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Conservative Diffusions
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Abstract. In Nelson's stochastic mechanics, quantum phenomena are described
in terms of diffusions instead of wave functions. These diffusions are formally
given by stochastic differential equations with extremely singular coefficients.
Using PDE methods, we prove the existence of solutions. This result provides a
rigorous basis for stochastic mechanics.

Introduction

In Nelson's stochastic mechanics quantum phenomena are described in terms of
diffusions instead of wavefunctions. The class of diffusions considered here
arises in stochastic mechanics and in order to motivate our theorems, we provide a
brief description of the theory. There is unfortunately a certain amount of technical
material involved, so our description here must be illustrative rather than precise.
In the main body of the paper we will be precise.

Consider a point particle in U3 moving under the influence of a potential V(x).
When we specify what we mean by moving—the kinematics, and what we mean
by influence of a potential—the dynamics, we will have a mechanics.

The kinematical proposal is that we describe the motion of our particle with a
Markovian diffusion ξ(t) in Rn. (We define all terms from diffusion theory we use at
the start of Sect. I.) To get agreement with quantum mechanics, we must specify
the size of the fluctuations; we require that on any interval [α, b], the quadratic
variation of our process is (h/2m)(b — a) a.s., where h is Plank's constant over 2π
and m is the mass of the particle. Notice this has the correct units for a quadratic
variation, and henceforth set h = m = 1. We will not discuss the possible physical
natures of these fluctuations—see Nelson [1] for a conjecture—but will simply
remark that if we assume them to be manifestations of an isotropic translation
invariant phenomenon, then the second order part of the generator of our diffusion
must be \Δ. So, the diffusions to be considered are those with a time dependent
generator of the form \Δ + b(x, t)-V.

The dynamics is given by the Guerra-Morato-Nelson variational principle.
Fix a finite time interval [0, T], an initial density po(x) and an initial forward drift
bo(x). Consider the class of diffusions with generator of the form \Δ -f b(x, ί) V,
where b(x, 0) = bo(x) and with ξ(0) having density po(x). For such a diffusion ξ(t),
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define its action on [0, T] to be:

- V(ξ(ή))dt = E(]L{t)dt\ (1)

Although the sample paths of ξ(t) are nowhere differentiable, a theorem of Nelson
[1] shows that the above action has an unambiguous meaning in a variational
context. Roughly speaking, s#(ξ) is the sum of a nice function of ξ and an infinite
constant independent of ξ. The infinite constant drops out on taking variations.
Then a theorem of Guerra and Morato [2] shows that a diffusion ξ(t) is a stationary
point of the above action precisely when there is a solution φ of the Schroedinger
equation

i— = ( — \Λ + V(x))φ, (2)
ot

so that the forward drift b(x, t) of ξ(t) is given by

Vψ(x, t) Vψ(x, t)
b(x, t) = Im + Re , (3)

ι/Hx, ί) φ(x, t)

and so that the density p(x, t) of ξ (t) is given by

p(x,t) = \ψ(x,t)\2. (4)

Note that the same potential V(x) appears in both (1) and (2). We have now
specified both the kinematics and dynamics of stochastic mechanics.

Equation (4) says that stochastic mechanics and ordinary quantum mechanics
make the same predictions for the probability of finding our particle in any given
place at any given time. The simple example discussed here by no means exhausts
the scope of stochastic mechanics. For systems with quite general configuration
spaces and potentials, stochastic mechanics still makes sense and still makes the
same predictions as ordinary quantum mechanics for the probability of finding
the system in any given configuration at any given time. Since all measurement
processes ultimately consist of configuration measurements, the two theories are
experimentally indistinguishable.

To conclude, a rather direct transcription of Lagrangian mechanics into
stochastic terms leads one to the Schroedinger equation and in fact to a description
of quantum phenomena experimentally indistinguishable from that given by the
Schroedinger equation, but in terms of actual point particle motions. The formal
equations for the diffusions of stochastic mechanics were first discovered by
Fenyes [3]. They were rediscovered by Nelson [4], who first explained their
dynamical significance using a stochastic version of Newton's equation. The
variational approach discussed above was given by Guerra and Morato in [2]
other variational approaches have been given by Yasue [5] and Zambrini [6].
For a comprehensive discussion, see the book [1] by Nelson.

In this paper we treat the following question: given a potential V(x) and a
solution φ(x, t) of the Schroedinger equation for this potential, does there exist a
diffusion with initial density \φ(x, t)\2 and generator \Δ + b(x, ί)*V, where b(x, t)



Conservative Diffusions 295

is given by (3) ? Our result is: yes, if V(x) is a Rellich class potential (this is almost
no restriction at all; see Sect. II for its meaning) and if φ(x, 0) has finite kinetic
energy (i.e. || Vψ(χ, 0) | |2 < oo.)

