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Abstract. The Lagrangian based theory of the gravitational field and its sources
at the arbitrary background space-time is developed. The equations of motion
and the energy-momentum tensor of the gravitational field are derived by
applying the variational principle. The gauge symmetries of the theory and the
associated conservation laws are investigated. Some properties of the energy-
momentum tensor of the gravitational field are described in detail and the
examples of its application are given. The desire to have the total energy-
momentum tensor as a source for the linear part of the gravitational field leads
to the universal coupling of gravity with other fields (as well as to the self-
interaction) and finally to the Einstein theory.

1. Introduction

Investigations on general relativity (GR) are frequently being carried out under the
assumption that there exists some background space-time. Problems of post-
Newtonian equations of motion, generation and propagation of weak
gravitational waves, quantization of weak gravitational field apply the notion of
flat background space-time [1-3]. A curved background space-time (especially,
cosmological and black hole geometries) can be used when the propagation and
amplification of perturbations or vacuum polarization and particle creation effects
are considered. The "background field method" is developed for treating the
various quantum fields at the classical background [4]. The notion of background
space-time, primarily flat, is also invoked when interpreting the solutions of GR
equations.

Investigations of this type are being carried out, as a rule, in the linear
approximation, without taking into account the "back reaction" of perturbations,
or, in a better case, by successive approximations. Many additional constructions
are used, like averaging over space-time volumes, specific choice of coordinate
conditions, asymptotically Cartesian coordinates, etc. Unfortunately, it is not



380 L. P. Grishchuk, A. N. Petrov, and A. D. Popova

always clear which results, obtained in this way, have general meaning and which
depend on additional constructions.

In our opinion, this approach deserves further study and more thorough and
compact formulation. Among other things it sheds some light on the problem of
energy and momentum of the gravitational field. It is known that the standard
(pseudotensor) description is full of ambiguities. Nevertheless, an unambiguous
answer to the question of which quantity plays the role of the energy-momentum
tensor tμv of the gravitational field is needed, for example, when computing the
conformal anomaly for the trace of tμv9 similar to what was done for other physical
fields in a curved background space-time. (We will consider this problem in a
different publication.)

There are well known papers (see, for example, [5-8]) where GR is treated as a
theory of a nonlinear tensor field at a flat background space-time. These works
paid much attention to the issue of how natural and unavoidable the Einstein
equations are; however the actual content of this approach has been developed to
a lesser extent.

In the present paper, following in many respects [8] and [4], we give the
Lagrangian formulation of the theory of the gravitational field and its sources at an
arbitrary background space-time. The background (absolute) and dynamical
variables are introduced from the very beginning. By using the variational
principle, the field equations are derived together with the energy-momentum
tensor ίμv of the gravitational field and of other dynamical fields. The gauge
symmetries of the action and of the field equations are examined, the conservation
laws are discussed. Some properties of tμv are considered and some examples of its
application are given. The theory is developed in a self-contained way and its
formal equivalence to GR is established at the very end, by making some
appropriate identifications.

The following notations are used. The background space-time (with signature
+ , —, —, —) has the metric tensor γμv and the Christoffel symbols C$r The

background curvature tensor is R°βyδ=
 β

γ

δ —..., the Ricci tensor is Raβ = R°σβ.

The ordinary derivative is denoted by a comma, and the covariant derivative - by a
semicolon. No special restrictions on the coordinate system are imposed. In
particular, if the space-time is flat, Rβyδ = 09 the metric tensor γμv is not necessarily
assumed to be in the Minkowski form ημv. The functional derivatives have the
usual form:

dL \ f dL

The symmetric energy-momentum tensor for the arbitrary action

I

c

is defined as in [2]:

2 δL δL δL
1 = =Z . /uvί / •> V ^ ' - U
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2. The Flat and the Ricci-Flat Background Space-Time

Obviously, the case of the flat background space-time, R°βyδ = Q, is privileged since,
in that case, GR recalls the theories of other physical fields to the largest extent.
However, most of the relations presented below are valid also in the more general
case: Rcc

βγδή=0, Raβ = 0, so we stick to the Ricci-flat backgrounds. Differences arise
only when treating the integral conservation laws, and they will be discussed later
(Sect. 4).

