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Abstract. Let § be a fixed number >1. We remove [m*]-balls of centers
Wi, ..., Wpney With the same radius o/m from a bounded domain Q in R>. We
consider the asymptotic behaviour of the k'™ eigenvalue of the Laplacian in
Q\[m?-balls] under the Dirichlet condition as a random variable on a
probability space (wy, ..., Wys) € Q™) when m— co.

1. Introduction

In the present note we consider a mathematical problem concerning random
media. We consider a bounded domain Q in R® with smooth boundary I'. We put

B(e;w)={xeR3;|x—w|<e}.

Fix f=1.Let 0 < p,(e; w(im)) < u,(e; w(im)) < ... be the eigenvalues of — A (= —div-
grad) in @, ,ym =9 / (U B(e; w™) under the Dirichlet condition on its boundary.
i=1

Here it denotes the largest intf:ger which does not exceed m”, and w(m) denotes the
set of ri-points {wi™}™ € Q™. Let V(x)>0 be C!-class function on Q satisfying

fV(x)dx=1.
Q

We consider € as the probability space with the probability density V(x)dx. Let
Q= 1""[ Q be the probability space with the product measure. The following result
whiclllzi; an elaboration of Kac’s theorem (Kac [3]) was given in Ozawa [5].
Theorem A. Assume that f=1. Fix o>0 and k. Then,

Tim P(w(m) € Q™5 mlyu(a/ms wim) — uf| <e) =1

holds for any ¢>0 and §e[0,1/4). Here p! denotes the k™ eigenvalues of
—A+4naV(x) in Q under the Dirichlet condition on I.
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In this paper we study the case > 1. In this case the sum of the radius of rit--balls
B(a/m;w™), i=1, ...,1, tends to co as mi—co. We see by the argument in Rauch-
Taylor [9] that w,(o/m; w(m))— oo if f>1, V(x)>0, and

lim it 7= £V ()

for any fixed fe L®(Q). We call the case f>1, V(x)>0 the soldifying case,
following Rauch-Taylor.
The aim of this paper is to prove the following:

Theorem 1. Assume that 1 < §<9/8 and V(x)>0. Fix o> 0 and k. Then, there exists
a constant () >0 independent of m such that

lim P(w(m) e Q™5 m” = ¢~V (efm; wim) — 1 | <e)=1 (1.2)
holds for any ¢>0 and & €[0,5(B)). Here pY ,, denotes the k™ eigenvalue of
— A+ 4mom? 1V (x) in Q under the Dirichlet condition on I
Remark. There exist constants C, and C, such that

Cy<m™ =Dyl <C,.

Readers may refer to Papanicolaou and Varadhan [7, 8], Simon [10], Bensoussan
et al. [1], Huruslov and Marchenko [2], Lions [4], Ozawa [5, 6], and the
literature cited there, for related topics.

2. Probabilistic Consideration 1

Fix fe(1,3). We consider the following condition (D—0),, of w(m). (D—0),,:
Assume that Q U B(o/m; w™) is divided into the connected components
w,(w(m)), .. g(w(m))(w(m)) Then, g(w(m))=1 or

max diamo wiN <m~'logm
2 < s<g(w(m)) S(W(M))( (m) = g

holds. Here diam3 denotes the diameter of the set 3.
We have the following:

Lemma 1. Assume that e (1,3). Then,
lim P(w(m) € Q™; w(m) satisfies (D —0),,)=1 (1.3)

Proof. We suppose that w(m) does not satisfy (D —0),. Then, we see that there
exists [(logm)/20] (=m,) numbers s,(w(m)), ..., s,, (w(m)), such that

diam( U {wg':gw(m»}} <2m~'logm. (1.4)
k=1
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By a simple combinatorial argument we have

P(w(m) € Q™; (1.4) holds) <A™ P((w{", ..., wi) € Q™
(W™ —wi™| < 2m ™ logm, j, k=1, ...,m,)
<™ 2m ™~ (logm)C)?™
<(mP~3/8C)™(logm)>™—0

for e (1, 3). Thus, (1.3) is proved.
We consider the following condition (D — o0),, of w(m).