This is not at all a trivial problem. If such a diffusion exists, it must exhibit all
the conservative behavior that the corresponding solution of the Schroedinger
equation exhibits. The processes we construct here, while still continuous path
Markov processes, are qualitatively different from the dissipative diffusions—such
as Brownian motion—that one usually considers. Following Nelson, we call them
conservative diffusions.

The problem of constructing a diffusion with a given initial density and a given
generator has been treated by many authors. However, all known methods are
designed to treat the case where fe(x, ί) V is close to being a small perturbation of
jΔ. This is reflected in the fact that these methods produce measures on path space
which are simply absolutely continuous transformations of the Wiener measure
with the given initial density. In our case Vφ is only known to be square integrable,
and φ may have zeros, so the drift vector field b(x, t) given by (3) can be a very
singular object indeed. It cannot be split off the Laplacian and treated as a small
perturbation in any way. See Meyer and Zheng [7] for more discussion of this
problem. There are some previous results in special cases. Albeverio and Hoegh-
Krohn [8] and Carmona [9] have treated the case of stationary states, and Nelson
[10] has treated the case of a compact configuration space under some smoothness
assumptions.

We now summarize the paper. Section I presents diffusion theory from a time
symmetric point of view and then outlines the strategy of our construction. Section
II contains the proof of some regularity properties of finite energy solutions of the
Schroedinger equation with a Rellich class potential. These will be needed in the
following sections. Section III contains the PDE result on which our approach is
based. Section IV contains the actual construction of our conservative diffusions.

I. Diffusions and Their Martingale Equations

We begin with some terminology and notation. Let Ωc be the space of continuous
functions ω: U -> IR" given the topology of uniform convergence on compacts.
This makes it a complete separable metrizable space, and we will call it trajectory
space. (We reserve the term path space for a different space occurring later.) There is
a distinguished class of functions on Ωc: the t-configuration function ξ(t) is defined by
ξ(t):ω\-+ω(t) = ξ(t, ω). It is not hard to show that the Borel field J* on Ωc is given
by & = σ {ξ(t): te U} see [11]. Certain sub σ algebras of M are of special interest.
The past at time t, 0>v is given by 0>t = σ {ξ(s): s ^ ί}. The intuitive meaning of this
is that a Borel function on Ωc is 0>t measurable precisely when it only depends on
configurations up till time t. Similarly the future at time ί, 3Fv is given by 3Ft =
σ{ξ(u): u ^ ί}, and the present at time t, Jίv is given by Jft = σ{ξ(t)}. (The Jί is
for now.)

Suppose we are given a ^-probability measure Pr on Ωc. Then Borel functions
/ become random variables, and we denote their expectations—provided they are
integrable—by Ef If #4 is a sub σ algebra of ^ , and if feLλ(Pr\ then we will
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denote the conditional expectation of/ given stf by E {f\ stf) except when stf = Jί\
for some t then we will just write EJ.

When trajectory space is made into a probability space in this way, tt-+ξ(t)
becomes a stochastic process which we will call the configuration process. Recall
that to say ξ(t) is Markovian means that whenever/e^ and ge&Γ

t with/ g, and
fg integrable, Et{fg) = Et{f) Et{g).

We will say that under Pr the configuration process is a smooth diffusion with
coefficients σιj(x, £), b\x, t), and bι^(x, t), 1 ^ ί, j ; ^ n in case

(i) The configuration process is Markovian.
(ii) The σίj are all smooth bounded functions where the σij (x, ί) are the entries

of a positive definite matrix. The b( and the b1^ are all smooth functions bounded
by c(l + |x | ) for some constant c.

(iii) The following limits exist for any/eC^(IRn):

lim l-Et(f(ξ(t + h)) - f m ) ) = Σ ( V ^ + ̂ )f(ξ(t)l (1)

(2)

Notice, as emphasized by Nelson, that the definition of a diffusion is time
symmetric. It may seem that we have contrived this to be true by adding (2) to the
definition. However, it is not hard to see that if (1) holds and ξ(0) has a smooth
density free of zeros, then there is a vector field with components b^(x, ί), compatible
with (ii), so that (2) is satisfied. We have just rephrased the usual definition—in a
slightly redundant way—to bring out its symmetry. An easy example is the Wiener
process with initial density po(x) = (2π)~n/2 exp( — x2/2). Then on [0, T] we have
σ " (x, t) = δij, b\x, t) = 0, b\{xλ t ) = - x V ( l + 0 .

