Hamiltonian one with respect to the infinite family
of Poisson brackets of the form

[F,ff}n = j <**—— 0Z? — n = 0 , + l , ± 2 , . . . , (1.3)
-oo δu(x) δu

where the operator L is given by (1.2). In a similar manner, recursion operators
determine the families of Hamiltonian structures for the other integrable
equations.

So, a recursion operator is the generating operator for the family of equations
connected with a given equation and simultaneously the generating operator for
the family of Hamiltonian structures. Combination of these two properties in the
same operator indicates the importance of recursion operators in the theory of
integrable equations.

An important step in the formulation of the theory of the recursion operator
was paper [10]. In this paper it was demonstrated how to calculate the recursion
operator for the equations integrable by the second-order matrix spectral
problem. The Hamiltonian structure of these equations has been considered in
paper [11] in which the remarkable properties of the recursion operator were
employed to a considerable extent. The method of calculation of recursion
operators, based on the use of the spectral problem, has been further developed in
[12-16]. By this method the recursion operator has been calculated for a wide class
of spectral problems [12-23] (see also the paper [24, 25]).

The other methods which do not use the spectral problems were suggested in
[26-29]. In papers [26] the recursion operator appears in the Hamiltonian
systems which possess the Hamiltonian pairs of operators. In papers [27-29] some
analogs of the recursion operator (hereditary, strong symmetry operators) were
considered. By virtue of some postulates, these operators satisfy certain equations.
Some solutions of these equations and thereby some examples of the recursion
operators have been found. The geometrical structures, connected with the
integrable equations and recursion operators, and their properties have been
discussed in [30].
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In the present paper we consider the different aspects of the theory of recursion
operators for Hamiltonian equations. Firstly, we introduce the notions of weak
and strong recursion operators. A recursion operator in a "weak" sense (briefly, a
weak recursion operator) is the operator which allows us to construct recursively
the infinite family of Hamiltonian equations, starting from a given Hamiltonian
equation. There exist two types of weak recursion operators. A recursion operator
of the first type (H-weak recursion operator) is the operator which converts the
gradients of functional into gradients. A recursion operator of the second type
(Ω-weak recursion operator) is the operator which transforms symplectic forms
into symplectic forms. We find the sufficient conditions which determine the weak
recursion operator (for both types).

A recursion operator in a strong sense is the operator which transforms both
gradients into gradients and symplectic forms into symplectic forms. The strong
recursion operator generates simultaneously the infinite family of equations,
starting from a given equation, and the infinite family of Hamiltonian structures
for each equation from this family. The sufficient conditions for the operator L to
be a strong recursion operator are given. The so-called Nijenhuis equation for L
plays an important role in the theory of weak and strong recursion operators. The
Hamiltonian systems both with a finite number and with a continuum of degrees of
freedom are considered. The operator (1.2) is an example of the strong recursion
operator.

In our paper a method is also proposed for the calculation of recursion
operators in the theory of nonlinear waves in space of arbitrary dimension. This
method is based on the subsequent use of the expansion of all quantities into a
power series over the fields and of the momentum representation instead of a
coordinate one. As a result, the equations in variational derivatives, which
determine the recursion operator, convert into the system of algebraic functional
equations for the coefficients of the expansions of the recursion operator and
Hamiltonian. Some equations from this system offer the possibility of calculating
the recursion operator via the Hamiltonian of a nonlinear equation.

In the paper we show that any Hamiltonian system of nonlinear waves
possesses a formal recursion operator. In the general case, such a recursion
operator is the singular operator. In the one-dimensional space there exist
Hamiltonian systems which possess the regular recursion operator, i.e. the
operator which generates the family of regular Hamiltonians. For some nonlinear
equations the recursion operator can be a finite-order polynomial on the fields.
The Hamiltonian of such an equation should satisfy a certain system of equations.
In particular, it is shown that the only one-dimensional equation with three-linear
Hamiltonian, which possesses a recursion operator, linear on field, is the KdV
equation.

It is shown that the nonlinear evolution equations in two- and higher
dimensional spaces have no regular recursion operators. In particular, the
Kadomtsev-Petviashvili equation has no regular recursion operator. Thus, the
regular recursion operator is a purely one-dimensional phenomenon.

All these properties of recursion operators are closely connected with the
formal canonical equivalence of nonlinear equations with the Hamiltonians,
which are the "entire" functionals on fields, to linear equations. Performing the
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inverse canonical transformation from the linear equation to the initial nonlinear
equation, we simultaneously obtain the Hamiltonian of the equation and the
expression for the recursion operator. The regularity problem of the recursion
operator is associated now with the regularity problem of the linearizing canonical
transformation.

The paper is written with the use of elementary methods only. The presented
results can be, however, formulated in the invariant form as well.

The paper is organized as follows. The notions of if-weak and Ω-weak
recursion operators are introduced in the second section. In the third section the
sufficient conditions for the operator LH to be a H-weak recursion operator are
found. In Sect. 4 the necessary and sufficient conditions for that the operator LΩ be
a ί2-weak recursion operator are formulated. The strong recursion operator and
the conditions which determine this operator are considered in Sect. 5. Recursion
operators in the theory of nonlinear waves (i.e. for systems with a continuum
number of degrees of freedom) and the conditions which define these operators are
discussed in Sect. 6. Section 7 is devoted to the use of the expansion into a power
series over the fields and of the momentum representation for the calculation of
recursion operators. The problem of existence of regular recursion operators in
one- and multi-dimensional spaces is discussed in Sect. 8.

II. Weak Recursion Operators

In this and next sections we will consider Hamiltonian systems for finite degrees of
freedom. We would like to recall that a system of differential equations, which are
defined on the 2iV-dimensional phase space, is called the Hamiltonian system if it
may be represented in certain local coordinates as follows: (see e.g. [31])

Ωx=VH, (2.1)

where x = (x1, ...,x2N), V= ( —r,...,—™ I, x= — , H is a function and Ω is a
\ox ox J at

nondegenerate skewsymmetric (Ωίk = — Ωkι) matrix which obeys the closeness
condition

dΩa dΩk; dΩik

By virtue of the nondegenerateness of Ω, Eq. (2.1) can be also represented as

x = Ω-1VH = {x,H}, (2.3)

where {,} denotes a Poisson bracket

Here and below the summation is performed over repeated indices. It is well
known also that locally by appropriate change of coordinates one can convert the

0 N

form Ω into the canonical one Ω(0) = I ), where 1 is an identical N xN

matrix (Darboux theorem).
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So let us have a certain Eq. (2.1) with concrete Hamiltonian H and symplectie
form Ω. What is the way in which one can recurrently multiply this equation
without leaving the class of Hamiltonian equations? It is easy to see that one can
do this in two ways. The first way is to multiply the right-hand side of (2.1), i.e. the
gradient VH. The second way is to multiply the left-hand side, i.e. the symplectie
form Ω.