2a) Gravitational Field Without Matter Sources

Let the tensor fields hμv and Ka

μv be given in a Ricci-flat background:

Rxβ = 0. (2.1)

The tensor hμv is symmetric and the tensor Ka

μv is symmetric with respect to the
lower (last) two indices. Following [8], we apply the first order formalism and
consider hμv and Ka

μv as independent variables. Take the action for the
gravitational field in the form:

where

B = ]f^~y\f\K%,, a - Kμ; v) + |/=7(y"* + /T) (KfμvKa - K«μβK*J. (2.3)

Here and below we use the notations:

K =Kσ C =Cσ ' hμv

By varying (2.2) with respect to hμv and KQ

aβ one obtains the first-order field
equations:

δΠ
K^ K K + K^vKa — K^μβK vα = 0 , (2.4)

Q β (2.5)

From (2.4), (2.5) one can obtain the second order equations. For this one has to
take the covariant derivative with respect to τ from the equation

( f ••* + f'τ— p' -L l v fτa') = 0\Jμv Jvμ J μv > lϊμvJ α/ ^
- 7

and use (2.4). Then one obtains:

G£v(ft)= -(K^+^XIQf.+β^, (2.6)
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where

yLμy = τl> μv τ '

2β τ

μ, = - yμvh*βK\β + Kκ% ~ Kκ* ~ KKμ+hβ\K\βγav+K\βyXfl)

1 (5ίf
The right-hand side of (2.6) is identically equal to = = ——. If one uses the

y — y oy
definition (1.1) then the field equations (2.6) can be rewirtten in the form:

GL

μv(h) = κtμv(h,K), (2.8)

where tμv is the symmetric energy-momentum tensor of the gravitational field:

1 δJ3
. (2.9)-y oy

(Recall that the notion of the energy-momentum tensor of the gravitational field
has been already present in the early works [9].)

Equation (2.8) could be also derived without using the first order formalism.
For this one has to consider K*μv as the known functions of hμv and hμ\a, defined by
Eq. (2.5). By varying B with respect to hμv one obtains Eq. (2.8) where Ka

μv have to
be understood as the specific expressions, following from (2.5).

Note that the identity Gμv

;v = 0 is satisfied due to Eq. (2.1):

2GL

μJ
v = Rλv; μh

λ* - 2(Rμλh
λη; v. (2.10)

As a consequence of the field equations one has £μ v

; v = 0.
Equation (2.8) has the obvious interpretation of the field equations for the

field, possessing the self-interaction. The left hand side (l.h.s.) of (2.8) is the
covariant generalization of the field operator for the massless, spin 2, tensor field.
The r.h.s. of (2.8) is the energy-momentum tensor of the same field.

The expression for tμv9 after the exclusion of Kα

μv, contains the second
derivatives of hμv in the form of terms like h^h^.^.β. Sometimes such a property is
regarded as a disadvantage of a theory. However, in the present case, this property
is very natural. If the aforementioned terms were absent, the propagation of the
gravitational field would be determined by the differential operator
Gμv. In particular, at the flat background, the characteristics of Eq. (2.8) would be
the straight null geodesies of the Minkowski space-time. Then, by using the
propagating graviational field one would be able to observe the flat geometry of
the world even in the presence of a gravitational field. Such a conclusion would be
in a severe conflict with the whole spirit of GR.

The equivalence of the equations of the developed theory with the vacuum
Einstein equations (without sources) is revealed by the identifications

c*μv+κ«v=r;v. (2.11)
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Then, Eq. (2.5) are just the usual relation between gaβ and Γμv, and Eq. (2.4)
[together with (2.1)] is equivalent to

R = Γα — Γ 4- Γα Γ — Γα Γβ = 0
- ' y u v — μv,a xμ,v'xμvxa x μβx vtx ^

The Lagrangian B transforms into the Gilbert Lagrangian ]/—gR, if one adds to
E the terms

These terms, after varying them by fιμv and Ka

μv9 do not change the field equations
(2.4), (2.5). The contribution from L1 vanishes due to Eq. (2.1).

This approach can be extended to the theory with the cosmological Λ.-term.
Equation (2.1) will be replaced by R(xβ—ΛγOίβ = O and the l.h.s. of Eq. (2.6) will be
replaced by Gμv + Ahμv. The covariant divergence from this expression is still equal
to zero identically.

