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S. Ozawa

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku,
Tokyo, 113, Japan

Abstract. Let β be a fixed number > 1 . We remove [m^]-balls of centers
w l 5 ...,w[mβ] with the same radius α/m from a bounded domain Ω in R3. We
consider the asymptotic behaviour of the fcth eigenvalue of the Laplacian in
Ω\[m^-balls] under the Dirichlet condition as a random variable on a
probability space (w1? ...,w[mβ])eΩ[mβ\ when m->oo.

1. Introduction

In the present note we consider a mathematical problem concerning random
media. We consider a bounded domain Ω in R 3 with smooth boundary Γ. We put

Fix β^ 1. Let 0 <μ!(ε w(m)):gμ2(β w(mj) ^ ... be the eigenvalues oϊ — Δ(= — div-
/ m

grad) in Ωε w{m) = Ω (J B(s;w\m)) under the Dirichlet condition on its boundary.

Here m denotes the largest integer which does not exceed mβ, and w(m) denotes the
set of m-points {w^}^x e Ω™. Let V(x)>0 be C1-class function on Ω satisfying

ίV(x)dx=ί.
Ω

We consider Ω as the probability space with the probability density V(x)dx. Let
m

Ωm = Π Ώ be the probability space with the product measure. The following result

which is an elaboration of Kac's theorem (Kac [3]) was given in Ozawa [5].

Theorem A. Assume that β=l. Fix α > 0 and k. Then,

lim P(w(m) e Ω™ m5\μk(oc/m; w(m)) - μ \ \ < ε) = 1
m-> oo

holds for any ε > 0 and Ee[0,1/4). Here μζ denotes the kth eigenvalues of
— A -\-4πocV(x) in Ω under the Dirichlet condition on Γ.
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In this paper we study the case β > 1. In this case the sum of the radius of m-balls
B(ot/m; wjm)), i= 1,..., m, tends to oo as m->oo. We see by the argument in Rauch-
Taylor [9] that μk(oc/m;w(m))->oo if j8>l, V(x)>0, and

m

lim m'1 Σ f(^tn)) = ί f(x)V(x)dx
m->oo

for any fixed /eL°°(Ω). We call the case /?>1, F(x)>0 the soldίfyίng case,
following Rauch-Taylor.

The aim of this paper is to prove the following:

Theorem 1. Assume that 1 ̂  β < 9/8 and V(x) > 0. Fix α > 0 and fc. Then, there exists
a constant δ(β) > 0 independent of m such that

lim P ( w ( m ) e £ T ; mδ'~^~1)\μk((χl/m;w(m))--μlm\<ε) = ί (1.2)
m-> oo

/20W5 /or any ε > 0 and ^^[O,<5(jβ)). Here μ\m denotes the kth eigenvalue of
— A + Aπamβ ~x V(x) in Ω under the Dirichlet condition on Γ.

Remark. There exist constants Cb and Cu such that

Readers may refer to Papanicolaou and Varadhan [7, 8], Simon [10], Bensoussan
et al. [1], Huruslov and Marchenko [2], Lions [4], Ozawa [5, 6], and the
literature cited there, for related topics.

2. Probabilistic Consideration 1

Fix βe(ί,3). We consider the following condition (D — 0)m of w(m). (D — 0)m:

Assume that Ω\ (J B(a/m;w\m)) is divided into the connected components

ω^wim)), ...,ωβ(w(m))(w(m)). Then, gf(w(m))=l or

max diam ωs(w(m))(w(m)) ^ m ~1 log m

holds. Here diam 3 denotes the diameter of the set 3.
We have the following:

Lemma 1. Assume that β e (1,3). Then,

lim P(w(m) G ί T w(wi) sαίw/zes (D - 0) J - 1 (1.3)
m-> oo

Proof. We suppose that w(m) does not satisfy (D — 0)m. Then, we see that there
exists [(logm)/2α]( = m#) numbers s^wim)), ...,sm+(w(m)), such that

diam ( U M W ( M ) ) } 1 ^ 2 m - x logm. (1.4)
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By a simple combinatorial argument we have

P(w(m) eβ 1 *; (1.4) holds)^mm*P((w(

1

M),..., w^}) e ί2m*

for J8G(1 5 3). Thus, (1.3) is proved.
We consider the following condition (D — oo)m of w(m).