Definition. We will refer to the operator LH as the if-weak recursion operator if any
of its power converts the gradient of H (for H φ const) into the gradients: EHVH
= VHn, n= 1,2,3, The operator LΩ is referred to as the Ω-weak recursion
operator if any of its power converts some symplectie form Ω into the symplectie
forms:

Making use of the weak recursion operators, one can construct the following
infinite families of equations, starting from Eq. (2.1):

Ωx=VHn = EHVH, n = 0,l,2,..., (2.5)

and
EΩΩx = Ωnx=VH, rc = 0,1,2,.... (2.6)

Equations (2.5) are Hamiltonian ones with respect to the same symplectie form
Ω and different Hamiltonian Hn. Equations (2.6) are Hamiltonian ones with
respect to the same Hamiltonian H and different symplectie forms Ωn. It is clear
that any entire function of the recursion operator is the recursion operator of the
same type, too.

Combining these two ways, one can obtain the most general family of the
equations

φ(LΩ)Ωx = Ωφx = VHf = f(LH)VH, (2.7)

which are associated with Eq. (2.1). Here φ(LΩ) and f(LH) are arbitrary entire
functions. For detL β Φθ, Eqs. (2.7) can be also represented in the form

(2.8)

III. iϊ-Weak Recursion Operator

Here we find the conditions which determine weak recursion operators. Firstly, we
consider the ίΓ-weak recursion operator. Let us note, first of all, that in order that
the operator LH transform a given gradient into gradients (IϋHVH=VHn) it is
necessary and sufficient that it satisfy the equation

The necessity of condition (3.1) is obvious: it is the equality of cross derivatives

which follows from (Err)k

iΊ—r = -r—?-. Sufficiency follows from the well known
axκ ox1
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statement that for any simply connected manifold the equation — I — -TΓΎ =®
~ ox ox

implies α f = — τ (see e.g. [31]).

Proposition 3.1. The operator LH is a H-weak recursion operator if it satisfies the
system of equations

δxk dxm+ Hndxkdxm dx" dxm Hkδxnδx

dxk δx<
J3n p

Hi δxn m

Proof Condition (3.2) means LHVH= VHι. Let us prove that by virtue of (3.2) and
(3.3) we also have βHVH= VH2 Let us multiply Eq. (3.2) by EHί and sum over n.
We obtain

„ dEUn dH _ _ d2H

^ + L m L m δx"δxm •

Then multiplying (3.3) by —— and summing over m, we find

θtf δCm
Hnδxm Hί δx"

δH
δxk Hnδxm Hί δx" δxm

_δEHk δH dLm

HiδH

Further let us sum Eq. (3.5) with Eq. (3.4) and substract Eq. (3.4) with the
substituion ;<-»/c from the derived equation. As a result, we have

dH δCHnδH

δxk LH"^ +Lm^rJx^+LmLlί"δxkδxm

_δE^ δJl dE^δ_H_ J^H_
~ dx' LH"δxm+ Hk δχι δχm+ m H"δχ'δx"" ( }

i.e.

d / 5ΰ\ d ί,τ2ΛmdH

From (3.7) it follows that

(T2 Λm

δxm dx' '

i.e. GHVH = VH2, where H2 is a certain function.
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Further let us show that I?HVH=VH3 too. Multiplying (3.3) by L^m — Ύ and
summing over m, we obtain x

dl^Hi Tm τ€ ^H θEHk » θH

mHk m ^ d_H_
+ L m dx- Πmdx( m dχn Hmdxg { '

Then we multiply equation (3.6) (with the substitution i->ρ) by ISm and sum
over ρ. Summing the obtained equation with equation (3.8) and using (3.2), we find

dL"m δH dLm

H 8H

durB

( j r
( Hk dx1 dx'

i.e.

dH
( ^δx'δx" ~ '

Thus UHVH=VH3, where H3 is a certain function.
In a similar manner, one can prove by induction that the equality (3.1) is valid

for w = 4,5,6,... too, i.e. ΠHVH= VHm n= 1,2,3,4,.... The proposition is proved.
We emphasize the important role of the quadratic equation (3.3). This equation

together with the condition LHVH=VHί is equivalent to the equalities EHVH
= VHn for any n = 1,2,3,.... Note, however, that Eq. (3.3) does not follow from any
finite subsystem of equations ΠHVH= VHn {n= 1,..., M).

Let us now discuss some properties of Eqs. (2.5). In the general case the flows
which are generated by Hamiltonians Hn do not commute with the initial flow (2.1)
since (H0 = H)

frr rr ldHn(Ω-lykdH0

S H srn ^ / Λ UikdH A /o IAN

—^-(Ar)Γ(Ω~ ) T T *° (3 1 0)

Let the operator L# satisfy the additional constraint (LHΩ)T= —LHΩ, where
^4T denotes a transposed matrix A. Using this constraint, we have

dH n - 1 ίfc dH dH -i mi n k ^

dH
λC« )
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i . e . | ^ ( Z 7 H ) r ( Ω " 7 * | ^ =0- Therefore {Hn9Ho}=0, n= 1,2,3,.... Analogously,

one can show that {Hn,Hm} = 0 (n, m = 0,1,2,...), i.e. in the case (LHΩ)ik =
— (LHΩ)ki all the flows from the family (2.5) commute to each other.

Thus, in the case (LHΩ)T = — LHΩ the family of Hamiltonians Hn is the infinite
family of the integrals of motion for any equation of the form (2.5). Each integral of
motion Hn is connected with the one-parameter symmetry group of Eq. (2.5) and,
in particular, of the initial equation (2.1). In the infinitesimal form these symmetry
transformations are (x' = x + δx)

δnx = £nΩ-ιVHn = εnΩ~ίEHVH, 72 = 0 ,1 ,2 ,3 , . . . , (3.11)

where εn is the transformation parameter. If (LΠΩ)T = —LHΩ, Eqs. (2.5) and the
symmetry transformations (3.11) can be also represented in the form
x = (UH)nΩ-ίVH, and δnx^εn{ϊIH)nΩ~ιH, n = 0, 1, 2, 3, ....

IV. Ω-Weak Recursion Operator

According to the definition, the operator LΩ is a Ω-weak recursion operator if

d{EΩΩ)tj d(ΠΩΩ)ki d{EΩΩ)jkn

dxk + dtf + dx* " ' ( '
and

(EaΩ)τ=-EΩΩ9 (4.2)
for all n = 0,1,2,....

One can show by straightforward calculations that if Eqs. (4.1) and (4.2) are
satisfied for n = 0,1,2 then they hold for n = 3, too. As a result, they are satisfied for
any n. So we have

Proposition 4.1. // together with the form Ω the forms LΩΩ and l3ΩΩ are closed and
skew symmetric, then the operator LΩ is a Ω-weak recursion operator.