The matrix with entries σίj (x, t) is called the diffusion matrix. It determines the

size of the fluctuations in the sense that lim £ (ξ((tm) - ξι (tm- \))'(ζj(tj -

ζJ(tm- J ) = $σιJ{ξ(s))ds a.s., where the sum is over the endpoints of the nth dyadic
a

partition of [α, b~\. This quantity is called the quadratic variation of ξ(t) on [α, b].
As indicated in the introduction, we will be concerned with the case where σιj

identically equals δι\ and we henceforth restrict our attention to it.
This done, the second order operator in (1) becomes \Δ + b(x, t) V and is called

the {forward) generator of ξ(t). The vector field b(x, t) is called the forward drift;
it gives the best possible prediction based on information in the past at time t of
how the configuration will change just after time t. Similarly bjx, t) is called the
backward drift, and it has the analogous interpretation.

Suppose ξ(t) has a smooth density with respect to Lebesque measure on Un—by
this we mean that the image of Pr under ξ(t) has such a density. Then it is known
that this property holds for all times in the interval considered if ξ(t) is a smooth
diffusion. (Use the regularity of b to work forward, and use the regularity of b^
to work backward.) Assume this is the case. Then we have the following relation
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between b, b^, and p, the smooth density:

b^(x,t) = b(x,t)-V\og(p(x,t)). (3)

We will find the odd and even combinations of b and b^ useful. Following
Nelson we define the osmotic velocity u(x, t) by

u(x,t) = ̂ b{x,t)~bίf{x,t)), (4)

and we define the current velocity v(x, t) by

υ{x,t) = ̂ b{x,t) + b^{x,t)). (5)

It is then a theorem that u, v, and p are related by the following equations:

± t ) \ (6)

| ( x , ί ) = - V (i;(x,ί)p(xJί)). (7)

For the results quoted above and for a more detailed discussion of diffusion from
a time symmetric point of view, see [1]. Note that (6) follows from (3), (4) and (5).
Equation (7) is the continuity equation for p, and it is fundamental in what follows.

We now turn to the problem of constructing a diffusion with given coefficients.
We will use a somewhat nonstandard PDE method to solve this problem in our
case of singular coefficients. To clarify our aim, we briefly discuss our approach in
the simple smooth case.

In the following, assume Pr is a measure on trajectory space making the con-
figuration process a smooth diffusion with backward drift b^x, t). We will work
on a fixed finite time interval [0, T].

We say that a stochastic process t^FteU{Pr) is a backward martingale in
case each Ft is J ^ measurable and E{Fs\^t} = Ft for all 0 ^ s ^ t ^ T. The more
familiar (forward) martingales have the analogous definition.

Let f(x, t) be a smooth bounded function on Un x [0, T]. Then the process
f(ξ(t\ t) is a backward martingale precisely when f(x, t) satisfies the backward
martingale equation:

01

This follows essentially from (2); see [1] for the proof.
Equation (8) is parabolic; and for regular b , standard theorems guarantee the

existence, uniqueness and regularity of Markovian transition function which
generates its bounded solutions. If we denote this transition function by p (y, t x, s),
and if/(x, ί) satisfies (8), then

But since in this case/(£(ί), t) is a backward martingale, we have by definition:

Now if p̂ Cy, t x, s) is the backward transition function of ξ(t)—see [1]—we may
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compute future conditional expectations in terms of it as follows:

f{ξ{t\t) = lP^{ξ(t),t;x9s)f{x9s)dx. (11)

Comparing the last three equations, we see that the transition function for the
backward martingale equation is precisely the backward transition function for our
diffusion. Therefore, if we can solve (8) for its transition function, we can use this
and the given final density p(x, T) to construct a measure Pr on Ωc by a well known
method. It is then easy to see that Pr is the unique measure making ξ(t) a smooth
diffusion with backward generator (^d+fc V) and final density ρ(x,T). In
particular, this construction recovers Pr.

The above discussion and our ultimate goal motivate the following problem:
Let φ(x, t) be a solution of the Schroedinger equation for some potential V(x).
Define:

ί ^ ^ ψ(x,t)φθ
u(x, t) = ) φ(x, t) ΨK'

^ 0 φ(x, t) = 0,

φc,ί)=

t 0 ψ(x9ή =

Note that u(x, t) = ^Vlog\ψ(x, t)\2, where the latter is defined. The process we
want to construct is supposed to have backward drift b^ given by b^ = v — u,
where u and v are given by (12) and (13). The corresponding backward martingale
equation is then

The problem is to solve (14) for its transition function. (Actually, we only need to
find the Markovian operators Pts given by Ptsf(x) = §p^(x, t\ w, s)/(w, s)dw,
where p^ is the transition function.)