Let us discuss briefly the question of the "back reaction" of tμv on the
background. Here, two points of view are possible. According to the first, the
background metric yμv remains fixed regardless of the accuracy with which Eq. (2.8)
are solved. From this point of view, to reckon tμv means just to take into account
the nonlinearities in the equation for hμv. According to the second point of view,
one or another part of the nonlinear solution for hμv must be added to yμv which
leads to the change of the background metric. The extreme realization of this
procedure is a complete merging of yμv and hμv according to (2.11). These
considerations on the "back reaction" apply, also to the other variants of the
theory, considered below.

2b) Gravitational Field with Matter Sources

Introduce the matter fields interacting with the gravitational field. The nature of
the fields and their transformation properties are not important at the moment.
Denote the fields by φA, where A is some general index.

Let the Lagrangian density EP of the matter fields including their interaction
with gravity to have the form

\J, (2.12)

so that the total action is

^ (2.13)
2cκ c

Deriving the field equations, one obtains Eq. (2.5) again and

SUP
rμv(K) = 2κWy (2.14)

instead of (2.4). By varying S with respect to φA, one obtains the equations of
motion for matter fields

^ 0 . (2.15)
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By the procedure similar to that described in Sect. 2a one can derive from Eqs.
(2.14), (2.5) the equation

( δE δE\

^+2δf^-y^fβwί) ( 2 1 6 )

The total energy-momentum tensor of the action (2.13) is, by definition,

δE δE
*

δE δE
™ = tμv + 2 ̂ — — γμyy* -j—β = tμy + Tμx, (2.17)

where Tμv is the energy-momentum tensor of the matter fields which includes also
the contribution from their interaction with gravity. If we want the r.h.s. of (2.16) to
be κVμ°\ i.e. if want Eq. (2.16) to have the form

GL

μv = κ(tμv+Tμv), (2.18)

then we must require that the following equations be satisfied:

( dE \ dE1 ( dE

The sufficient condition for their fulfilment is that E1 depends on yμv + /Γμv, i.e.

α ; ^ . ^ α ] ( 2 1 9 )

This condition symbolizes the universal coupling of gravitational fields with other
physical fields. The theory based on the action (2.13) and supplied with the
condition (2.19) is equivalent to GR. To show this one has to make the
identifications (2.11) and use the equality

δE δE

which is valid because of (2.19).
A consequence of (2.18) is a covariant conservation law

= 0. (2.20)

It is interesting to note that the desire to have Tμf as a source in Eq. (2.16)
restricts the functional dependence of E even if E is written down in a more
general form than (2.12). For instance, if Lm contains Ka

μv explicitly, then the
condition analogous to (2.19) will take the form

E = ElΓ + ̂ ;(Γ + hn,«;Clv + K«μv;φA;φAJ. (2.21)

Once again one returns to the requirement of the universal coupling of the
gravitational field to other fields (compare with [10]).

It is worth recalling that a theory without the term tμv in the field equations
(2.18) would be inconsistent. To remedy this inconsistency one either has to include
the selfinteraction (the term ίμv) or has to take a nonlocal projection of Tμv as the
r.h.s. of Eq. (2.18) [11]. In the second case one obtains a curious non-Einstein
theory which agrees with the presently known experimental facts, but predicts,
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among other things, that the gravitational waves, contrary to the electromagnetic
ones, do not interact with the gravitational field [11]. Since this theory includes the
higher derivatives, it will, likely, encounter difficulties common for such theories.

3. A Curved (not Ricci-Flat) Background Space-Time

3a) The Background Curvature Determined by the Background Matter

Much research, especially cosmological, deals with small perturbations of
gravitational and matter fields about some basic solution satisfying the
background Einstein equations,

and the background field equations for φA. It is important to develop an exact
theory along these lines. Such a theory may be useful, for instance, in the
circumstances where the mean values of the (quantized) gravitational field
correspond to the nonvanishing curvature and Ricci tensors, i.e to a curved
background space-time. The theory may help to give a detailed description of such
a miraculous process as the "spontaneous birth" of the classical Universe from
zero-point quantum fluctuations (see, for example [12]).