Note that all the conditions (4.2) are satisfied if Ωτ = - Ω and (LΩΩ)T = - LΩΩ.
If additionally detL β φ 0, then the closeness and skewsymmetry of the forms Ώ,

LΩΩ, l3ΩΩ lead also to the closeness and skewsymmetry of the forms L~Ω

nΩ,
n= 1,2,3, Indeed, choosing the form Ω2 = ΰΩΩ as an initial one and using the
closeness and skewsymmetry of the forms L~Ω

1Ω2, and L~Ω

2Ω2, one can prove that
the form UΩΩ2 — UΩΩ is closed and skewsymmetric too. Further one can easily
show that all the forms L~Ω

nΩ2 = J}Ω

nΩ{n = 3,4,...) are closed ans skewsymmetric.
In the case detL Ω Φθ the closeness and skewsymmetry of one of the following

two sets of the forms: UΩΩ, Ω, LΩΩ or L~Ω

2Ω, UΩΩ, Ω are the sufficient conditions
in order that the operator LΩ be a Ω-weak recursion operator too.

In Proposition 4.1 and subsequent results, one can start from any given
symplectic form Ω. To simplify the calculations it is convenient, however, to choose

the local coordinates in such a way that Ω = Ω{0) = I 1. This does not reduce

the generality of the results obtained since Eqs. (4.1) and (4.2) are of invariant
character.
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In the case Ω = ί ), Eqs. (4.1) and (4.2) for n = 0,1,2 are

ψ ψ ψa,^, ,4.4)
and

&n\J-Ώe — LnnΩke (4.5)

Multiplying (4.3) by ΠQU, summing over m, and taking into account (4.5), one
obtains

Λ ί LjΩnh£mkT ^Ωk Λ h£mί ~ UΩk Λ n

 h£mi

Using (4.6), it is easy to see that Eq. (4.4) is equivalent to the following one:

^ Ω m i = 0. (4.7)

Let us transform the second and third terms in (4.7), using the equality (4.5) and
Ωnt{Ω~λ)tQ = δQ

n. As a result, we have

f) Tm r)JQ P)Tm

jn υ^Ωko

 (Jl-Ωio ( o - i γ t J m Q jn ϋLjΩi Q _ π /^m
^Ωi ~^3Γ lίm£ W~V ^kρV*1* ) ^Ωt^mί ~~ ̂ Ωk ~W~V lίmί ~ U l^ δ )

Hence

jn 0UΩk % Λ {O-lγtrm jn ϋUΩi _ Q ( Λ Q X

We note now that by virtue of (4.5) Eq. (4.3) is equivalent to

If one multiplies (4.10) by (Ω *) and sums over m, one obtains

pjϊk f)T r)Tn

VLjΩi _ UL^Ωt _ _ υL^Ωί Q SQ-lynk

dx* dxι dxm m

= - ^ Ω , π ( Ω - Γ f c . (4.Π)

Substitution of (4.11) into (4.9), eventually, gives

fMΩi dEΩk
)LΌt

(4.12)

„ sπΩk (dEΩi dEΩk\
Ωi dxn +{δxk dx{) Ωt
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So the equation, which contains only the recursion operator LΩ, follows from
Eqs. (4.3H4.5).

Proposition 4.2. // operator LΩ satisfies the system of equations

dLΓΩk

δxk δx' J ^ ^ ^ δx" ^Ωkδx°~"' ^ l J }

d(LΩΩ)ik δ{LΩΩ)ei δ(LΩΩ)u _

dx dx dx

(L Ω) = — (L Ω) (4 15)

then it is a Ω-weak recursion operator.

Proof Let Ω = Ω(0). The conditions (4.13)—(4.15) are equivalent to the conditions
(4.3)-(4.6). Indeed, from (4.12) and (4.11), one gets (4.9). Multiplying (4.9) by Ωm/, we
obtain (4.8). Equation (4.7) follows from (4.8) and is equivalent to (4.4) due to (4.6).
The conditions (4.13)—(4.15) are, therefore, equivalent to the conditions of
Proposition 4.1.

Let us consider the conditions (4.13) and (4.14) in more detail for the case detLΩ

φ 0. At first sight, these conditions are not necessary. Indeed, if one takes instead of
Ω, LΩΩ, L2

βΩ, the other sets of three closed forms: L^2Ω, UΩΩ, Ω or UΩΩ, Ω, LΩΩ,
then instead of (4.13) and (4.14) we will have the analogous conditions with the
substituion LΩ^UΩ .

However, it is worth noting the following. Firstly, multiplying Eq. (4.13) for UΩ

by EΩaIΪΩβΠΩ^ summing over f, fc, /, and taking into account (4.13), one gets Eq.
(4.13) for LΩ. So Eq. (4.13) for L~Ω

ι is equivalent to the same equation for LΩ. In
other words, if LΩ is the solution of (4.13), then UΩ is the solution, too.

Secondly, the conditions of closeness and skewsymmetry of the form UΩΩ
together with Eq. (4.13) are equivalent to the conditions of closeness and
skewsymmetry of the form L2

ΩΩ. Indeed, putting Ω = Ω(0), multiplying (4.14) for
UΩΩ by EΩaIfΩβIΪΩγ, summing over z, fe, £ and using (4.15), we obtain Eq. (4.7).
Equation (4.9) follows from (4.7). Using (4.12) one gets (4.11). This equation is
equivalent to (4.10) and, hence, to Eq. (4.3).

Thus, at detL^φO the conditions (4.13)—(4.15) for UΩ

ι are equivalent to the
conditions (4.13)-(4.15) for LΩ.

So in the case detL Ω Φθ we have

Theorem 4.1. The conditions (4.13)—(4.15) are necessary and sufficient conditions in
order that the operator LΩ be a Ω-weak recursion operator.

The invariant form of Eq. (3.9) (or (4.13)) is the following:

[Lτ£, ΰnΛ - LτtLτξ, η\ - Lτ[£, ΰη] + U\ξ, >/] = 0, (4.16)

where ll is the transposed matrix L, ξ and η are arbitrary vector fields, and [£, η]

denotes the standard commutator of vector fields (see e.g. [31]): \_ξ, η~\ι = Σ
k

— —-j ξk I. Following paper [26], where Eq. (4.16) was considered for the first time,
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we will refer to Eq. (4.16) as the Nijenhuis equation. Note that for the £2-weak
recursion operator one has lΊΩ = Ω~γLQΩ due to (4.2).

An equation of the form (4.16) has been also considered in [27-30].

V. Strong Recursion Operator

Let us consider now the situation when the operator L is a recursion one both in H
and Ω senses.