(D — oo)m: Take an arbitrary connected closed subset ^ m of Γ which contains the
disk with radius (by the induced metric on Γ) 2m~ι logm. Then,

It is easy to show that

lim P(w(ro) e Ω™ w(m) satisfies (D - oo) J = 1.
m-> oo

3. Idea of the Proof of Theorem 1

We put y>β—l. We abbreviate the largest positive number which does not exceed
mγ as nΐ. We put m" = (m')1/2. Hereafter we always assume that w(m) satisfies
(D — 0)m, (D — oo )m. We abbreviate ω1{w{m)) as ω for the sake of simplicity. Let
G(m')(x,y;w(m)) be the Green's function of A— nϊ in ω under the Dirichlet
condition on its boundary satisfying

(Δx-m/)GimΊ(x9y; w(m))= -δ(x-y), x, y e ω,
G(m')(^ y w ( m ) ) = 0, xedω.

Let G{mΊ(x, y) be the Green's function of A — mf in Ω satisfying

(Δx-m')G{mΊ(x,y)=-δ(x-y), x,yeΩ,

From now on we abbreviate G{mΊ(x,y) as G(x,y). We introduce the following
integral kernel function: We abbreviate w[m) as wf for the sake of simplicity.

m*

+ Σ (-4πα/m) sem"α s / m

• Σ G(x, WiJGiwi^ wh)... G(wisl, wis)G(wis, y).
(s)

Here m" = (m') 1 / 2 and m* is a function of m which is appropriately determined later.
Here the indices (z l 5...,z' s) in Σ r u n o v e r a H l ^ h 5 •• 5 Ϊ S ^ ^ satisfying zΊΦz'2,
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i2 Φ Ϊ 3 , ..., is-1 + is An essential key to Theorem 1 is the fact that \mΊ(x, y; w{m)),
when we consider it as an integral kernel function on ω x ω , is a nice
approximation of G{mΊ(x, y;w(m)) in a rough sense, if β — 1 is small. By a
probabilistic consideration we view that h{mf)(x, y\ w{mj), when we consider it as an
integral kernel function on Ω x Ω, is a nice approximation of the integral kernel
function of ( — A + m!+ 4πocrnβl~1V(x))~Λ in a rough sense. Along this line we get
Theorem 1.

4. Preliminary Lemmas

Lemma 2. Fix /? e (1,3). Suppose that um e C°°(ω) satisfies

(-A+ m')um(x) = 0, x G ω ,

ww(x) = 0, xedωnΓ,

and

max{|wm(x)| x e δB rnδω} = Mr(m), r = 1,..., m.

Here Br is an abbreviation of B(a/m; wj.m)). If dBrndω = φ, then we put Mr(m) = O.
Under the above assumption, there exists a constant Cp independent of such that

m

\\u\\LP{ω)ίCpKp(m) Σ Mr(m) (4.1)
r= 1

holds, where

Kp(m) = <

Proof By using the Hopf maximum principle we have

m

|u(x)| ^ C(α/m) Σ exp(-(mO1 / 2 |x-w r |) |x-w rΓ
1M r(m).

Notice that
k f \1/P / m"K \1/P

) e pm t pdt J ^ Cpm
 p I J t pe dt\

\OL/TΠ / \m"/m /

does not exceed CpKp(m)m. Thus, we get (4.1). q.e.d.

We have the following:

Lemma 3. Fix β e (1,3). Assume that w(m) satisfies (D — 0)m and (D — oo)m. Fix an
arbitrary σ e (0,1]. Then, there exists a constant C(σ) independent of m such that

TΊΊίΊ X I f~*( \ /~*ί \ I <f ί~* ( I \&\ I — 1 — G — wi" IWT — WyλjCtσ\ (Λ ^\

xedBrnω

max \S(x,wr)G(wr,wd\ύCφ/mγ(\ogm)\wί-wr\-1--°e-m"\w'-^lc<°>

hold.
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w(r)

Fig.l

Proof. It should be remarked that Br and Bt may have an intersection. We put

ΛBi)- {y = θwr + (1 - θ)x x e d#A#p 0e [0,1]}.