The background physical system may be described by the total Lagrangian

where L9 = \/~^yR. Equation (3.1) and the equations for φA follow from the
variational principle:

δL

δφA

= 0. (3.2b)

Now, let us introduce the dynamical variables hμv and Ka

μv for the gravitational
field and φA for matter fields. Take the Lagrangian for dynamical fields in the form

L=-^ΰ + Er9 (3.3)

where B is defined by Eq. (2.3) and E1 is supposed to depend on haβ, φA, y
aβ, φA and

their first derivatives.
The characteristic feature of physical systems which include the background

sources (φA in the present case) is the existence of "excitations" which contain
coupled gravitational and matter variables on an equal footing. In other words, the
variables hμy, φA, if treated as infinitesimally small, satisfy the coupled linear
equations and can be combined into a single multicomponent field. The distinction
of different degrees of freedom and, in particular, the singling out of free
gravitational waves is only possible at the sufficiently symmetric backgrounds
[13]. (For a recent discussion of the criteria of gravitational radiation at the
Friedmann-Robertson-Walker backgrounds, see [14].)



386 L. P. Grishchuk, A. N. Petrov, and A. D. Popova

The linear operator acting on hμv, i.e. the l.h.s. of Eq. (2.8) can be written in the
form

This operator takes its origin in the gravitational part, if, of the background
action. In a similar fashion one can write the linear operator associated with IT:

The dynamical equations are to be derived from (3.3) by varying L with respect
to gravitational and matter variables respectively. First, consider the equations
which result from varying L with respect to gravitational variables (gravitational
equations). The left hand side (linear part) of these equations in their second order
form must consist of GL

μΛ> + Φ^v. Let us require that the right hand side of these
equations be the total energy-momentum tensor following from (3.3). More
precisely we require that the gravitational equations have the form

( 2 δΓP \
tμv+—=—\ (3.6)

From (3.3), by a computation similar to that described in Sect. 2, one gets

( δΣP δEP\

t^w^t^wη- (3 7)
Now, add Eq. (3.5) to the both sides of these equations and introduce the notation

δLm δLm

Then, Eq. (3.7) transforms into

<5L m δU1 2 δU1

2 δ ί^δt1 δLS / λΐm ΛTm\~\

-y

In order to have T™ at the r.h.s. of Eq. (3.8) it is sufficient [thanks to definitions (1.1)
and (2.9)] to demand that ίtμv and γμv appear as a sum in Lm. It means that Lm has to
depend on the arguments: yμv + hμv, φA, φA and their first derivatives. As a
consequence,

δΐr δΐr

and the r.h.s. of (3.8) can be easily reduced to



Gravitational Fields in Arbitrary Backgrounds 387

Now, consider the equations which result from varying Lwith respect to matter
variables (matter equations). The left hand side (linear part) of these equations
must be

M £ )
since this is precisely the linear term of the "perturbed" equations (3.2b). Let us
require that the r.h.s. of matter equations be the "current" JA which is a result of
varying E1 with respect to φA. In other words we want the equations to have the
form:

firm

^ (3.10)

In order to satisfy this requirement it is sufficient to suppose that Lm depends on φA

+ φA. Thus, finally, we come to the conclusion that Lm must be of the form:

δy δφβ

where Lm depends on yμx + hμ\ φA + φA and their derivatives. If the terms Lm and

δfr~βδ
δyμv δφB

are, correspondingly, the zero order and the linear terms in the decomposition of
Lm by powers of the dynamical variables fιμv, φA (with the total derivatives ignored),
then Lm contains not less than quadratic powers of the dynamical variables.
Consequently, 7^' and JA also contain not less than quadratic dynamical terms.

After the identification (2.11) and φA + φA = φA the dynamical equations (3.6),
(3.10) [with (3.11) taken into account] together with the background equations
(3.2) become equivalent to the Einstein equations and the matter field equations,
written in terms of gμv and φA. The Lagrangian (3.3) can be viewed as the result of
subtracting the zero-order and linear terms from the general Lagrangian

decomposed in powers of hμv and φA.
Since, in general, the covariant divergence of the l.h.s. of (3.6) does not vanish,

one has the relation T™;vφ0. The physical reason for this nonconservation is the
interaction with the background system which exerts the "force" and "parametric"
action on the dynamical fields. The mathematical origin of this relation will be
discussed below (Sect. 4).