To solve this problem, we impose the following minimal regularity conditions
on u, v, and p:

The Finite Action Condition

This is the condition that

T

υ2$(u2 + υ2)p(x,ήdxdt<oo, (15)
o

where by definition

p(x,t) = \ψ(x,t)\2. (16)

A simple computation using the formulas (12), (13) and (16) shows the quantity in
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r
(15) is given by J || Vφ(x, ί) \\2dt. That is, we are requiring the time integral of the

o
quantum mechanical kinetic energy—which is an action integral—to be finite.

The Weak Continuity Equation

Whenever/is a bounded function on Un with bounded continuous first derivatives,
we require that ί ι-> J/(x)p(x, ήdx be differentiable a.e. and that

~j/(x)p(x, ήdx = j>(x, t) V/(x))p(x, ήdx a.e. dt (17)

This is called the weak continuity equation because it's what one gets using/as a
test function and integrating by parts on the continuity equation (7).

The main result of Sect. Ill is that we can solve (8) for its transition function if
these two conditions hold. First however in Section II, we show that if φ is a finite
energy solution of the Schroedinger equation for a Rellich class potential, then
u, v and p defined in terms of φ do in fact satisfy these conditions.

We close this section by comparing our PDE approach to constructing diffu-
sions with the usual one. With /(x, ή as before, f(ξ(t), t) is a forward martingale

precisely when /(x, ή satisfies the forward martingale equation —(x, ή =
dt

( — ^Δ—b'V)f(x,ή, which is usually called the backward diffusion equation.
(There is no such relation between the backward martingale equation and the
forward diffusion equation.) One can produce the forward transition function of the
process we seek by solving the forward martingale equation; indeed, this is the
usual approach. However, the forward martingale equation is antiparabolic as it
stands, and so one must work backwards from a given final time condition to solve
it. This would be inconvenient for our purposes in Section III.

II. Finite Energy Solutions of the Schroedinger Equation

A solution φ(x, t) of the Schroedinger equation

ijtφ{x, ή = ( - \A + V(x))ψ(x9 ή with φ(χ, 0) = φo(x) (1)

fills entirely different roles in ordinary quantum mechanics and in stochastic
mechanics. In the first case φ gives the complete specification of the state of the
system. In the second case φ is of interest merely because it tells us what the density
and drifts of the corresponding process are, as in Eqs. (12), (13) and (16) of Sect. II.

Somewhat ironically, in the second more limited physical role, we must ask
more regularity of ψ. In particular, we will need to know that the finite action
condition holds, and that the weak continuity equation is satisfied. These condi-
tions are irrelevant in ordinary quantum mechanics. To obtain this regularity,
we must impose conditions on φo(x) and V(x) in (1). Our main result in this
section—Theorem 2.1—is that φ posesses all necessary regularity properties if
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II ̂ *Ao II2 < °°> a n < ^ if V(χ) *s a Rellich class potential. Further useful regularity
holds if \\xφ0 | |2 < oo.

We will denote — \Δ by Ho, and we will denote its domain (as a selfadjoint
operator on L2(Un)) by @(H0). Its form domain, £(H0), is then just the space of
φeL2(Un) such that | | V ^ | | 2 < o o . We can express our condition on φ0 as

A potential V(x) is called a Rellich class potential if, as a multiplication operator
on L2(Un) the domain of V contains @(H0), and for some a and b in U with a strictly
less than 1, the following inequality holds for all φ in @(H0):

\\Vφ\\^a\\Hoφ\\+b\\φ\\.

This is a weak restriction on the potential. For instance, Coulomb potentials are
Rellich class. In U3, Rellich class consists precisely of L2([R3) + L^IR3). We will
always take V to be real so that it is symmetric. The Kato-Rellich theorem asserts
that when V is Rellich class, H = Ho + V is a semibounded selfadjoint operator
with domain @(H0). We can then use Stone's theorem to write the solution to (1) as
φ(x^ t) = exp( — HH)φo(x). Proofs for these assertions are contained in [12].

Next we quote a theorem of Bochner and Von Neumann which we will use here
and in Sect. IV.

Bochner-Von Neumann Measurability Theorem. Let (X, dm) be a separable
measure space, and let t\-^ftbe a map from [0, T] into L2(dm). Ift\->ft is weakly
measurable and ίι—• j | / J 2 dm is in 1/(0, T), then there exists a jointly measurable

x
function f on X x [0, T] such that for almost every ί, j \f(x, t) — ft(x)\2 dm = 0.

x
This function is clearly unique up to equivalence a.e. dm x dt, and we call it the
jointly measurable version of/ r For the proof see [13] and [14].