Definition. Operator L is the strong recursion operator if any of its power
transforms the gradient into the gradients (EVH=VHn) and the symplectic form
into the symplectic forms (EΩ = Ωn).

Possessing simultaneously the properties of both weak recursion operators,
the strong recursion operator generates both the infinite family of Hamiltonians
Hn and the infinite family of symplectic forms Ωn = EΩ. Equations (2.5), (2.6) or
(2.8) which are generated by a strong recursion operator have all the previous
properties and some new ones.

Let we have an equation x = Ω~1VH from the family of Eqs. (2.8), and let
detLφO. By virtue of the properties of the strong recursion operator, we have

x = Ω1VH = (LnΩy1ΠVH = Ω;1VHn, (5.1)

where n is any integer and Ωn are the closed symplectic forms.
So any equation generated by the strong recursion operator is a Hamiltonian

one with respect to the infinite set of Hamiltonian structures (pairs Ωn, Hn).
We denote the Poisson brackets which corresponds to the form Ωn as

{, }n: {F, H}n = —. ( β - ψ-^k Let us calculate {Hni, Hn2}ny Taking into account

that (LΩ)T= -LΩ, we have

fir Tj i _ f p i \ m /O-lγV7p?2-»3Vc
i*1nί>

ίln2}n3 — KL' )i Qχm\U > ̂  '̂fo*

Then

d E

 (Q-lΛmi(nk
dH d H

 (nm(Q~lγkdH

(Ω ) { L ) i - { L ) i { Ω )

Therefore, ^(Ω~ι)mi(E)\~ =0, and, as a consequence, {Htίι,Hn2}n3 = 0 for

any n l 5 n2, n3.
Thus, all Hamiltonians Hn which are generated by the strong recursion

operator are in involution with respect to any Poisson bracket {, }m generated by
this operator.
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It is clear also that if the initial equation (2.1) admits the strong recursion
operator L, then any equation of the form (2.8) possesses the same strong recursion
operator.

So the Hamiltonian equations, which admit a strong recursion operator, have
a very special structure. Firstly, they possess the infinite set of the integrals of
motion in involution and they are Hamiltonian ones with respect to the infinite
family of Hamiltonian structures. Secondly, the infinite families of equations are
associated with such equations: any equation of these families has the same
properties as the initial one.

In other words, the strong recursion operator generates the infinite family of
Hamiltonian structures (Ωn, Hm; n, m = 0, ± 1 , ± 2 , . . . ) from the initial
Hamiltonian system. Each of these Hamiltonian structures determines the
dynamical system (flow). The Hamiltonian structures (Ωn, Hm) with the same value
of n — m correspond to the same dynamical system. The family of Hamiltonians Hm

forms the infinite set of common integrals of motion which are in involution with
respect to any symplectic structure Ωn.

The examples of strong recursion operators are well known. In the case of a
continual number of the degrees of freedom they are, for example, the operator
(1.2) and Eqs. (1.1), and the recursion operators which were calculated in [10-22].
Some properties of the equations which admit the strong recursion operator have
been discussed as well.

The operator L = Ω~1LΩ is closely connected with the recursion operator L.
The operator L transforms vector fields into vector fields: ΠΩ1VH = Ω~1VHn.
Equations (2.5)-(2.6) can be also represented in the form x = LnΩ~1VH. Both
operators L and L naturally appear in the approach which is based on the spectral
problems (see e.g. [20, 21]).

Let us consider now the conditions which define a strong recursion operator.
These conditions are obviously the join of the conditions which determine the H-
and Ω-weak recursion operators. Propositions (3.2) and (4.2) give rise to

Theorem 5.1. If operator L satisfies the system of equations

w ~Lkw -ϋ > (5 2)

E,dH _ d2H δEkdH τn d2H
— \ ~ I^i — h ~ L>i

d(LΩ)ik , d(LΩ)ti , S(LΩ)k

k _ + £ • . _ _ _ _ * _ _ _ £ f f c Γ - 7 Γ = 0 ,

(5.5)

then it is the strong recursion operator for the Hamiltonian system Ωx = VH.
In the case detLφO, the conditions (5.2), (5.4) and (5.5) are also necessary ones.

So the //-weak recursion operator becomes the strong recursion operator if it
also transforms the symplectic form Ω into a symplectic form. The Ω-weak
recursion operator becomes a strong one if it additionally converts the gradient
VZ into the gradient (LVH= VHX).



2Ή 8f(x) 8x
form ύt = Σ ^ / x θ € ~rίί v where fk(x) and as(x?) are arbitrary functions.

OX OJ (X)
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We see that in the description of both the weak and strong recursion operators
the quadratic equation (5.2) plays an important role. This equation is a very special
one. It is a system of 2iV2(2JV—1) equations for (2N)2 quantities ΰt

(/, k = 1,..., 2 JV). Nevertheless, this highly overdetermined (for N > 1) system has a
large class of solutions. As we have seen, if L is a solution of (5.2), then LΓ 1 is a
solution too. It is not difficult also to show, that together with L the quantity 1 — XL
is also the solution for any number λ. Hence, (1 — λL) ~ι = 1 + λL+λ2l} + . . . is the
solution of (5.2) too. The simplest solution of Eq. (5.2) is ύ—δ^^x1), where ^(x;)
are abitrary functions. By virtue of the invariance of Eq. (5.2) under the general
coordinate transformations xι-> x1' = f\x), Eq. (5.2) has also the solutions of the

2Ή 8fk(x)

OX OJ (X)

In the conclusion of this section we compare the results of the present paper
with those of papers [26-28]. The key notion in papers [26] was the notion of a
Hamiltonian pair, i.e. two Hamiltonian operators such that any linear
superposition of them is a Hamiltonian operator too. In this approach the
recursion operator appears as the "ratio" of two Hamiltonian operators from the
Hamiltonian pair.

In our approach we deal with the recursion operator from the very beginning.
If a system admits the Ώ-weak recursion operator LΩ, then all the form
EΩΩ(n = 0,1,2,...) are closed. The form LΩΩ + λl3ΩΩ + λ2βΩΩ + . . .
= (1 — λLΩ)~1LΩΩ, where λ is any number, is closed too. Therefore the operator
((1— λLΩ)~1LΩΩ)~1 =(LΩΩ)~1 — λΩ~ι is a Hamiltonian one for any λ, i.e. the
operators (L^Ω)" 1 and Ω1 form the Hamiltonian pair.

Proposition 5.1 (Gelfand and Dorphman). In order that the Hamiltonian operators
Ω~ι and (LΩ)~ι form the Hamiltonian pair it is necessary and sufficient that the
forms Ω, LΩ, UΩ be the closed ones.