3b) Background Curvature Without Background Matter

In the preceding section it was assumed that the background Ricci tensor was
governed by the background matter. However, one can imagine a situation where
tμv = 0, while Rμv Φ 0. It means that Rμv is fixed "by hand" or is governed by some
sources which we are, presently, not interested in. It is worth considering such a
theory, yet it may run into inconsistency.
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One easily obtains a theory of this kind if considers the action (2.2) [or the
action (2.13), (2.19) when dynamical matter is included] for such background
metrics yaβ that Rμv φ 0. In this case the dynamical field equations maintain their
form (2.4), (2.5) (or (2.14), (2.5)) though they may not be totally integrable now. In
addition, the solutions of these field equations can be shown to satisfy the
conservation law ίμv

;v = 0 (or T^t;v = 0) and the relation G£y v = 0, despite the fact
that G£v

; vφ0 due to (2.10) (for more detail about why this happens, see Sect. 4).
However, the major defect of this theory is that it has no direct relation to GR.
Indeed, the l.h.s. of Eqs. (2.8) and (2.18) does not have the term

while this term must be present in equations derived from Einstein's equations.
In order to remedy that defect and restore that term, one has to supply the

Lagrangian B with the additional contribution L1 = hμvRμv. Thus, we will consider
the Lagrangian

where Lm is defined by (2.19). The varying of L by hμy yields the equations

firm

(3.12)

and Eqs. (2.5), (2.15) remain unchanged. After the proper rearrangements one gets
the second order field equations

Gμv + G£v = κ(ί μ v +7; v ), (3.13)

13
where the expressions for tμv and Tμv are determined by — —- and Lm, as before.

This seems to be a reasonable definition for the energy-momentum tensor since it
implies that Tμf = tμy + Tμv is computed from that part of the total Lagrangian L
which is not less than quadratic in dynamical variables. In Eq. (3.13), Gμv plays a
role of the external "force," acting on the dynamical system. Tμ°

x is not conserved:

τ ; v

o t ; v + o .

If one computed Tμf from the total Lagrangian L, one would obtain

Ttot(Tλ = t -\-T GL

1/ίV V-^/ — Lμv ' J μ v ^ μ v ?

which is another way of saying that Gμv is transferred from the l.h.s. to the r.h.s. of
Eq. (3.13). Such a definition of Tμf is hardly reasonable despite the fact that it gives
τ->tot; v r\
i μ v Uφ

A further modification of the theory would be to consider the total Lagrangian

L = — — (L° + L1 + E) + Lm, where L = γ — γA. The field equations will again have
the form of Eq. (3.13), but Tμf computed from this total Lagrangian would be given
by

T t o t = t + T (G
μv μv ' μv \ μ
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which is zero due to (3.13). A similar situation occurs in GR when one tries to use
gμv both as the field variables and the metric components, which are used in the
definition (1.1) of the energy momentum tensor. The origin of this disappointing
result is now clear.

The field equations (3.13) do occur in current research [15]. In the quadratic
approximation with respect to small hμv (and with Tβv = 0) these equations were
studied in [15a]. Under a special choice of the parameters of the small
perturbations, the approximate solution to (3.13) can be interpreted as the
propagation of gravitational waves (G£v = 0) at the curved background space-time
caused by the waves themselves (Gμv = κtμv) [15].

4. The Gauge Invariance and the Conservation Laws

A coordinate transformation can be regarded as a mapping of a space-time to
itself. In this way the coordinate invariance of a physical system can be assigned
the meaning of the gauge invariance. By the gauge invariance one usually
understands the invariance with respect to some replacement of the background
and dynamical variables in the same coordinate frame of reference. We will also
introduce and use (at the end of Sect. 4) the notion of true gauge invariance which
means the invariance with respect to replacement of the dynamical variables
only. This property is fully analogous to the usual (internal) gauge invariance.

Let the mapping of the space-time be realized with the help of a vector field
ξ\xμ). To a point, with the coordinates xa one maps another point with
coordinates xα. For a given mapping one can perform a coordinate transformation
to the new coordinate system xα/ such that the mapped point xa will have exactly
the same numerical values of the new coordinates as the original point xa has had
in the old coordinate system.