(D — 00),,: Take an arbitrary connected closed subset %,, of I which contains the
disk with radius (by the induced metric on I') 2m™ ' logm. Then,

9?/ 0) Blofm: i)+
i=1

It is easy to show that
lim P(w(m)eQ™;  w(m) satisfies (D — 0),)=1.

3. Idea of the Proof of Theorem 1

We put y > f— 1. We abbreviate the largest positive number which does not exceed
m? as m’. We put m”=(m’)}/>. Hereafter we always assume that w(m) satisfies
(D-0),, (D—00),,. We abbreviate w,(w(m)) as w for the sake of simplicity. Let
Gw)(x, y;w(m)) be the Green’s function of 4—m’ in @ under the Dirichlet
condition on its boundary satisfying
(Ax=m)G (X, y; w(m)) = —0(x—y), x,yew,
Gowy(x,y;w(m))=0, xedw.
Let G(x,y) be the Green’s function of 4 —m’ in Q satisfying
(Ax—m/)G(m’)(xa y): —5(X—J’), x,yeQ,
Gun(x,y)=0, xel.

From now on we abbreviate G,(x,y) as G(x,y). We introduce the following
integral kernel function: We abbreviate w{™ as w; for the sake of simplicity.

B 3 00m) = G, ) = (mam)e™ ™™ 3 G, w)GOw, )

m*

+ 3 (—4no/m)sem™ esim
s=2
> G(x, Wil)G(Wils Wi,) .- G(Wis_ D Wis)G(wiss V).
(s)

Herem” =(m")!/* and m* is a function of m which is appropriately determined later.

Here the indices (i, ..., i) in Z) run over all 1<iy,...,i;<m satisfying i, +i,,
(s
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i,¥13,...,1i,_; Fi,. An essential key to Theorem 1 is the fact that h,(x, y; w(m)),
when we consider it as an integral kernel function on wxw, is a nice
approximation of G, (x,y;w(m)) in a rough sense, if f—1 is small. By a
probabilistic consideration we view that h,,(x, y; w(m)), when we consider it as an
integral kernel function on Q x €, is a nice approximation of the integral kernel
function of (— 4 +m’+4mom?~ 1V (x)) ! in a rough sense. Along this line we get
Theorem 1.

4. Preliminary Lemmas
Lemma 2. Fix fe(1,3). Suppose that u,, € C*(w) satisfies
(—A44+mu,(x)=0, xeo,
u,(x)=0, xedonl,
and

max {|u,(x)|; x€e 0B,ndw}=M,(m), r=1,...,m.

Here B, is an abbreviation of B(a/m;w™). If 0B,ndw = ¢, then we put M, (m)=0.
Under the above assumption, there exists a constant C, independent of such that

[l Loy = CpK p(m) Z:l M,(m) 4.1
holds, where
m"(3/P) , p>3 s
K (m)=y m™"(m)\ "> P2 log((m)?/m)|'*,  p=3,
m”~ () 3Rz 1<p<3.

Proof. By using the Hopf maximum principle we have
u()l = Cla/m) T exp(—(m)!2x—w,]) [x—w,| " My(m).
r=1

Notice that

a/m m”[m

K 1p m’K 1/p
( | e"””"’t*"dt) SCym' =3t piep ( | “’e“dt)
does not exceed C,K (m)m. Thus, we get (4.1). q.ed.

We have the following:

Lemma 3. Fix fe(1,3). Assume that w(m) satisfies (D —0),, and (D — o0),,. Fix an
arbitrary o € (0, 1]. Then, there exists a constant C,, independent of m such that
X [G(x, w)) = G(Wy, w)| = Cioy(/m)’|wi—w)| - tmomm T wliCer - (4.2)
max [S(x, w,)G(w,, w))| < Co)(@/m)"(logm) [w; —w,| =1~ o™i wrliCe

ho!d xX€0Brnw (43)
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Fig. 1

Proof. It should be remarked that B, and B; may have an intersection. We put
Cone(B\B;)={y=0w,+(1—-0)x;x€dB,\B,;,0€[0,1]}.