By a simple geometrical observation we see that there exists a constant
independent of wr, wb m such that

K - w,| ύ C** dist(Cone(Br\Bi)9 ^

holds. We see that the left side of (4.2) does not exceed

Cσ(a/m)σ || G( , wf)||Cα(Cθne(Br\Bi))

Here Cσ(F) denotes the usual Holder space. Thus, we get (4.2).
We want to prove (4.3). Take r such that dBrndω + φ. Then, dist(wr, dωnΓ)

^(α/m). By a simple geometrical observation including (D —oo)m, we prove the
following: Fix r and i. Then, there exists a constant E > 1 independent of m, r, i such
that we can take w*(r,ΐ)edωnΓ satisfying

dist(wΓ, w*(r, 0) ύ E(\ogm) dist (wr,

bΣ)'^E~ί\wr — wίl where

Σ= U {θwΓ + ( l-θ)w*(r,0} (see Fig. 1).

Take w(r)eΓ\5 r such that dist(wnw(r)) = dist(wr,Γ\Br). Then,

|wr - w(r)| - x G(wr, wj) S E(logm) \wr - w*(r, i)\ ~ι |G(wr, w,) - G(w*(r, i), w,)|

We see that

holds. By a simple observation on the boundary behaviour of the Green's function
we have

max \S(x, wr)| dist(wΓ, w(r)) ̂  C
xedBrndω
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for a constant C independent of m, r. In summing up these facts we get the desired
result, q.e.d.

5. Approximation of Green's Function

Put

(Φ(m')/) W = ί G(m')<X 3> w(m))f(y)dy, x 6 ω,
ω

and

( Ή ( m Ί / ) (x) = j Λ(nO(x, y w(m))f(y)dy, x e ω.

Put Q(m,, = ©,„,,, -H ( m,). Then, it satisfies

) = O, x e ω ,

for any fe C^(ω). We have to estimate Σ IQ(m')/(χ)lχ6δBrnaω t 0 § e t a bound for
r = 1

IIQ(m')/ llLβ(ω) We here introduce the following decomposition (5.1) of M{mΊf. Fix r.
We put

x) = Σί β ) G(x, w ^ G ί w ^ , w / 2 ) . . . G(w<e_ lS wis) ( G ( m , / ) ( w J

) ^ " ^ i : ( s ) G ( x , wr)G(wn wh)... G(wis_ 1? w ) ( G / ) ( j

for 5 ^ 1 . Here the indices inΣ[ s ) run over all l ^ i 1 ? i 2 5 . . . , i s ^ m such that i j φ r ,
i 2 # ϊ 1 , . . . , i s Φ ί s _ 1 . We put

, wr) ( G ( m , / ) (wr).

Then, it is easy to see that

(H(m')/) (x) = Σ ( - 4πα/m)^m"α s / m(^(m0/) (x) + ( - 4πα/m)m*em"αm*/m

• Σ{mt)G{x, wh)... G(wim,_,, W i J (©(„.,/) (W ί J .

We have

where

(Lί(m')/) (x)|«β B p n a«, = Σ'{s)(G(x, wh) - G(wr, wh))G(Wil, wh)

...G(w ί,. ι,w lJ (©(„,.,/) (wis), (5.2)

and

(JVJ(mO/) ( x ) | » e β B p n Λ β = ( - 4πα/m)emx/mΣ{s)S(x, wr)G(wΓ, w f l)

<„,,/) (vvis). (5.3)
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Here S(x, y) = G(x, y)-(4τψc-y|)" 1

ίr
m" l*- y |. We know that S(x, y) 6 C°°(ΩxΩ).

By using the Holder inequality we see that

/k

max |/r°(m0/WI^Cβ(α/wi)β f^M'
xedBrndω \

) (5-4)

holds for pr< 3/(1 + 0). Here p~* + p'~~1 = 1. Hereafter we assume that m'm*/m\-+0
as mi->oo. Observing Lemma 3, (5.2), (5.3), (5.4), we get the following:

Σ |/*(mθ/(x)\ l x e d B r n d ω S Ciff)(a/mY(mV~3 +p')l2p' # $\\ f \\LP{ω),
r= 1

for 3/2<p<cx), σe(0,1], where

#(

(s

σ)} = Σ K - wj2|~' -°exp(-m1Wjl - wί2|)G(wί2, wh)... G(wis, wis+ J.
(s+l)