By comparing the values of an object, say, a tensor field Ω"β, given in the
original point and the old coordinate system with the values of the same object,
Ωaf

β, given in the mapped point and the new coordinate system, one arrives at the
notion of the Lie-derivative [16]:

This expression keeps only the terms linear in ξ". It can be shown that the exact
relation, which includes all powers of ξα, has the following form:

β β &β
k= 1 K"

where ύξ means the Lie-derivative taken k times. We are interested in the exact
relation (4.1) since we will be interested in the full nonlinear theory.

Let us accept Eq. (4.1) as a gauge transformation for the background and
dynamical variables. The concrete form of the gauge transformation depends on
the coordinate properties of the transformed object.

Any Lagrangian, being a scalar density, acquires the total divergence under the
transformation (4.1). For instance, in the approximation, linear in ξα, Eq. (4.1)
gives:

x. (4.2)
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From (4.2) it is seen that the equations of motion will not be changed. If,
additionally, one assumes that ζa vanishes at the boundary Σ of the region of
integration,

ξa\Σ = 0, (4.3)

then the action remains entirely unchanged - the property which may be
important in the quantum version of the theory. (The interrelation between
coordinate and gauge symmetries and their role in quantum gravity is discussed in
[17].)

The direct use of Eq. (4.1) in the equations of motion transform them into a
combination of the same equations. For instance, if one puts the expressions for
K"μV, y

μv' into Eq. (2.4) then the l.h.s. of these equations transforms into r v̂, where

r

f —r _ι_ V — Tk r
' μv ' μv i L-i i i ^ ξ' μv *

Thus, the replacement (4.1) with the arbitrary ξ\x) transfers any solution of the
field equations into another solution of the same equations. In this sense the
equations of motion are gauge invariant. The energy-momentum tensor tμv by
itself is not gauge invariant with respect to (4.1). However, it is not invariant exactly
to the same extent that the quantity Gμv is not invariant, for which tμv is the source
term.

The gauge symmetries of the action are closely connected with the
conservation laws for T*f which we derived in Sect. 2 and Sect. 3 by direct
computations from the equations of motion. We will show this in detail. For
simplicity, we restrict ourselves to the vector field ξ\x) which satisfies Eq. (4.3) and,
additionally, the restrictions:

^ 1 1 = 0, e , ^ = 0. (4.4)

These conditions allow us to ignore the total divergences under the sign of the
integral. However, the restrictions (4.3), (4.4) are not compulsory and the
conclusions formulated below could be obtained without use of (4.3), (4.4), though
technically more difficult. The conclusions about 7JJJt; v could be also derived as a
result of application of Noether's theorems (see, for example [18, 19]).

For our purposes it is sufficient to take account of terms linear in ξa only.
Because of Eqs. (4.2), (4.3) the action is gauge invariant, i.e. its increment vanishes.
It is necessary to write down this fact in more detail. For this, one has to take into
account the concrete dependence of L on its arguments and use LξΩ^β as their
increments. Further, one has to use the fact that the ordinary and Lie-derivatives
commute, and integrate by parts with the use of Eqs. (4.3), (4.4). Then, for the action
(2.2), one gets

{ I ^ 0 '
 (4 5)

If the equations of motion are satisfied, the first two terms vanish. Since

L(r"=-ζ> "-ξ«>', (4.6)
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the integration by parts of the last term in (4.5) leads to the final conclusion: tμv. v

= 0. It should be noted that Eq. (2.1) has not been used in the course of derivation,
so that this conservation law is valid even if Rμv Φ 0. This fact was mentioned in
Sect. 3b.