By a simple geometrical observation we see that there exists a constant C,,,
independent of w,, w;, m such that

[w,—w;| £ C,,, dist(Cone(B,\B,), w;)
holds. We see that the left side of (4.2) does not exceed

Clo/m)?[|G(-,wy) HC“(Cone(Br\Bi)) .

Here C°(F) denotes the usual Holder space. Thus, we get (4.2).

We want to prove (4.3). Take r such that dB,n0w =+ ¢. Then, dist(w,, dwnTI’)
= (o/m). By a simple geometrical observation including (D — o0),,, we prove the
following: Fix r and i. Then, there exists a constant £ > 1 independent of m, r, i such
that we can take w*(r,i) € dwnTI satisfying

dist(w,, w*(r, )) < Elogm) dist(w,, ['\B,) ,
dist(w;, £)= E~!|w,—w,|, where

S= U {0w,+1—0w*(, i)} (see Fig. 1).

0<6<1
Take Ww(r) e I'\B, such that dist(w,, W(r)) = dist(w,, '\B,). Then,
W, — W)~ G(w,, w) < E(logm) [w, —w*(r, )|~ |G(w,, w) — G(w*(r, 1), w)|
< E(logm) (oaf/m)°~*w,—w*(r, )| ~°
16wy, w) — GW*(r, i), wy)l .
We see that
IG(- . W)l cosy S Clw, —wi| ! "7 exp(—m"|w,—wyl/2)

holds. By a simple observation on the boundary behaviour of the Green’s function
we have

max |S(x,w,)| dist(w,, w(r))<C

xedB,niw
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for a constant C independent of m, r. In summing up these facts we get the desired
result. q.e.d.

5. Approximation of Green’s Function
Put

(@ ) (%) =({ Gony(X, s wm) f(V)dy,  xew,
and
(H) /) (x) = ({ )%, ysw(m)) f(p)dy,  x€w.
Put Q,,=G,,—Hy, Then, it satisfies
(=4:+m) Q) /) (0)=0, xew,
@)/ )(x)=0, xedwnT,
for any fe C§(w). We have to estimate ri Q) f (X)|xcom.no0 to get a bound for

Qe f |l Loy We here introduce the following decomposition (5.1) of Hy, f. Fix r.
We put

(Ii(m) ) (x) = Z(yGx, w; )G (Wi, wi,) .. Gw; _ Wi ) (G /) (W) (5.1)
— (4 /m)e" " E G, WIGW W) .. GOvt, o) G ) (0)
for s=1. Here the indices in X, run over all 1<y, i,,...,i, < such that i; %7,
Iy &y, .., iy Fig_;. We put

T2 1) (%) = (G ) f) () — (dmo/m)e™ " G(x, W) (G /) (W) -
Then, it is easy to see that
(H /) (x) = :Z*O (—dmo/mye™ =L m') f) (x) + (= dmo/m)™"e™ ="
2 GO W) o Gwy Wy, NG ) (W)
We have
(Im) ) (¥)xcon,na0 = LAM) [) (Xlxcon,n00 T VM) f) (Xxcopnins

where
(LAM) ) (OxeaB,no0 = Zis(GX, Wi,) = GW,, Wi ))GWi,, Wi,
= Gwi,_ s Wi ) (G ) (W), (5.2)
and
(N3(m) ) (O)lxe o8, na0 = (— 4mo/m)e" " Ei, S(x, w) G (W, i,
Gwi,_ s w) (G ) (W) (5.3
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Here S(x, y) = G(x, y)— (4n|x —y|) " te”™*~¥|. We know that S(x, y) e C®(Q2 x Q).
By using the Holder inequality we see that
k 1/p’
Ig};axa II?(m’)f(X)I = Ce(“/m)e (f e +e)p,d7’> If "LP(w)
xedB,Nndw 0

S Cym™ 0" CTATORYY £ (5:4)
holds for p’<3/(1+86). Here p~* +p’~! = 1. Hereafter we assume that m'm*/m—0
as m—o0. Observing Lemma 3, (5.2), (5.3), (5.4), we get the following:

Zl IIi(m,)f(x)llxséBrmﬁw é C(a’)(a/m)a(m/)( m3Eey :H: g:)) ” f ”LP(w) s

for 3/2<p< o0, 0€(0, 1], where

#g)): ;1)|Wi1"Wiz|_1—anP(—m/llwil—Wizl)G(Wiz,Wi3 e G(W;, Wi )

In summing up these facts we get

Proposition 1. Fix fe(1,3). Assume that w(m) satisfies (D—0),, and (D — 0),,
Assume that m'm*/m—0 as m— 0. Then,

QS L@y = CK J(m)J (m, m*, p, 6, 0)| f | Loy (5.5
holds for any o €(0,1], (0, 1], p satisfying 3/(2—60)<p=< 0. Here
J(m, m*, p, 6, 0)=riim ¢~ 3~ A +0p)2p

+[logm|m ™ (m) 3P0 S (dnofm) (9
s=1

+ (dmo/m)™ (m") 73RO 4 (O)

6. Probabilistic Consideration 2

It is easy to see that

e~ M (yi=val+ . Hlvs v aD/K

[ i
2 o yi=yal T W= val o s Vel e = il
“dyydy, ... dys o S Co(c*m')_sﬂa/z)
holds for a constant C,, C,, independent of m. Thus,
Pwm)eQ™;  |m *4)|>e)<e 1Co(Cum) *Pim ™).

From now on we assume that y > — 1. Then, rii(m'm) " =mP 17 tends to zero as
m—o0. We have

P(w(m)e Q™;

sup (87a)'m™*(m)~ | gl<e)Z1—s71Co 3 (C,Smom)m iy
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We also have
P(w(m)e Q™;
(8ma)™ ' m ™™ (m') ) 4 (| <€) 21— &~ Y(C, 8ma(m'm) ™ '1i)™ (m)*° .
In summing up these facts we get the following:

Proposition 2. Fix fe(1,3) and ¢>0. Assume that y>f—1 and m'm*/m—0 as
m—aoo. Fix ae(0,1], 0€(0, 1], p satisfying 3/(2—0)<p=< 0. Then,

lim P(w(m) € Q™; (D —0),,(D— o0),, and (6.1) hold)=1,

where
Qs S CH,m. 1, ,,0.5) 61
Here
Hq(m’ m*,p,0,0,8)= Kq(m) [rﬁm_e‘ B-@+0)p)/2p’
+ logmlm ™~ (m’)\ 3PP (m) g
+a(m’) 1027 ™].
By the same argument as in Ozawa [5, Corollary 1] we can show the following

Corollary 1. Here we took =1, 0 =1, and 3 <p as close as 3. Hereafter we assume
that m* = (logm)*.

Corollary 1. Fix fe(1,3) and ¢>0. Assume that y>—1. Fix an arbitrary v>0.
Then,

lim P(w(m) e Q";(D—0),, (D — o), and (6.2) hold)=1.

Here
”Q(m')”u(co) = C[#im~ 2 (1 + |logm|(m’)*e)] . (6.2)
We here consider the condition on f,y such that
mdED 2= E=DIQ 2y = 0(1) (6.3)

holds for some d(f,y)>0 as m— oco. Assume that y <1/2. Then, there exists v>0,
(B, y)>0 such that

[the right side of (6.2)] x m?#:N+2v=(¢-1
tends to zero as m— co. In summing up these results we have the following:
Proposition 3. Fix 0<f—1<y<1/2, ¢>0. Then,
,31330 P(w(m) e Q™; (D —0),,, (D — 0),, and (6.3) hold)=1.

Let ]FI(,,,«) be the integral operator defined by
(]~H(m’)f) (x) Z?‘;h(m’)(xa ya W(m))dy bl X € Q .