Sufficiency immediately follows from Proposition (4.1). Let us prove the
necessity. The Jacobi identity for the Hamiltonian operator Ω~x + λ(LΩ)~ι leads
to the closeness of the forms Ώ, LΩ, and also to the equation

where we choose Ω = Ω ( 0 ) = ( ). Multiplying (5.6) by (LΩ)Oίi(LΩ)βj(LΩ)γk,

and summing over i, j , fe, we obtain (4.7). By virtue of (4.3), the equality (4.7) is
equivalent to (4.9), i.e. to the closeness condition for the form UΩ. The left-hand
side of (5.6) is nothing but the Schouten bracket (see e.g. [26]) for the operators
Ω~x and {LΩ)~ *. So the equality to zero of the Schouten bracket [Ω~ \ (LΩ)~ *] is
equivalent to the closeness of the forms LΩ and l}Ω.

If the operator L is a Ώ-weak recursion operator, then any two operators
(E'Ωy1 and {E2Ω)~X form the Hamiltonian pair. Indeed, by virtue of the
closeness of the form



496 V. E. Zakharov and B. G. Konopelchenko

the operator

\ - i

is a Hamiltonian one for any λ and nu n2.
Taking into account all these results, it is not difficult to see that from the point

of view of the construction of Hamiltonian systems Theorem 5.1 and Theorem 3.4
from [26] are essentially equivalent.

The recursion operator which is considered in [26] (regular operator), is the
Ω-weak recursion operator in our terminology.

The fact that the operator ΩLΩ~\ where LΩ~1VH = Ω~1VH1, transforms
gradients into gradients, i.e. it is the //-weak recursion operator, and also the fact
that the eigenfunctions of this operator are gradients of its eigenvalues have been
noted in [30].

VI. Recursion Operators in the Theory of Nonlinear Waves

Generalization of the results of the previous sections to the theory of nonlinear
waves, i.e. to the case of a continual number of the degrees of freedom, is obvious
enough. We have the system of n fields w1^, ί),..., un(x, ί) in J-dimensional space (x
= (xu ...jXj). Let us recall (see e.g. [32, 33]) that the system of n equations is a
Hamiltonian one if it can be represented in the form

C''° δH ' τ = l , . .,n), (6.1)
P δ ί (9W (X, t)

where the Hamiltonian H is a certain functional on w1, ...,M", — denotes a

variational derivative and Ωα^(x, x') is a kernel of the nondegenerate linear
operator (which depends, in general, on t/1, ...,t/n), which satisfies the closeness

δΩxβ(x,x') δΩw(x",x) δΩβy{x',x")

δu>(x") δuβ(x') δu\x) K '

and skewsymmetry conditions

Ωaβ{x,x')=-Ωβa{x',x). (6.3)

Similar to the case of a finite number of degrees of freedom, we define the weak
and strong recursion operators:

- = g " , (6.4)

1 dx\EΩt (X, XOΩ/Ϊy(̂  Xθ = Ωnayfr, *Ί ' (6-5)

The propositions and theorems of the previous sections hold for nonlinear
waves, too. The only modification is concerned with the form of the corresponding
equations. In particular, the analogs of Eqs. (5.2)—(5.5) are
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f Λy J (δwJ^zL — °Lβ(x , X) \ ( .

- 0 , (6.6)

ί ( ' ' δu\

]
δu\x)δu\x)\

= 0,

= 0,

(6.7)

(6.8)

(6.9)

<5«α(x

{LΩ)βa{x\ x) = - ( L Ω ^ x , x ' ) ,

where (LΩ) α /x,χ-) d =ί rfx"Ly

α(^,**)Ω,ί(**»*0

Theorem 6.1. // operator L satisfies Eqs. (6.6), (6.7), then it is a H-weak recursion
operator. If operatorL satisfies Eq. (6.6), (6.8), (6.9), it is a Ω-weak recursion
operator. In the case when operator L satisfies the whole system of Eqs. (6.6)-(6.9), it
is the strong recursion operator.

The strong recursion operator L generates, starting from (6.1), the infinite
family of nonlinear evolution equations

^ ^ (6.10)

where φ{L) is any entire (meromorphic for detLφO) scalar function. Each of Eqs.
(6.10) possesses the infinite set of the integrals of motion Hn and is a Hamiltonian
one with respect to the infinite family of Poisson brackets of the form

^ ^ y (6.11)

where f(L) is an arbitrary entire (meromorphic for detLφO) function.
Taking into account our further constructions, we rewirte the formulae given

here in the momentum representation. Performing the Fourier transform
_d_

u\x, t) - (2π) 2 ί dp*,a

p(t) exp(ίpx),

p'x'),

we get the closeness condition

δΩ
β,pq j δΩya,kp j

L δ
ya,kp

and the skewsymmetry condition

ΩaβtM=-Ωβatqp. (6.14)
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Equations (6.6)-(6.9) in the momentum representation are of the form

δ Π β q > k iQ δ I ^

bL%qkbH δ'H

δ(LΩ)aβ,pq b(LΩ)yaΛp δ(LΩ)βy<qk

— I ~ Ί ' T~fl ' Γ ^ U> I 6 - 1 ' )
0&Lk oa,-q oa,-v

(LΩ)βatqp=-(LΩ)aβtM, (6.18)

where (LΩ)aβtPq = SdkBatpkΩyβt-.kq.
h f l l ill id

β P q p y β t q

In what follows we will consider nonlinear systems which are described by one
real field. In this case a local and u-independent symplectic form is of the form

Ω(o)M = Λ<5(p + «), (6.19)

where fp is an antisymmetric function (f-p=—fp) and δ(p) is a Dirac-delta
function. For the one-dimensional space (d= 1) without loss of generality one can
choose 7

Ω(o ) M =--<5(P + 9). (6.20)

VII. Expansion over Nonlinearity and Recursion Operator

The problem of calculation of the recursion operator, i.e. the problem of solution of
Eqs. (6.6)-(6.9) or (6.15)—(6.19) in functional derivatives, is difficult enough even in
the simplest case of one field. One can simplify this problem if one restricts oneself
to a certain special class of dynamical systems (Ώ, H) and solutions.