In the case when matter is present (Sect. 2b), Eq. (4.5) has the additional term

- — L * φ A . This term vanishes if the matter field equations (2.15) are satisfed. As a

result, one comes to the conservation law (2.20).
The relation T^ t ; v + 0 revealed in Sect. 3a can also be easily explained. In this

case one obtains:

^ £ ^ A ΞO'
 (4 7)

instead of Eq. (4.5). The first three terms disappear because of the equations of
motion. However, the last term does not vanish and, consequently, 7^°t;v#=0.
Again, the explicit relation, which follows from Eq. (4.7), is, after all, a consequence
of the field equations. In order to derive this relation one has to rewrite the last
term of Eq. (4.7) in such a way that it is proportional to Lξy

μv. Then, by using Eqs.
(3.9), (3.10), and Eq. (3.2) along with the Lie-derivatives of Eq. (3.2), the last two
terms in (4.7) can be combined and rearranged in such a way that after integrating
by parts, Eq. (4.7) yields:

This relation is trivially satisfied because of Eq. (3.6).
Up to this moment we have been considering the background and dynamical

variables on the same footing. Both classes of variables underwent the gauge
transformations (4.1). Now we will show that the theory is also invariant with
respect to the so-called true gauge transformations, i.e. the transformations
applied to the dynamical variables only. As the true gauge transformations we
accept the following:

1

(4-9)

+ ΦA)

Unlike Eq. (4.1) these transformations are inhomogeneous since they contain the
background quantities.

With respect to the transformations (4.9) an action is only invariant if the
background equations of motion are fulfilled. For instance, by inserting haβ\ K%v

into (2.3) one transforms ΰ in the following way:

(4.10)
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where div denotes the total divergences irrelevant owing to Eqs. (4.3), (4.4). Thus,
the action (2.2) is only invariant with respect to transformations (4.9) if Eqs. (2.1)
are satisfied [as well as Eqs. (4.3), (4.4)]. Under the same conditions the action (2.13)
is invariant. The action based on Eq. (3.3) is invariant if Eqs. (3.2), (4.3), (4.4), are
fulfilled.

Under the transformations (4.9) the dynamical field equations transform into a
combination of themselves if the background field equations are fulfilled. For
instance, Eq. (2.8) is invariant if Rμv = 0. In other words, if Rμv = 0 and the given set
of /Γμv, Ka

μv is a solution to Eq. (2.8) [or, to be more precise, is a solution to Eqs. (2.4),
(2.5)], then hμv/, K%y will also be a solution.

The energy-momentum tensor tμv by itself is not invariant with respect to the
gauge transformations (4.9) and acquires the additional term in the form of a
covariant divergence. The substitution of haβ/ and Ka

μv into (2.9) transforms ίμv,
with the help of Eqs. (2.4), (2.5), into

L ^ l (4.11)

where the square brackets indicate the argument of the operator Gμv. Since the
operator Gμv, according to its definition, is a covariant divergence

the additional term in (4.11) is also a covariant divergence. Equation (4.11)
expresses the fact of the gauge invariance of Eq. (2.8) with respect to (4.9).
Obviously, one maintains tμv

; v = 0.
Equation (4.9) imply the existence of the "pure gauge" solutions, i.e. such

solutions hφ+0, Ka

μv + 0 which are generated from K*β = 0, Ka

μv = 0 by the use of
Eqs. (4.9). The origin of these solutions can be also explained in the following way.
One could apply a coordinate transformation to the background metric density
yμv(xa) (Rμv = 0) and decompose the result into the sum yμv(x") + hμv(x% where
yμv(xa) are the functions of the new coordinates exactly the same as yμv(xa). The
rest, /Γμv(jcα), are the "pure gauge" solutions. It follows from (4.11) that tμv

constructed from these solutions can be transformed away by the gauge
transformation.

As usual, one can connect the invariance of the action with some identities
similar to the ones that lead to the current conservation in electrodynamics and the
Yang-Mills fields. In the present case one deals with Eq. (4.9) together with the
background equations of motion. As a result of this symmetry one obtains Eqs.
(2.20), (4.8) which are already known.

Let us turn to the integral conservation laws. From a covariant differential law
(2.20) it follows that there exist the coordinate independent conserved quantities if
the background space-time is symmetric, i.e. admits the group of motions. It is well
known that in the flat space-time the use of the curvilinear coordinates does not
prevent obtaining the integral conservation laws. On the other hand, the always
possible rewriting of the covariant differential law in the form of an ordinary
divergence does not help to obtain the coordinate independent integral quantities
if the space-time does not admit motions. Since GR can be always formulated at
the flat background (Sect. 2b) the number of the integral conserved quantities (for a
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system with appropriate conditions at infinity) is equal to 10 - the number of the
Killing vectors. Recall that tμv is a tensor, so that a choice of the coordinate system
is absolutely indifferent. On the contrary, the usual approach gives the meaningful
results, even in an asymptotically flat space-time, if only the asymptotically
Minkowskian coordinates are used [3].