Random Media and Eigenvalues of the Laplacian 429

Let y,, (resp., 7,,) be the characteristic function of w (resp., Q\@). Fix y € L*(Q). Put
g, (m;x)= (][N'I(,,,/)()Zwtp)) (x) for x € w. We see that (— 4 +m')g,(m;x)=0, x € w, and
g,(m;x)=0for xe dwnI'. We want to estimate | g, (m; - )|l >, by using Lemma 2.
By a simple consideration on

% max {|g,(m; x)|; x € 6B,ndw},
r=1

we know that
lim P(w(m) e Q";(D—0),, (D — ),, and (6.4) hold)=1.

Here (6.4) is the statement: there exists a constant C, independent of m such that

”g.p(m§ : )||L2(w) = C(e)Hz(m, m*,2,1,0, e)|| 7,y 2@ (6.4)

holds for any fixed 6€(0,1/2).

Let fi;,, be the j™ eigenvalue of —A+m’+4nem? 'V(x) in Q under the
Dirichlet condition on I'. Let {¢; ,};>, be a complete orthonormal basis of
eigenfunctions of — A4 +m’+4nam?~ 1V (x) in Q under the Dirichlet condition on I’
associated with fi; ,. We know that

max[g; ()| < C@jn(m)~ < Cm)*e, (6.5)

using the property of the Green operator &, of —A+m’+4dnam? 1V (x) in Q
under the Dirichlet condition on I'. Thus,

[Zo®)mllL2@) = Cl(m,)3/4m(‘8* Nz, (6.6)
using (6.5).
We take §<1/2 as close as 1/2. Then
H,(m,m*,2,1,0,¢) <ri(m)~ V*m~ /2% L m~2|logmlrie (6.7)

holds for any positive v>0. By an elementary calculation we have the following:

Proposition 4. Fix f€[1,9/8). Then, there exists y € (4(f—1),1/2), k,(8)>0 such
that

lim ]Pm((D —O)ma (D - Oo)m hOld9 mK*(ﬂ) T2 ”H’tl(m’)(iw(pj,m) ”Lz(a)) é 8) =1

holds for any £>0.

It should be remarked that y>4(f —1) is the restriction which will appear in
Sect. 7.

7. Convergence of ]I-I(,,,,)

We here consider the convergence II-I(,,,/)—>(—-A +m +4rom "1V (x))"! in a
probabilistic context. We modify the discussion in Ozawa [5, Sect. 3]. See also
Sect. 9 in this note.
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We examine the following term. Fix u,ve L*(Q).
Po(u, v; w(m)) =m"* Z (G(m ) (Wi )Wy, wi) ... G(wy _, w;) (G(m’)u) (W)
}; (G(m’)(VG(m’))su) ()v(x)dx

- éjl T, 03 w(im))
Here ) ... means
M
2 (@) () @) (),
and where

s, Js, s, v; w(m)) =i~ ! Z (G(m )”) (wy) ((E(m )(VG(m ))S 1“) (wy)
- !) (G (VG (r)"w) ()u(x)dx

Ty e 1ty 03 w(m) =i~ i (G o) ()

{ i G(W;,a (G(m’)( VG(m'))s‘ Zu) (Wiz)

ir=1
ir*+iy

- (G(m’)(VG(m'))S- "u) (w; 1)} >

S (@) (W)

Josmgt v wm) =" ¥

ir=1 ig=1
12#11 Lq4=tq—1

oy GWis Wiy, ) Gy (VG ) 1) (W, )

lq+; 1

m-
( % G(w;,, w;) ...t Z G(w;,_»w;,)

ig+1¥Fig

G\ (VG ) ) (), 2= q S5~ 1)} '

Put Z(u, v; w(m)) = P(u, v; wim)) — J ; (u, v; w(m)). Let {u;} >, be a sequence such
that ||lu;l| 2 =< 1. The following inequality is easy to see:

I (]I_I(m’) - G(m))um I L2(Q)

<3 Gy sup <15y )+ K )

s=1 jvllr2eyst

+ ; N (4morim™ l)s ”G(m’)( VG(m’))Sum ”L2(Q) s (7.1)
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where
K (1t w(m) = “m 2 GO ) @ (V) 1) ()

- G(m’)( VG(m’))Sum( °)

L2(9)
Firstly we study the term in (7.1) which includes 2. By using the Schwarz

inequality as in Ozawa [5, Lemma 3], we have
- m 1/2
1Py, 03 W(M))| < {n’l_ ! .zzl (G o) (Wi)z}

s—1
: q; (i o(w(m))?™ g (s w(m))

for s=2, where

n 1/2
(w(m)) = ( 2 Gw,w j)z) ;
i,j=1

i
e {m P2 {'” 'S G0 ) o (VB ) )

3

JFi

27172
—‘(G(m')(VG(m'))SQqU) (Wi)} } .