In summing up these facts we get

Proposition 1. Fix /?e(l,3). Assume that w(m) satisfies (D — 0)m and (D — oo)m.
Assume that m'm*/m-*0 as m-+co. Then,

m)J(m, m*,p, σ, θ)\\f\\LP(ω) (5.5)

holds for any σe(0,1], θe(0,1], p satisfying 3/(2 — 0)<p£Ξoo. Here

Σ
s= 1

6. Probabilistic Consideration 2

It is easy to see that

-m"(\yi~y2\ + ... + \vs v . s . i | ) / X

holds for a constant Co, C^ independent of m. Thus,

From now on we assume that y > β — 1. Then, m^m) ~ί=mβ~1~γ tends to zero as
m->oo. We have

^ < ε ) ^ l - s ~ 1 C o Σ
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We also have

P(w(m) e Ω™

In summing up these facts we get the following:

Proposition 2. Fix /?e(l,3) and ε>0. Assume that y>β-\ and m'm^/m-^0 as
m->oo. Fix σe(0,1], 0e(0,1], p satisfying 3/(2-0)<p^oo. Tften,

lim P(w(m)eί2*;(D-0)w,(D-oo)m and (6.1) hold)=l,
m-»oo

vv/zere

IIQ(m') II LP(«,) ̂  C//p(m, m*,p, σ, 0, ε). (6.1)

+ \\ogm\m ~ σ ( m 0 ( " 3 + p Ί / 2 p \ m γ l 2 m ε

By the same argument as in Ozawa [5, Corollary 1] we can show the following
Corollary 1. Here we took θ= 1, σ= 1, and 3 <p as close as 3. Hereafter we assume
that m* = (logm)2.

Corollary 1. Fix /?e(l,3) and ε>0. Assume that γ>β—l. Fix an arbitrary v>0.
Then,

lim P(w(m) e ί2Λ; (D -0) m , (D - oo)m ami (6.2) Λo/d) = 1.

KmO'e)] (6-2)

We here consider the condition on β, y such that

m W r t + M - 1 ) | 1 Q ( m , ) | | L 2 ( ω ) = 0 ( 1 ) ( 6 - 3 )

holds for some δ(β,y)>0 as m-^oo. Assume that y< 1/2. Then, there exists v>0,
δ(β,γ)>0 such that

[the right side of (6.2)] x m

tends to zero as m->oo. In summing up these results we have the following:

Proposition 3. Fix 0 ̂  β -1 < y < 1/2, ε > 0. Γfcen,

lim P(w(m)e^;(D-0) w , (D-oo) m and (6.3) hold) = ί.

Let H ( m ) be the integral operator defined by

(ΉimΊf)(x) = J Λ(m0(x, j^ w(m))dj;, xeΩ.
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Let χω (resp., χω) be the characteristic function of ω (resp.? Ω\ώ). Fix ψ e L2(Ω). Put
gφ(m;x) = (M(mΊ(χωψ)) (x) for x e ω . W e see that {-A+ rn')gψ(m; x) = 0,xeω, and
gψ(m; x) = 0 for x e dωnΓ. We want to estimate \\gψ(m; -)\\L2iω) by using Lemma 2.
By a simple consideration on

m

Σ m?Lx{\gψ(m;x)\;xedBrndω},
r = 1

we know that

lim P(w(m)e&™;(D-0)m,(D-oo)m and (6.4) hold)=l.
m-> oo

Here (6.4) is the statement: there exists a constant C(Θ) independent of m such that

K(m; ')\\L2iω)SC{θ)H2(m,m*,2,1,0,ε)||χωv>||L2(β) (6.4)

holds for any fixed 0e(0,1/2).
Let μ i?m be the / h eigenvalue of — A +m' + 4πamβ~1V(x) in Ω under the

Dirichlet condition on Γ. Let {φ7 >m}JLi be a complete orthonormal basis of
eigenfunctions of - A + nΐ+4παm/? ~x F(x) in Ω under the Dirichlet condition on Γ
associated with μjm. We know that

ma_x \φjtm(x)\ ^ Cfij.Jm')'1/4 g C'(mO3/4, (6.5)
xsΩ

using the property of the Green operator (E(m) of — zl +m / + 4παm/?~1F(x) in Ω
under the Dirichlet condition on Γ. Thus,

C'imγiW-3*2, (6.6)

using (6.5).
We take θ < 1/2 as close as 1/2. Then

# 2 (m,m*,2, l ,θ ,ε)^m(mO" 1 / 4 m" ( 3 / 2 ) + v + m~2|logm|mε (6.7)

holds for any positive v>0. By an elementary calculation we have the following:

Proposition 4. Fix β e [1,9/8). Γλen, ίΛere exists y e (4(β- I), 1/2), κjlβ) > 0 such
that

lim Pw((D-~0)m,(D-<x))m ΛoW, m ^ ^ ^ ^ ^ l f i ^ f e J| |L^)^β) = l
m—»• oo

k)/ds /or any ε > 0.