We are now ready to give Theorem 2.1.

Theorem 2.1 Let V be a Rellich class potential and let ψoel(Ho). Let ψt =
Qxp(-itH)φ0. Then:

(i) For all t, φteΆ{HQ\ and ίι-> || Vψt \\2 is continuous.
(ii) There are unique jointly measurable functions φ(x, t) and Vφ(x, t) such that

ψ( 9ή = ψt and Vφ( , t) = Vφt a.e. dx.
(iii) With w, v and p defined in terms ofφ(x, t) and Vφ(x, t) as in (12), (13) and (16)

of Sect. II, we have that for each finite interval [0, T], there exists a constant M < oo
depending only on T and such that

J> 2 (x, t) + v2(x, t))p(x, ήdx < M for a.e. ίe[0, 71]. (2)

Also, the weak continuity equation holds: for all real bounded functions f on Rn

with bounded continuous first derivatives, t\-^$f(x)p(x,t)dx is continuously
differentiable, and

jjf(x)ρ(x, t)dx = J(φc, tyWf(x))p(x, ήdx. (3)

(iv) The density p(x, t) has finite second moments, uniformly bounded in any
compact interval, provided only that \x2p(x, 0)dx is finite.
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Proof. We recall that the Kato-Rellich theorem asserts that H is selfadjoint on
2f(H0) and bounded below by - b/(l - a) = - (λ - 1). Then 2{H0) is a Banach
space under each of the norms || | | 0 and || || 1, where || φ | | 0 = || (Ho + λ)φ || and
|| φ || i = || (H + λ)φ ||. By the closed graph theorem, these are equivalent norms,
and so there exist constants cγ and c2 (both positive) with which:

cJφlύWφWo^c^φlfoτέΆφeSiH^ (4)

The Heinz theorem [15] then asserts that for any 0 < α < 1, @((H0 + λf) =
λf) = Q)\ and that

c\ || (H + λfφ || ^ || (Ho + W<P II ̂  4 II (H + ̂ ) > II f o r a

We also observe that for any two a, b > 0,

(1/21/2) (α 1 / 2 + b1 / 2) ^ (a + b) 1 / 2 ^ (α 1 / 2 H- b112).

Applying this inequality and the spectral theorem, we deduce:

^ \ \ ( 6 )

Together, (5) and (6) imply that φ is in Q){H\j2) precisely when it is in ^ 1 / 2 . Of
course, 9{Hy2) = £(H0). Since (H + λ)1/2 commutes with exp( - itH), it's easy to
see ^ 1 / 2 is invariant under exp( — HH), and hence so is @ίl2(H0). Also

|| (H + A)1/2(exp( - isH)φ - exp( - itH)φ) ||

- || (exp( - isH) - exp( - itH)) (H + λ)1/2φ ||,

and so ί ι—̂  i/̂ t is continuous into ^ 1 / 2 for ^ 0 in Θ112. Inequalities (5) and (6) again
imply that then 11—> 0p

f is continuous into Ά{H0) for φ0 in Ά{H0). Since ^ -> || V^f | |2

is clearly continuous on Ά{HQ\ we have proved (i).
Given (i), the Bochner-Von Neumann theorem immediately implies (ii).
The first part of (iii) is easy; we have already observed that for almost every t,

}(u2(x9t) + v2(x,t))p(x,ήdx =

By (i), the right-hand side is continuous in t and hence bounded on any compact
interval.

Now, H:@ι/2-+@~ι/2 is continuous, and since φoe@1/2, ί(d/dt)φt = Hφv

where the derivative exists strongly in Q)~1/2. (This is the completion of L2(Un) with
the inner product (/ g)_i/2 = <(H + λ)~1/2f, (H + λ)-ί/2g}.) If / is any real
function on U" which is bounded and has continuous bounded first derivatives,
multiplication by / is a bounded operation on <3{HQ/2) = ^ 1 / 2 . We let / denote
this multiplication operator as usual. It follows that ί f—• </ι/^, φt} is continuously
differentiable and (d/dt) ζfφt,φt} = (- iHφt, fφt} + < fφt, iHφt> = \<iΛφt,
fΨt) ~*~ i^fΨt* i^φty = (i/2)((yφv (Vf)φty — <(V/)^ί? Vφty). By (ii) this is,
for almost every t, equal to:

ί(l/2Q
^(x, ί) φf{x, t)

= \υ{x,t) S/f{x)p(x,t)dx.
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This proves (iii), and it remains to prove the assertion about the second moments
of p.