We have
™ 1/2
{"T ' ,Z:l (Gony) (Wi)z} SCm) V4ol Lo -

We want to show the following:
Lemma 4. Assume that y>4(f—1)=0. Let {u;};2, be as before. Fix £>0,

(e[0,1/4). Then,
sup

tim P, (()"*(m’)* 3 (4nosiim™")* ol Pt v; WM S ) =1,
m-— oo s=1 UVir2()st

where P,,(-) denotes the probability P(w(m) e Q™;-).
We need some lemmas to get Lemma 4. We have
Lemma 5. Let ¢ be a fixed constant in [0, 1/4). Fix £¢>0. Then,
Jim P, ((m')flri t(wm))|<e)=1. (7.2)

Proof. We have IE(i ™ 2t(w(m))*) < Co(m’) /2. Here IE( - ) denotes the expectation.
g.ed.

Thus, (7.2) does not exceed 1 —&~2CY?(m")?2~ 112,
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Lemma 6. Fix an arbitrary family of continuous functions on Q satisfying
max | fi, n(x)| = D*(C m)™" (7.3)

for some constant C,>0 and D* < co. Put

By () = ((C*moh“(m-l

zl{ 3 GO% ) fn0)

JjFi

12

2
“(G(m')th,m) (Wi)} )) . (7.4)
Fix ji€[0,2), ¢>0. Then
lim PP, <("~1)1/2(m')ﬁ sup |G, ml = 8> =1. (7.5)
Proof. We divide g, ,, into three parts (C m)"*(L; ,,+ L ,,+L; ), where

- z{ 3 G, ,..<w>}

J#z

Lﬁ,mzm_ ; ( (m’ )I/ﬁt m) (W)
We put
<L?t,m> Z;Q(G(m’)Vf;l,m)z(x)dx .
It is easy to see that
P, (1L =Ly my| S8) <467 207 1 C(C ')~ *H(m) ™%
Therefore,
P, (()"2(m)* ™ sup Coom' V2L oy — LG ol Sé)

>1—4g 28> Y (Cym) . (7.6)
h=1

We here review some elementary facts in probability theory. Let g(x, y) be a
square integrable function on Q2. We have

({(m(m—l)) . z (gw, ) — E(g))})

*J
g(rﬁ(rﬁ-l»”{lE(i i(g(wi, w,-)—lE(g»Z) (1.7)
’iJ;j

+415( A % lg(wi, w)) —IE(9)llg(w;, Wh)—E(g)|)} :

i,j,h=1
IESNEY N ET
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The second term in the right side of the above does not exceed

4mlE i j§=1 (g(w;, Wj) - E(g))2 .

T j

Thus, the term in the left side of (7.7) does not exceed (ii—1)"'5(IE(g?)
+3IE(|g|)?). Put

g(X, J/) = G(xa y) (G(m’)Vﬁl,m) (x)fh,m(y) .