It should be remarked that y >4(β — 1) is the restriction which will appear in
Sect. 7.

7. Convergence of M(m)

We here consider the convergence Mim)-^(~A +m / + 4παm/ ?~1F(x))~1 in a
probabilistic context. We modify the discussion in Ozawa [5, Sect. 3]. See also
Sect. 9 in this note.
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We examine the following term. Fix u,ve L2(Ω).

0>i8)(u, v; w(m)) =
(5)

= Σ JSth(u,υ;w(m)).

Here Σ means
(i)

m

Σ (β(m')v) (Wί

and where

JSt s _ ! 0 , ι>
ί = l

1 Σ G(Wil,Wi2)(<GimΊ(V<I}(mΊy-2u)(wh)
1 2 = 1

ii = 1

" 1m" 1 Σ Gίw^WiJ. .m" 1 Σ G(wt ,wίq)
l i lf 2 = l

G(W | ι,W | ί + I)(C ( 1 I I. )(F(B ( m. ))»-«-1M)(W t β + 1)

Put ^ S (M, f w(m)) = ^s(u, v; w(m)) — JSiS(u, υ; w(m)). Let {Uj}JL ι be a sequence such
that \\UJ\\L2(Ω)^1. The following inequality is easy to see:

m*

^ Σ (4παmm"x)V sup ^ ̂  |^s(wm i? w(m))| + K5(iιw w(m))\



Random Media and Eigenvalues of the Laplacian

where

431

Ks(um;w(m)) = ^ ) ( < G ( m Ί ( F ( G ( m Ί r 'u

L2(Ω)

Firstly we study the term in (7.1) which includes # s . By using the Schwarz
inequality as in Ozawa [5, Lemma 3], we have

um, υ; | ̂  jm

•*Σ

1/2

for 5^2, where

πs_Ju;w(m)) =

τ(w(m)) = /

1/2

2 1/2

We have

m
1 .Σ

We want to show the following:

1/2

ύC{mrίlA\ \LHΩ).

Lemma 4. Assume that y> 4(β - 1 ) ^ 0 . Let {uj}JLί be as before. Fix ε>0,
ί e [0,1/4). Then,

lim P m ( ( m ) 1 / 4 ( m 0 ζ Σ (4παmm~ x ) s sup |# s(Mm, v; w(m))| ^ ε ) = 1,
s = l

where Pm( ) denotes the probability Ψ(w(m) e Ωm; ).

We need some lemmas to get Lemma 4. We have

Lemma 5. Let ρ be a fixed constant in [0,1/4). Fix ε > 0 . Then,

lim VJimy\m-1φ(m)Mε)= 1. (7.2)

Proo/. We have E(m~2τ(w(m))2) ̂  Coίm')" 1 / 2 Here E( ) denotes the expectation.
Thus, (7.2) does not exceed 1 - ε " 2 C i / 2 ( m / ) 2 έ " ( 1 / 2 ) . q.e.d.
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Lemma 6. Fix an arbitrary family of continuous functions on Ω satisfying

xeΩ '

for some constant C^ > 0 and D * < oo. Put

f t m \ m

- (Q*im')Vfh m) (Wi) (7-4)

Fix μ e [0,2), ε > 0 . Then

lim Pm((m) l l 2(m /) i lsup |£Λ | ̂ ε \ = 1. (7.5)
m->oo I h ' y

Proof. We divide ^ ? m into three parts (C*m')hl2(Llm + L2

Km + LlJ, where

m I m 2

Σ

We put

It is easy to see that

Therefore,

P m ( ( m ) 1 / 2 ( m ' ) 2 + v sup (C,m') f t / 2 |LA

3,m - <Lft

3,m>| ̂  ε)

v £ (C*<Γ 3 h . (7.6)

We here review some elementary facts in probability theory. Let g(x, y) be a
square integrable function on Ω2. We have

E (m(m-l)Γ1 Σ (Φι,wj)-

^(m(m- l))^"2iE Σ (0(w;,i (7.7)

+ 4E Σ |
Uj,h=ί

\ίΦy,jΦA,ΛΦi

) - Έ(g)\\
I
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The second term in the right side of the above does not exceed

/ * λ
4mE Σ (g(Wi> w /) - E(g)Y

r.47 /
Thus, the term in the left side of (7.7) does not exceed (m—l)~ί5(E(g2)
+ 3E(M)2). Put

g(x, y) = G(x, y) (<&(mΊVfhJ (x)fh,m(y).