For this purpose we consider the translation-invariant systems which have a
smooth behaviour at ̂ p-»0, i.e. smoothly reduce to the linear system in this limit.
So we assume that the Hamiltonian and the symplectic form of the translation-
invariant system (6.1) are of the form

H= Σ f^1.Jrti + ...+ϋ^,..^1...\, (7.1)
n = 2

00

= Σ $dq1..Jqnδ(p + q-q1-...-qn)Ω{nΪM{qi^qn)Λqι...Λqn, (7.2)n = 0

where Vin)qu qn are some functions which are completely symmetric on their
variables and Ω(n)pqiqi qn) are functions which are symmetric on the variables
qu ..., qn. For simplicity, we consider the case of one real field and successively use
the momentum representation.
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We will search for the recursion operator Lpq in the form of an "entire" function
on ap too:

Lpq= Σ ld^l' 'dqnhn)pq{q1...qn)^q1'- ^qn^ ( 7 3)
n = 0

where L{n)pq{qi qn) are functions which are completely symmetric over the variables
qu ..., qn. The translation in variance gives a certain restriction on the form of the
functions L{n)pq{qi qn). Namely, taking into account that {P, aq} = iqaφ where P is a
total momentum, we have

where L{n)pq{qι qn) are some functions.
Further, let us consider the case of a constant symplectic form Ωpq and choose it

as (6.19).
Let us substitute the expressions (7.1), (7.3), (7.4), and (6.19) into Eqs. (6.15)-

(6.18). The left-hand side of these equations should be equal to zero in any order on
a>v. Therefore, Eqs. (6.15)—(6.18) are equivalent to the following functional
equations for L{n)pq{qi_qn) and V{n)qi_qn:

n

<5(p + 4 + fc-fc1-...-fcπ) Sym Σ
(kί,...,kn) m =

T ,n T
(m)p, Σ k;-p(l<i Kn) (n-m+l)qk

-\-{n m-\r U^( m ) ?£ kt-Kkik^-.kJ (n-m+l)p,k- ΣkΛ-V>kmil, ,

-qi-. .-qn) Sym Σ {(m+l)(n-m+l)
(kι,...,kn) m = 0

. L »-'« V
(m+i)p, - Σ k,n+A-qΛχ, ..,km) ( n - m + D - Σ km + ί,km + 1, ,kn)

(7.5)

(7.6)

— k2 — — k n ) { f q L i n ) p q { - k , k 2 , . . . , k n ) + f p L ( n ) k p ( - q , k 2 ,.. ,kn)

f k L { n ) q k i - p , k 2 , . . . , k n ) K = 0 ( n = l , 2 , 3 , . . . ) , (7.7)

π)M(fcl...fcn) + / p L ( B ) ^ (n = 0 , l , 2 , . . . ) 9 (7.8)

where Sym denotes the complete symmetrization over the variables k l 5..., fcπ.
(/ci,...,fen)

The system of algebraic functional equations (7.5)—(7.8) is the complete system
of equations for the calculations of all functions L{n)pq{qiqn), which determine the
recursion operator L.
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Here we present the simplest examples of equations (7.5), (7.6). Equations (7.5)
with n = 0 and n = 1 are of the form

)qt -q)^{l)p, -p -q(-q) ~

(7.9)
) - k, k)L(2)q, k(~p,p + q + k)~ ^\-^(0)q, - q~~ ^(0) - k, k)-^(2)p, k(-q,p

l)q,~p-q{~p) = O . (7.10)

Equation (7.6) for n = 0 gives

Since V{2)-_p>p = V{2)p,-P, then L ( 0 ) p ? _ p = φ(p), where φ(p) is an arbitrary even
function on p (φ( — p) = φ(p)).

Further, Eq. (7.6) for n = 1 is

q){2)_q,q-(p~q) = 0, (7.11)

and for n = 2 it is of the form

+ -k)V2)- —(p<->q) = O. (7.12)

Equations (7.6) allow us to calculate all L(1), L ( 2 ),..., for given V{2), V(3)9.... Let
us start with Eq. (7.11). Taking into account the closeness and skewsymmetry
conditions (7.7) and (7.8), it is not difficult to show that the relation (7.11) is
equivalent to the following

L =3 φ(p)-φ(<ύ v ,η 1 3 )

jq\(ti\P ~\~ q) — 0)(p) — Wyqj)

where ω(p)= V{2)Pf _p//p The function ω(p) determines the dispersion law for the
corresponding equation, i.e. -—JL =ω(p)aΌ+....

όt

Analogously, using (7.13), we have from (7.12)

1

2 fq(ω(p + q - k) + ω(k) - ω(p) -

φ(p)-φ(<ύF

- ω(p) - ω(fe -
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[ (φ(q)-φ(q-k))V{3)_qtq-ktkV{3)-Pt_q + kfP + q_k

fk _ p(ω(k) - ω(q) - ω(k ~ q))

-k)-ω(p)-ω(q-k))

kΛ ( 7 1

(3)

-k)-ω(q)-ω(p-k))

In a similar manner one can derive, from (7.6), the formulae which express L(

via V(3), V(4), V(5), the function L ( 4 ), via F ( 3 ), F ( 4 ), F ( 5 ), F ( 6 ) and so on.
Thus, for a given Hamiltonian, i.e. for given functions F ( 2 ), F ( 3 ) , . . . , and a certain

fixed even function φ(p), we easily calculate all functions L{ί)pq{p + q), L{2)pqi...)?...,
which determine the operator Lpq. In order that this operator Lpq be the recursion
operator it should satisfy equations (7.5), (7.7) and (7.8). The fulfillment of (7.8) is
obvious. By simple but tedious calculations, one can show that the expressions for
Ld)pq(p+q)and L(2)pq(...)> S i v e n b Y t h e formulae (7.13), (7.14), indeed satisfy Eqs. (7.9),
(7.10) and the closeness conditions (7.7) for n= 1,2.

Thus the formulae of the type (7.13), (7.14) allow one to calculate the recursion
operator Lpq for given F ( 2 ), FJ3 ),.... Emphasize that all functions F ( 2 ), V{3),... (i.e.
the Hamiltonian of the equation) are arbitrary ones. So, any dynamical system
(6.1) with any Hamiltonian of the form (7.1) possesses, at least, the formal strong
recursion operator Lpq.

The existence of a formal strong recursion operator for any Hamiltonian
system of the form (6.1), (7.1) becomes obvious if one takes into account the
following three circumstances. The first one is: any system of equations (7.5)—(7.8)
is invariant under the general transformations of "coordinates" ^ p and, therefore,
the existence of the recursion operator for this system is independent of the choice
of variables ap. Secondly, any nonlinear system with a Hamiltonian of the form
(7.1) can be linearized by a suitable canonical transformation [32, 33]. The third

point is: any linear equation —•— = ω(p)ap with an odd function ω(p) possesses the

recursion operator of the form Lpq = φ(p)δ(p + q)9 where φ(p) is an arbitrary even
function.

Indeed, we have the dynamical system with Hamiltonian (7.1). Let us linearize
this system (i.e. reduce the Hamiltonian H to the form H= j dp1dp2δ{p1

canonical transformation ap-+βp\

fcA2"Λn ( 7 1 5 )

Using the condition of the canonical character of the transformation (7.15), i.e.