We will use a monotone convergence argument. Let g^x) be a real valued
function on IR which is smooth, monotone increasing, and satisfies: ^ ( x ) = — 2
for x ^ — 2, gx{x) = x for — 1 ^ x ^ 1 and g^x) = 2 for x ^ 2. It's easy to see we
can choose gγ so that—using primes to denote derivatives—we have xg'[(x) ^ 0;
we do so. Put f1 (x) = xg\ (x). Then f\ (x) = g\ (x) + xg'[ (x) ^ ^(x). So since fί and
gf1 agree on [ — 1, 1], it follows that |/ x(x) | ύ |^ t (x) | f° r all x. Put gn(x) = ng^x/n)
and fn(x) = xg\(x) = xg\(x/n). Of course then |/π(χ) | ^ |gfπ(χ)| for all x.

Now consider hn(x) = gn(x2). By (iii) we have (now xeUn again.)

-r[hn(x)p(x, ήdx = \v(x, ή'Vh(x)p(x, ήdx.
dr n J n

But Vhn{x) = 2xg'n(x2\ so \Vhn(x)\2 = 4x2g'n(x2)'g'n(x2) = 4fn(x2)'g'n(x2). Clearly
^ takes its values in [0, a] for some a independent of n, and we are free to assume
a^\. Then we have \S7hn{x)\2 ̂ 4fn(x2)S4gn(x2) = 4hn(x). By the Schwarz
inequality,

j\hn{x)p(x, ήdx S 2( j> 2(x, t)p(x, ήdx)1/2'(jhn(x)p(x, ήdx)112. (7)

Let roΛ(ί) = (J*Λ(x)p(x,ί)dx). Then (d/dή(mn(ή)lf2 =^mn(ήy1/2(d/dήmn(ή^N,
where N = sup (fι;2(x, ί)p(x, ί)dx)1/2, which is finite by (iii). We then have

te[0,Γ]

mπ(ί)1/2 g mn(0)1/2 + Nί, so mπ(ί) ^ 2((Jx2p(x, 0)dx) + iV2ί2). The right-hand side
is independent of n, and since hn(x) increases monotonically to x2, an application of
the monotone convergence theorem implies:

j* x2p(x, ήdx ^ J 2x2p(x, 0)dx + ( 2 sup J υ2 (x, s)p(x, s)dx j ί2. (8)

This concludes the proof.
Results similar to (iv) can be found in [16]. Inequality (8) is a sharper statement

of (iv) than seems to be available. We will use it in Sect. IV.

III. Solution of the Backward Martingale Equation

Let u, v and p be given as in Theorem 2.1, and fix a compact time interval [0, T].
The backward martingale equation for u and v is:

d-l(x9 ή = (\Δ -(v- u)'V)f(x, t\ /(x, t) = fo(x). (1)
ot

In this section we will solve (1) for / 0 eL 2 (p(x, 0)dx). The solutions will be weak
solutions, but they will have enough regularity for our construction. As the first
step, consider a sequence of smooth bounded IRW valued functions b^x, ί) on
Un x [0, T]. (The superscript ί no longer tells which component of a vector field is
considered, as in Sect. I, but instead which vector field.) These are to approximate
the singular function v — u which will be b for the diffusion we construct in the
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next section. We will choose the sequence so that

]im)s\bί-(υ-u)\2p(x,t)dxdt = O, (2)
£ - > o o o

which is seen possible by an easy density argument. We assume in the following
that such a choice has been fixed. Now choose an initial condition f0. At this
time we require some smoothness of / 0 , so take foeCo(Un). By fι(x, t) we will
mean the solution to the initial value problem:

? £ x , t\ f\x, 0) = /0(x). (3)

Since b^ is smooth and bounded and f0 is in the domain of (\Δ — b^ V) (in the
natural function space), existence, uniqueness and regularity of the solution to (3)
are easy to establish and well known. In particular, we have the maximum principle
for solutions of (3):

min/0(x) ^ f{y, t) ^ max/0(x) for all (y, ί)eR" x [0, Γ ] . (4)
x Λ:

We will make heavy use of this fact.
In some sense (3) approximates (1), so one might hope that the solutions of (3)

approximate the solutions of (1) and thus guarantee their existence. This hope is
borne out in the following results.

Theorem 3.1 Let / 0 , b1^ and fι be as above. Then

lim ]"(/' — fj)2p(x, ήdx = 0, converging uniformly in ί,
ϊ , j —> oo

T

lim $$\Vfi-Vfj\2p(x,t)dxdt = O. (5)
ί,j-+oo 0

Proof. We will establish three inequalities from which our result follows." Let
c = max|/ 0(x)| . Wherever c appears, we have used the maximum principle (4).
To obtain our inequalities, we repeatedly integrate by parts. We begin with some
preparatory comments.