Then, we have

Notice that Έ(Llm)— — 2(L\?m>. In summing up these facts we get

^ l - 6 ( ? ε " 2 ( m 0 2 v / Σ (C^mO"3*. (7.8)
Λ = l

We want to examine Lj>m. We have Lj>m = Lj;^ + Lj;2, where

m

LI 1 ^ — 3 ^"^ z^1/" \ /"•/ \ /* / \ /* / \

, ^z: ^2 / (jΓl VV W I vJΓi W Wj ) Tu \ W ) ϊu \ Wi )
i,j,fc=i v J I ? 7

iΦ7,7Φk,ΛΦi
m

Let ^(x, 3;, z) be a square integrable function on Ω3. Then, we see that

E/L_3 j ^ ( w . w . W t ) .
 i n

holds for a constant Co. We put ^(x, y, z) = G(x, y)G(x, z)fhtjy)fhtm(z). Then, we
have

Therefore,

Σ ( < V < Γ 3 \ (7.9)

We also have

P M ( ( m 0 ( 1 / 2 ) + W sup (CH5mOft/2|LJl; 2 | g ε)

00

^ l - C o β - W - V ) ' Σ (C^mO-3"/2. (7.10)

By (7.6), (7.8), (7.9), (7.10), we have the following:
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Lemma 7. Fix an arbitrary sequence {Uj]f=1 satisfying \\Uj\\L2(Ω)f^ l Then, there
exists a constant C such that

lim PJ(m)1/>Oβsup(C>')s/4 |πs(wm;w(m))|:ge) = 1 (7.11)
m-> co

holds for any fixed ρ e [0,1/4), ε > 0.

Proof Put /A,m = (m0"3/4(E(m-)(FG(m-))'I-1Mm. Then, it satisfies (7.3). We have

Now the proof of Lemma 4 is easy. It reduces to the problem of convergence of

00

Σ (4παmm"1(m/)"§)s.

Here ρ is a fixed number in Lemma 5. If y > 4(β — 1), then we can take ρ e [0,1/4)
such that mβ~1~dγ = o(m~ρ") for some ρ">0. q.e.d.

From now on we begin to study the term in (7.1) which includes Ks. Put

c,y) = § G(x,z)G{z,y)dz. Then, Ks(um;w(m))2 is equal to
Ω

/ m

m~2 Y G(Wί,

Ω

Here u$(x) denotes (FG(m/})
swm(x). As we discussed before, we have

Έ(Ks(um w(m))4) ̂  C(I ι (m) + 1 2

where

/1(m) = |(Cfm,)uS:

ΩxΩ

-1/2

x,yeΩ

We know that

max |G(2)(x,y)|^max|J G(x,i

Thus, E(Xs(wm;w(m))4)SC"(CmT4s-1/2. Therefore, we have the following:

Lemma 8. Fix ε>0. Then
m*

lim Ψm({myi\m'f Σ
m->oo s = l

/or an); ξ e [0,1/8).
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Now we are in a position to state the following:

Proposition5. Let {uj}f=ί be as before. Assume y>4(β—l). Then,

lim Pm((fn)1 / 4(m')4ll(fi(B,')-Φ(m))«*»llL1(O)^e)= 1
m-> oo

holds for any ξ e [0,1/8), s > 0.

Proof We only notice that the last term in (7.1) is negligible in our discussion and
we get the desired result, q.e.d.

By essentially the same argument as above we can also prove the following:

Proposition 6. Let {um(w(m})}%= x be a sequence of L2(Ω)-υalued random variables
on Ω™ such that | |wm(w(m))||L 2 ( Ω )^l. Assume that y>4(β-l)^0. Then,

lim P m ((m) 1 / 4 (m / ) 5 l l (H(« ' ) -©(»))("«(w(m))) | | L 2 ( f l ) ^e) = 1

m—• oo

holds for any ξe[09lβ), ε>0.