1 " " x ' W . ? (7.16)
Oϋk Jk Oϋ~k

we, in particular, have [32]
3
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The linear equation —— = ω(p)όp, which appears after this canonical

transformation, possesses the recursion operator Il[

pq

ar = φ(p)δ(p + q), where φ(p)
is an arbitrary even function. Let us now perform the inverse canonical
transformation £p-+ap into the initial nonlinear system. The recursion operator is
transformed under this transformation as follows:

r(linear) r — [Ah Ah ? r(linear)o
^pq ^^pq— i aKίUK2^-p,-kί

J^kίk2

 όk2,q

, (7.18)

where SD a= ̂ -, SDa= —^. In particular, formula (7.18) gives

Substitution of (7.17) into (7.19) gives exactly the expression (7.13). In a similar
manner one can obtain the expression for L{2)pq{kp+q_k) of the form (7.14) and
analogous formulae for L(3), L ( 4 ),.... So, formulae (7.18) yields the strong recursion
operator for an arbitrary initial nonlinear system with Hamiltonian (7.1).

VIII. Regular Recursion Operator

In the previous section it has been shown that any Hamiltonian equation possesses
the formal strong recursion operator. However, in the general case such a
recursion operator is a singular one due to the denominators of the forms

ω(P + Φ - ω(p) — ω(q)» ω(p + q — k) + ω(k) — ω{p) - ω(q),

etc., in the expressions of the type (7.13) and (7.14). Similar denominators are
contained in the expressions for higher symplectic forms and Hamiltonians which
are generated by the recursion operator. For example, for the symplectic form Ωipq

= (LΩ(0))pq = Lpqf_q, we have

3φ(q)-φ(p)
" ( p + ί ) _ ω ( p ) _ ω ( ? ) "<3>-P.-<.P + <> ^

6φ(q)-φ(p)

Using formulae (7.13) and (7.14), one can easily obtain the relations between
the coefficient functions F ( 3 ), F ( 4 ), and F(3j, F ( 4 ) of the pair of Hamiltonians related
by the recursion operator L (LVH= VH). Equalizing the right-hand side of the
equalities (7.13) and (7.14), taken correspondingly for F ( 3 ), V{4) and F ( 3 ), F ( 4 ) and,
taking into account an obvious equality ώ(p) = φ(p)co(p), we obtain

(p + q)-φ(p)ω(p)-φ(q)ω(q)
Y

-k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)
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' V(Δ\— n -n

(φ(q + p)ω(q + p)-φ(q + p- k)ω(q + p - k) - φ(k)ω(k)

φ(p + q- k)ω{p + q-k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

ω(p + q — k) + ω(k) — ω(p) — ω(q)

φ(p)-φ(p-k)

my y _ 3 φ(p)-φ(q)

ίψ(p + q- k)ω(p + q-k)- φ(q)ω(q) - φ(p - k)ω(p - k)

\ ω(p + q-k)-ω(q)-ω(p-k)

- k)ω(p + q - k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

ω(p + q — k) + ω(fc) - ω(p) - ω(g)

φ(p)-φ(q)

/φ(p + g - fc)ω(p + g - fc) - φ(p)ω(q) - φ(q - k)ω(q - k)

\ ω(p + q — k) — ω{p) — ω(q — k)

φ(p + q- k)ω(p + q-k) + ψ{k)ω{k) - φ(p)ω(p) - φ(q)ω(q)\

ω(p + q — k) + ω(k) — ω(p) — ω(q) J

ίφ(k)ω(k) - φ(q)ω(q) - φ(k - q)ω{k - q)

\ ω(k) — ω(q) — ω(k — q)

I - k)ω(p + q-k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

ω(p + q — k) + ω(k) — ω(p) — ω(q)

φ(p)-φ(q)

ίφ(k)ω(k) - φ(p)ω(p) -φ(k- p)ω(k - p)

\ ω(k) — ω(p) — ω(k — p)

- k)ω{p + q - k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

ω(p + q — k) + ω(k) — ω(p) — ω(q)

Recall that all functional Hn (ΠVH= VHn) are the integrals of motion for the
initial Hamiltonian system (7.1). However, the presence of singularities (see e.g.
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formulae of the type (8.2), (8.3)) in the coefficient functions F ( 3 ), V{4),... of the higher
integrals of motion Hu H2,... makes all these integrals poorly defined in the
general case. In order that all these Hn be well defined functional on ap it is
necessary that the multiple of the form

φ(p + q)ω(p + q)- φ(p)ω(p) - φ(q)ω(q)

(8.4b)

ω(p + q)-ω(p)-ω(q)

- k)ω(p + q-k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

ω(p + q — k) + ω(k) — ω(p) — ω(q)

would not contain the nonintegrable singularities.
We will refer to the recursion operator, which generates the family of well

defined Hamiltonians Hn from the well defined initial Hamiltonian ϋ , as the
nonsingular recursion operator. It is clear that the demand of nonsingularity of the
recursion operator leads to certain restrictions on the form of the functions ω(p),
V{3), F ( 4 ) , . . . and allows only some subclass of equations from all equations of the
form (7.1).

The stronger restriction on the Hamiltonian (i.e. on the functions V{2), F ( 3 ),
F ( 4 ),...) appears if one demands that all functions F ( 3 ), F ( 4 ), ί^5),..., would not have
singularities at all. We will refer to the recursion operator which produces such a
family of Hamiltonians as a regular recursion operator.

As we shall see, the properties of recursion operators crucially depends on the
dimensionality d of the space. Let us consider subsequently the cases d= 1, d = 2,

In the one-dimensional space the multiple (8.4) is the simplest one. For d — 1 we
00 00

have ω(p)= Σ oίnp
2n+1 and φ(p)= Σ βnP

2n- It is not difficult to show that for
n= 1 n = 0

any ω(p) and φ(p) the expressions (8.4) are polynomials on p, q and p, q, k. For
example, for ω = p 3 , φ = p2 one has

φ(p + q)ω(p + q)- φ(p)ω(p) - φ{q)ω{q)

ω(p + q)-ω(p)-ω(q)

5, „

- k)ω(p + q - k) + φ(k)ω(k) - φ(p)ω(p) - φ(q)ω(q)

— k) + ω(k) — ω(p) — co(q)

3(p + q)(q-k)(p-k)

Thus for any ω(p) and φ(p) the function V{3)_p^q^p + q has no singularities.
The expressions in the round brackets in (8.4) have no singularities, too. Let us

choose /J7 = constp" 2 y ~ 1 (y>0). It is not difficult to see that by virtue of the
multiplers in front of the round brackets in (8.4) the expression for
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ΐ^4)-pt-q,fc,p + q-k has poles at p + q = 0, p — q = 0, p = 0 and q = 0. However, it is
easy to check that the residues of Vi4.)-Pi ^qjk^p + q-km these poles are equal to zero
independently of the form of V{3)....