5. Properties of the Energy-Momentum Tensor and Some Examples

Let us consider some properties of tμv additional to those already mentioned in
Sect. 2. Because of Eq. (2.4) tμv can be represented as a covariant divergence:

tμv = i [XJV -±δ«μKv -iδΐKμ -bμ,(f ρK«ρ - y«eκρ) + Q\v\ α. (5.1)

The further use of Eq. (2.5) leads to Eq. (2.8), i.e. tμv9 due to Eqs. (2.4), (2.5), is a
double divergence:

t =—-Vh yzβ + h^v —hβδ* — hβδal o

In the presence of matter the similar formula is valid for tμv + Tμv (Sect. 2b).
Expressions, like Eqs. (5.1), (5.2), permit one, as usual, to reduce the volume

integrals to the surface ones. As a result, the integral characteristics of an isolated
system can be expressed in terms of the asymptotic values of the fields.

Let the background be flat, then one can choose yμv = ημv, Cμv = 0. Define an
isolated system by the conditions:

(5.3)
Kα / i l l

μv-υ\Z2j>

Such a definition agrees with what is known as an asymptotically flat space-time in
GR, i.e. with the definition:

— Π i

For the isolated system, defined by Eq. (5.3), one has E = 0(l/r4), tμv = 0(l/r4),
and the action is finite for such a system. Since the action is a scalar and ίμv is a
tensor, a specific choice of the frame of reference is of no importance. In particular,
the use of the spherical coordinates instead of the Cartesian coordinates is entirely
harmless, which is quite different from the usual approach based on pseudotensors.
Any spatial transformations can not change the integral value for the energy
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It has to be mentioned that the "pure gauge" solutions generated by (4.9), with the
vector field ξ\xμ) restricted by (4.3), (4.4), possess zero total energy.

It may be interesting to establish a link between tμv and a pseudotensor, say, the
Landau-Lifshitz pseudotensor t^L [2]. Inserting ]/^ggfiV = η^-\-hμv into t^L and
using the Minkowskian coordinates one can show that

tμv= -gtίl- ^(h^-h^h^β.

Exactly this quantity shows up in the equations of motion of isolated bodies with
the radiation reaction force taken into account (see, for example [20]).

As examples of the application of tμv9 consider the Schwarzschild solution and
the weak gravitational waves. First, consider the Schwarzschild solution in its
usual form:

ds2=(l-r-A c2dt2-— r2{dθ2 +sin2 Θdφ2) rg= ^ . (5.5)

r

It is natural to treat (5.5) as the field:

hoo=-^—; hlί = r^, (5.6)
r-rg r

given on the flat background space-time written in the spherical coordinates:

\

r2'

The expression (5.4) for P° rearranged with the help of Eq. (5.2) gives

po J j (
2 κ V-r9 J\k\j

2κ l\r-re

r—rg

+ hik] γ-y(3)dSj, (5.7)
J

where the bar means the covariant derivatives with respect to the 3-metric γ11, y22,
y33. The calculation in (5.7) yields P° = mc2.

The Schwarzschild solution in the isotropic coordinates is

ds2

This is easily treated as the gravitational field
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given on the flat background space-time written in the Minkowskian coordinates,

which gives P° = me2 again.

The solution for the weak gravitational waves in TT-gauge [3] is

ds2 = dx02-dx2-(l+a)dy2-(l-a)dz2-2bdydz;

a = a(x°-x), b = b(x°-x).

We can consider this metric as the gravitational field

h22=-h33 = a; h23 = b (5.8)

given on flat space-time, yμλ> = ημv.

By using (5.8) one can compute K*μv according to Eq. (2.5) and then calculate tμv.

In the first nonvanishing approximation the following components of tμv are

different from zero:

j , i =L = L 0 0 .

This expression coincides with that derived from t^L.

Acknowledgements. One of us (L.G.) is indebted to S. Deser for a very valuable conversation.
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