By a simple calculation we get the following:

Proposition 7. Fix β e [1,34/25). Then, there exists y e (4(β-1), 36/25), κ**(β) > 0
such that

hold for any ε>0.

A similar result holds when φjm is replaced by wm(w(m)). The statement is
denoted by Proposition 7b l s.

8. Proof of Theorem 1

Let φjm be as before. If w(m) satisfies (D — 0)m and (D — oo)m, then

\\{<&{m')-fli,m)(Pj,m\\mω)^ IIQ(m')llL2(ω)+ W{m'){ϊωΨj,m)\\mω)

+ \\(€{m)-M{mΊ)φjJ\LHΩ).

Fix β G [1,9/8). Then, we can take γ > 4(β — 1) such that Propositions 3, 4, 7 hold.
Therefore, there exists κ(β) > 0 such that

lim P w ( ( D - 0 ) m , ( D - o o ) M hold,

holds. We know from the spectral theory of a self-adjoint compact operator that
lim P m ((D-0) m , ( D - o o ) m hold, there exists at least

m-> oo

^ ( / ϊ J ; ^-eigenvalues λ ί s ( w ( m ) ) (w(m)), s = 1,...,m { f L j r n )

of Qj{mΊ satisfying

\β^-KiMm)Mrn))\ = o(m^'^'2y-^))=^.

Here m{ii m ) denotes the multiplicity of μjm.
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Assume that w(m) satisfies ( D - 0 ) m , (D-oo) m . Let

m))^ ...JO

denote the eigenvalues of flj(m,} and {φf(w(m))} JL 1 denote a complete orthonormal
basis of the eigenfunction of <G(ϊfO associated with λf(w(m)). Let φf(w(m)) denote
the following:

(φf(w(m))) (x) = (φf(w(m))) (x), x e ω,

(φf(w(m)))(x) = 0, xeΩ\ώ.

Then, we see that

|| ( φ ( w ) - λfWm))) (φf(w(m)) \\LHΩ)

Fix β e [1,9/8). Then, we can take γ > 4(β - 1 ) such that Propositions 3, 7 b i s hold.
Thus,

lim Pm((D - 0)m (D - oo)m hold, there exist κ*(β) > 0
m-> oo

and at least ^*(vv(m))-eigenvalues

\f^rt(w(m)),m) ? Γ = 1, . . . , ^λ*(w(m)) 01 VLr(m)

satisfying \λf(w(m)) - (μ r t ( w ( m ) ), J " * |

In summing up these facts we get the following:

Proposition 8. Fix βe [1,9/8). Then, we can take γ >4(β— 1) such that

lim P m ((D-0) m , ( D - o o ) w fto/d, ί/iere exisίs κ:(j8)>0
m-+ oo

swc/z ίΛαί μ CwCm))"1-^- J = 0(m(β-1)

Here we used the fact that μjm can be written as

where

vm,J 6(minF(x)/2,maxF(x)/2)

for large m. Fix j . We will show that

λf(w(m)) ~x = μ/α/m; w(m)) + mf (7.12)

if w(m) satisfies (D —0)m. We remark that there may be many connected

components of Ω\ (J B(a/m; w[m)). Thus, μ/α/m; w(m)) may come from ωs(w(m))

for s ^ 2. We know by the properties of eigenvalues of — A + nΐ in ωs(w(m)), 5^2
that they are at least of order m2(logm)~2 as m->oo. Thus, we get (7.12). In
summing up the above facts we get Theorem 1.
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9. Short Discussion

In Ozawa [5], the author used Kac's theorem ( = Theorem A in this note with
δ = 0, β = 1) to prove Theorem A with δ> 0, β = 1. By the method developed in this
paper, we get Theorem A without using the theory of Brownian motion. The
author hopes here that we can get Theorem 1 by purely probabilistic methods.

The author should remark that there is a small modifiable mistake in the proof
of Ozawa [5, Proposition 4]. The formula (3.9) in [5] is not correct, however,
Proposition 4 in [5] still remains correct. The proof can be obtained by using a
formula and method like (7.1) of this paper.

Acknowledgement. The author expresses his sincere thanks to Professors G. C. Papanicolaou
(Courant Institute) and N. Ikeda (Osaka University) for their invaluable support to the author.
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