So the functions V{3), V{Ar) have no singularities for any ω(p) and φ(p). One can,
however, show that the function V{5) has no such property. Analogously F(6),
V{Ίp ... have singularities for general Fj3), FJ4),.... The requirement for the absence
of singularities in the expressions for all the functions F(5), F ( 6 ),..., leads to a certain
system of equations for F(3), F(4), F ( 5 ),.. . . If these equations are satisfied, then the
considered system possesses the regular recursion operator. By virtue of the
cumbersome form of these equations, we omit them here.

In the general case all the functions L(1), L(2), L(3),..., which determine the
recursion operator, are not equal to zero, i.e. the recursion operator is the entire
functional on a. However, it may occur that this infinite series is interrupted on
some (JVth) term. We will refer to such a recursion operator as the iV-linear
recursion operator. It is clear that the requirement of the JV-linearity of the
recursion operator, i.e. the requirement L{N+1) = L{N+2)=... =0 leads to strong
restrictions on the form of the functions F(2), F(3), V{4),.... For example, in order
that the recursion operator L be linear on a (i.e. L(2) = L(3) =. . . = 0) it is necessary
that the right-hand side of (7.14) should be equal to zero, i.e.

φ(p)-φ(Φ

φ(p)-φ(p-k)
fp _ k \ω(k) - ω(p) - ω(k - p)

I φ(q)-φ(p-k)
+ ω(p + q-k)-ω(q)-ω(p-k)) V(3)-p>p-k>kV{3)-q>-p + k>p + q-k

1 / φ(q)-φ(q~k)
fq _ k \ω(k) - ω(q) - ω(k - q)

φ(p)-φ(q-k)

In addition to (8.6), the conditions on V{2), V{3), F ( 4 ),..., which mean that L(3)

= L(4) = ... = 0 should satisfied.
In the case when Hamiltonian H is cubic on a, i.e. when F(4) = V{5) =. . . = 0, the

whole system of equations is reduced to the only equation (8.6) with F(4) = 0. Let us

consider this equation in the simplest cas fq = , φ(p) = α + βp2, ω(p) = constp3.

After the trivial transformations Eq. (8.6) reduces to the following:

(8-7)
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It is not difficult to verify that Eq. (8.7) has the only solution V{3) = const within
the class of polynomials F ( 3 ) . . ., i.e. within the class of local Hamiltonians H.
Indeed, putting p = k = 0 in (8.7), one gets q(V{3)Ot-qtq-V{3)QtOtO)Vi3)-qtOtq = 0.
Therefore ^3)o,-ίfβ=^3)o,o,o = const.

Thus, among the nonlinear equations with three linear local Hamiltonians and

I
3

the linear recursion operator. It is of the form

= p3, only the equation with V{3) =^= const, i.e. the KdV equation, possesses

pq -^Λp+q, (8.8)

where α, β, y are arbitrary constants. For α = 0, β = — 1 and y = — 2, the operator
(8.8) is the recursion operator (1.2) in the momentum representation.

Another example is the bilinear recursion operator which corresponds to the

equation with ω(p) = — ip , V{4)= - = const, and V{5)= V{6)= ... =0. In this case,

L(O)pq — ( α + βp2)3(P + q) 5

i.e.

where α, β, y are arbitrary constants. For α = 0, β— — l,γ= — 1, the operator (8.9) is
the recursion operator for the modified KdV equation (see [11]) in momentum
representation. Note that the operators (8.8) and (8.9) in coordinate representation
have been calculated by another technique in [2.8].

Thus, in the one-dimensional space there exist Hamiltonian equations which
possess the regular recursion operator. For a certain subclass of these equations
the recursion operator is the polynomial of the finite order on the field a.

The situation changes dramatically when we transit to the two-dimensional
space. It is connected with the circumstance that the expressions of the form (8.4)
have no singularities except for certain special functions ω(p) and φ(p). Let us first
consider the expression (8.4a). For the absence of singularities in such expressions
it is necessary that the numerator be equal to zero on the same manifold Γ 1 ' 2 as the
denominator. This means that the dispersion law ω(p) should be a degenerative
one with respect to the decay process 1 ->2 + 3 (for the degenerative dispersion laws
see [34, 35]), and the dispersion law φ(p)ω(p) should belong to the class of
degenerative dispersion laws associated with ω(p). The second condition can be

easily fulfilled if for the degenerative dispersion law ω(p) one chooses φ(p) =
ω(p)

where ώ(p) is any dispersion law associated with given dispersion law ω(p). A wide
class of degenerative dispersion laws has been described in [34, 35].

In the description of the dispersion laws the dimension of the manifold Γ"'m

which is defined by the equations p1 +...+£„ = £„ +1 + . . . + P« + m ?

 ω(Pi)
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...+ω(pn + m) plays an important role. If dimΓ1 '2 and
dimΓ2'2 are less than a maximal one (i.e. dimΓ1 '2 < Id — 1, dimΓ2 '2 < 3d — 1), then
the expressions (ω(p + q) — ω(p) — ω(q))~1 and (ω(p + q — k) + ω(k) — ω(p)
— ω(g))^1 may have integrable singularities. For such ω(p) (with dimΓ"'m

<maxdimΓ"'m) the nonsingular recursion operator may exist.
If dimΓπ'm is a maximal one, then the corresponding nonlinear equation does

not possess the nonsingular recursion operator. Indeed in this case, by virtue of the
theorem proved in [35], the expressions of the form (8.4b) have nonintegrable
singularities. The multiplers of the form

)-(fk_p(ω(k)~ω(p)-ω(k-p))y1

φ(p)-ψ(q)

in front of the round brackets in (8.4) have the nonintegrable singularities too.
Moreover, the nonintegrable singularity is contained in the symplectic form
Ωipq(p+q) ( s e e Formula 8.1).

Thus, the nonlinear equations in two-dimensional space, which describe the
nontrivial scattering oϊn waves into m waves («Φm) with maxdimΓn'm, does not
possess the nonsingular recursion operator. In particular, the well-known
Kadomtsev-Petviashvili equation [1] for which dimΓ1 '2 = 3 and V{3) = const has
no nonsingular recursion operator.

An analogous situation takes place for three and higher-dimensional spaces
(d^3). Since for d^3 there exist no degenerative dispersion laws with
max dimΓ"'w [35], the nonlinear equations with maxdimΓw'w do not possess
nonsingular recursion operators. Only the equations with dimΓ"'m < max dimΓ"'m

may have the nonsingular recursion operator.
So we see that the regular recursion operator is a pure one-dimensional

phenomenon. The proposed method of expansion over the fields (i.e. the
perturbation theory method) seems to be adequate for an analysis of the problem
of existence or nonexistence of the nonsingular recursion operator in the
multidimensional spaces. All the results of Sects. 7 and 8 can be generalized to the
case of the systems of equations (6.1).
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