First, by our assumptions on b1^ and fQ9f
ι is bounded and has continuous

bounded derivatives of all orders. Recall that where p φ 0, u(x, t) = ^Vp(x, t)/p(x, t)
((12) of Sect. I). We define Q) to be the space of continuous functions on 1R" with
bounded first and second continuous derivatives. Then for any g and h in ^ , the
following integration by parts is valid:

j (Vg - Vh)p{x, ήdx = - J 2g(±Δ + u V)A)p(x, ήdx a.e. at. (6)

The operator on the right, — i^Λ + u(x, ί) V) is evidently positive on L2(p(x, ήdx).
We denote its Friedrichs extension by Ot and call it the osmotic operator. It will
sometimes be convenient to write ( , )f for the inner product on L2(ρ(x, ήdx) and
|| II f for the norm. We can then rewrite (6) as

f Vλ)p(x, ήdx = 2fo, Oth)t a.e. at. (7)
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Second,/* will have continuous bounded time derivatives for all t e [0, T]—this
is where we need f0 smooth. Suppose g(x, t) is a function on IR" x [0, T] such
that each g( ,t) is in 3 and (dg/dt) is continuous. Then the weak continuity equation
implies:

τ ( da\ τ

- 2 $$lgj)p(x, ήdxdt = 2 SSg(vg)p(x,t)dxdt+ \\g \\2

0 -\\g \\2

T. (8)

Now we compute. Using (6), (3) and (8) and the fact that fι satisfies (3) we
obtain:

ί ί V/' W'p(x, ήdxdt = - 2 j jfi^A + u-V)f')p(x, ήdxdt
0 0

• « v)/')p(χ,ί)ί/χΛ+|/Ί|g-||/Ίlr
0

/T \ 1/2 /T \ 1/2

<2cί fίlfe* -(v-u)\2pdxdt) ( \\\Wfi\2ρdxdt) + 2c2.

\ 0 / \ 0 /

Applying the quadratic formula to this quadratic inequality, we get:

/T \l/2 /T \ l / 2

ΠjlVffpdxdt) ^c^J\^-(v-u)\2pdxdtj
1/2

( 9 )

0 /

we can now prove the second part of (5). Let w =/ 1 ' —fj. Then:

r

' ί ί w ((2^ ~̂~ w ' ^)w)pdxdt

h ^ fy' - (u

2 J | w ( ^ - (v - «))• V/> - ( ^ - (« - v)yVfι)pdxdt

+ \Π\2o~\Π\2τ
l / 2 / Γ \ l / 2

1/2/Γ

) '|2j ) (10)
where we have used the fact that w(x, 0) = 0.
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To prove the first part of (5), we need to estimate || w \\f. Clearly:

jw2p(x, t)dx = \~-\w2ρ(x, s)dxds, and —jw2p(x, s)dx
/-j CIS CIS

dw
= 2 Jw—-ρ(x, s)dx + 2 j \ φ Vw)p(x, s)dx.

So since

and since §w(Δw)pdx = — jVwVwpdx — 2§w(u Vw)pdx, we have:

$ 2 d $V -2$w(wVw)pdx + Jw(6£ - &;)• V(/'' +fj)ρdx

-f 2 Jw(t;

= - jVw Vwpdx + Jw(&i - b\) V(/f +fj)ρdx

]
From this last equation, we deduce the inequality:

K - 2(υ ~ «)| Vx) 1 / 2 (J | Vw|2pdx)112}.

Integrating the left-hand side up to time t and the right-hand side up to time T we
get:

\ l / 2 / / T \l/2r / Γ \ l / 2 / / T

ί (/' -fjfp(x, t)dx 2c 11 f JI ̂  - b{ \2pdxds \ U J j I

l/2\ /Γ \l/2

1/2 ~

(11)

Taking (9), (10) and (11) together, we get the rest of (5).
Henceforth let f(x, t) denote the limit of our approximating sequence / ι(x, t\

which exists by the above theorem. For each ί,/( , t) is well defined as an element
of L2(ρ(x, ή); we denote it by/,.

Corollary 3.1. min/0(x) rg/(x, ί) ^ max /0(x) a.e. p(x, ήdxfor each t. (12)
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Proof This is an immediate consequence of the fact that

r
\g: min /0(x) ^ g(x) ^ max /0(x) |
L

is a closed subset of L2(p(x, t)dx) and (4).