Then, we have

gl Z2@2= C"(m)~>*(Cum’) "
Notice that IE(L7 )= —2<L3 ,,>. In summing up these facts we get

I ()51 sup (Cym ) 2ILE y+2( L3 ] <0)

21-6Ce 2(m)> ¥ (C,m) 3",
h=1

(7.8)
We want to examine Lj ,,. We have L; ,, =Ly + Ly’ % where
Lym=m"% _%_ . G(wi, w)G(Wi, W) fo, m(W)) S, m(Wi)
i) Rk ki

L,L’,i:rfff’ 2 Gw, Wj)th,m(wj)z'
i,ij:jl
Let §(x, y,z) be a square integrable function on Q3. Then, we see that
m 2
E {ﬂf?’ _ ,%_ . g(wi, wj, Wk)-E(gN)} ) S Cottt™ (191223 + 19121 @%)
i ] ek ki

holds for a constant Cy. We put §(x, y, z) = G(x, y)G(x, 2) f;, w(¥) fr. m(2). Then, we
have

11225 = C'(m) 1 (C ') ~*".
Therefore,

I, () sup (€I A~ L) )

21— Coe 2m)>" ¥ (Cm)™ ™.
h=1

(7.9)
We also have
P, (m)2* (i) sup (C,mY'P|Ly: 2 <€)
21—Coe ' *(m)° 3 (Cm)) =302, (7.10)
h=1

By (7.6), (7.8), (1.9), (7.10), we have the following:
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Lemma 7. Fix an arbitrary sequence {u;};~, satisfying ||ul| 2o =< 1. Then, there
exists a constant C such that

lim IP,, ()" (m)? sup (C ym)"*|my(u,,; w(m))| S &) = 1 (7.11)

holds for any fixed ¢ €[0,1/4),e>0.

Proof. Put f, ,,=(m) " ¥*G (VG 'u,. Then, it satisfies (7.3). We have
(Cm 21t =q, . qed.

Now the proof of Lemma 4 is easy. It reduces to the problem of convergence of
S (droriim™'(m) 9.
s=1
Here ¢ is a fixed number in Lemma 5. If y > 4( — 1), then we can take g [0, 1/4)
such that m#~1~& =0(m~¢") for some ¢”>0. q.e.d.
From now on we begin to study the term in (7.1) which includes K,. Put
G(x,y)={ G(x,z)G(z, y)dz. Then, K (u,,; w(m))?* is equal to
Q
(”N’l_ 2 ) 2 G(wi,w)) (G(mqufi‘ ) (wy) (G(m’)uii_ V) (w))

i,j=1

— [ (Gl (x)* dX>
- <2n~1 -t Zﬁ‘. (G(Zm')ug)) (wy) (G(m')usj_ 1)) (wy)

=2 (G ) (x)zdx> .
Q

Here u{)(x) denotes (V&) u,(x). As we discussed before, we have
E(K ((1,; w(m)*) < C(I, (m) + 1 ,(m)) ,
where

I(m)= |(G(2m’)u$:)) (G(m')ug - 1))[<2:0(9) =C"(Cm) Tl
Lm) =] ] (65, 3) ™) (5) ™) () dxdy

< max IG(Z)(XJ’)I ”G(m')uiff 1)”22(9)-
x,ye?

We know that
ma%IG(z)(x, ) gmarg( ‘f G(x, z)zdz‘ <C(m) 2.
x,ye xeQ |0

Thus, E(K(u,,; wim))*) < C”(C’'m") =%~ /2, Therefore, we have the following:
Lemma 8. Fix ¢>0. Then

lim P, (i) *(m)* 3 (dmoriim™ YK (u,,; w(m)) <e)=1

m— s=1

holds for any £€[0,1/8).
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Now we are in a position to state the following:
Proposition 5. Let {u;};2, be as before. Assume y>4(f—1). Then,
ny_{{}o ]Pm((’ﬁ)lm(m/)é”(ﬂ(m') —G(m))um”L2(Q) <e)=1

holds for any £€[0,1/8), ¢>0.

Proof. We only notice that the last term in (7.1) is negligible in our discussion and
we get the desired result. q.e.d.
By essentially the same argument as above we can also prove the following:

Proposition 6. Let {u,(w(m))}2—, be a sequence of L*(Q)-valued random variables
on Q" such that ||lu,(w(m))| 2@ < 1. Assume that y>4(f—1)=0. Then,

"%1_{130 IPm((ﬁ’)lm(m,)é ”(]H(m') - G(m)) (U (Ww(m)))|| o= e)=1

holds for any £€[0,1/8), e>0.
By a simple calculation we get the following:

Proposition 7. Fix f € [1, 34/25). Then, there exists y € (4(f — 1), 36/25), k**(f)>0
such that

lim ]Pm(mK**(m 26D H(]H(m') - (E(m’))(Pj,m I L= g)=1

hold for any ¢>0.

A similar result holds when ¢; ,, is replaced by u,(w(m)). The statement is
denoted by Proposition 7,

8. Proof of Theorem 1
Let ¢; ,, be as before. If w(m) satisfies (D —0),, and (D — 0),,, then
1 iy 8505l 2000 = QL2009+ 1T Zos 0, 200
+ ||(G(m)“]I‘I(m'))(Pj,m”LZ(Q)-

Fix f e[1,9/8). Then, we can take y >4(f —1) such that Propositions 3, 4, 7 hold.
Therefore, there exists £(f) >0 such that

lim P,,((D—0),,(D— o), hold, m*®*27-B-1

: ”(G(m’) - lz;m)(l’j,m ”LZ(w) =o(1))=1

holds. We know from the spectral theory of a self-adjoint compact operator that
lim P, (D -0),, (D—0),, hold, there exists at least

m(ﬁj’m)-eigenvalues AgwamyW(m)), s=1, ..., P,
of G, satisfying
l/l;r:l - lqs(w(m»(W(m))l = O(m(ﬂ R K(ﬂ))) =1.

Here »;, , denotes the multiplicity of j; ,,.
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Assume that w(m) satisfies (D —0),,, (D — o0),,. Let
AFw(m)) = A3(w(im))= ... |0

denote the eigenvalues of G, and {@¥(w(m))} ;> ; denote a complete orthonormal
basis of the eigenfunction of G, ass0c1ated with A¥(w(m)). Let ¢F(w(m)) denote
the following:

(@Fwm)) () =(pf(wim)) (x), xew,
(@Fwm)) (x)=0, xeQ\a.
Then, we see that
(@ oy — 23 (w(m)) (@F (W(m)) |20
= ”(d;(m) ]H(m )) ((0 (W(m))||L2(9)+ “Q(m )”Ll(w)

Fix Be[1,9/8). Then, we can take y>4(B—1) such that Propositions 3, 7°* hold.
Thus,

lim P,((D —0),, (D— o0),, hold, there exist x*(f)>0

and at least #y,,m)-eigenvalues
@rigomyom) " £=1s oMy Of G
satisfying [A¥(w(m)) — (ty,oomyy, m) |
=0(m(ﬂ— 1)—2y-k*(ﬁ))) =1.
In summing up these facts we get the following:
Proposition 8. Fix fc[1,9/8). Then, we can take y>4(—1) such that
,,1,1—1»130 P,(D-0),, (D— ), hold, there exists k(f)>0

such that |2¥(w(m)) ™' — fi; | =0mP~D7*Py)=1.
Here we used the fact that fi; ,, can be written as
fij m=m"+4nom’ "1y, ;.
where
VY, ; € (min V(x)/2, max V(x)/2)
for large m. Fix j. We will show that
ZEOv(m)) ™t = ot/ w(m)) + (7.12)
if w(m) satisfies (D~O)m We remark that there may be many connected
components of Q U B(at/m; w™). Thus, po/m; w(m)) may come from w (w(m))

for s=2. We know by the properties of eigenvalues of — 4+ m’ in w(w(m)), s=2
that they are at least of order m?*(logm)~ % as m—oo. Thus, we get (7.12). In
summing up the above facts we get Theorem 1.
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9. Short Discussion

In Ozawa [5], the author used Kac’s theorem (=Theorem A in this note with
§5=0, f=1)to prove Theorem A with >0, f= 1. By the method developed in this
paper, we get Theorem A without using the theory of Brownian motion. The
author hopes here that we can get Theorem 1 by purely probabilistic methods.

The author should remark that there is a small modifiable mistake in the proof
of Ozawa [5, Proposition 4]. The formula (3.9) in [5] is not correct, however,
Proposition 4 in [5] still remains correct. The proof can be obtained by using a
formula and method like (7.1) of this paper.
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