Theorem 3.2. Let f and f0 be as above. Then :

\i\Vf(x, τ)\2p(x, τ)dxdτ + \\ft\\f = | | / J s

2 , (13)
S

\f(x, t)p(x, t)dx = j/(x, s)p(x, s)dx, (14)

for each 0 ^ s :§ t S T. Furthermore, we have the estimate :

Wfiί^K + WfiL ( 1 5 )
where/j(x) =f\x, t) and k\ is a constant depending only on b1^ and c with the property
that lim k[ = 0.

i-> oo

Proo/.

ί«/; , ( ^ - ί>; • vι/3,+(•> • v/; ,/ y *
0

} iJ +u V)fX - ((hi - (υ-uV-VfU^

/T \l/2

Let fc* = 2c J|(feι

# - (i? - w)|2rfί -(r.h.s. of (9)); this has the required properties

\° ^
(see inequality (9)). Then the above computation gives us | | / j | | f

2 ^ | |/s| | s

2 + K ~
t

ί(V/τ

f, V/τVτ, which is even stronger than (15). Since by (11) and (9) lim || f\ ||f =

ft\\f (and the same for 5) and lim J(V/^V/>dxdτ = f(V/τ V/τ)pdxdτ, (13)

follows from the above.

Next compute jί — \ fιp{x, τ)dx jdτ.

x9 τ)dx - f (fc; - (v - u)yVfιp{x9 τ)dx.

The term on the left is zero a.e. dt since it equals (1, Oxf\ = {Oχ\,fi)χ = 0 for a.e. τ.

(Clearly 1 e0(Oτ), and Oτ 1 = 0.)
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The term on the right vanishes as our approximation is tightened :

ft Y/2Λ \ 1 / 2

ί/'p(x, t)dx - $Γp(x, s)dx ύίUK -(v- u))2pdxdτ\ ί f |V/f pdxdτ ) .

This concludes the proof since L2 convergence implies L1 convergence for a
probability space.

Equation (13) allows us to relax our restrictions on the initial condition
/ 0 . Let Ptf0 be the operator from C%(Un) to L2{p(x, ήdx) given by P f f 0 : / 0 ->/ r

By (13) and the corollary to Theorem 3.1, Pt 0 extends by continuity to a Markovian
contraction, also denoted Pt 0 ,

Pt0:L
2(p(x,t)dx)^L2(p(x,ήdx).

(To say that Pt 0 is Markovian means Pt 0 is positivity preserving and Pt0 1 = 1.)
Note that while at each time t we consider a different Hubert space, each of them
contains all the bounded measurable functions.

There is nothing special about t = 0. We can carry out the exact same con-
struction for any interval [s, Γ], s < T. Let Pt s: L2(p(x, s)dx) -* L2(p(x, ήdx) be
the operator so constructed; clearly it too is a Markovian contraction. Our
next result says that taken together, the family of operators {Pts}s<t form a
Markovian propagator:

Theorem 3.3. Letr^s^t. Then Ptr = Pt Psr.

Proof. This is a consequence of the last theorem and the trivial but important
fact that our solution / is independent of the particular approximating sequence
ί .̂ Let bi^1 be an approximating sequence for (v — u) on [r, 5], and let b^2 be an
approximating sequence for (v — ύ) on [5, ί]. Define b^ by b^ = b^ for times in
[r, s\_, and b^ = ί>ι

#2 for times in [5, t]. Then b^ is an approximating sequence for
(v — u) on [r, ί] clearly the possible discontinuity at time 5 is immaterial. Choose
an/seC*([R") and again put c = max|/(x)|. Let P£α be the propagator for the

approximating equation ((3) with b^ as above) so that Pi

aJs(x)=fί(x,a\ s<a,
gives the approximating solutions. Then we have:

II P

t J r ~ Pt,s
Ps,Jr I ^ II P,,rfr ~ P \ J r II, + II K j r ~ P

t , s P s , J r II,

^ II p,Jr - PUII, + II^ΓΛ - p,ΛJs I + II pJp

s,Jr - PU) I •
The first and third terms vanish as i and j go to infinity by Theorem 3.1. The second
term is trickier. By uniqueness for the approximating Cauchy problem, we have
P\r = Pi^Pl^ so this term can be rewritten as:

IIP1' Pι f - P Pj f II < II p ι (pι - p j )f II + II ( P - p* )Pj f II
II t.s1 s,rJr A t,sx s,rJr Hi = II λ t,s" s,r λ s,r'Jr Hi ' II V1 t,s t,s' s,rJr \\t'

By (15), the first term on the right is dominated by:

tf + II pi f - pj f I!
K2c ^ I I V i Γs,rJr \\s'

This too vanishes as i andy go to infinity. By (9), (10) and (11), we see that (Pt s — P\)
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goes to zero uniformly on sets of the form {/: a ^f(x) ^ b} for any a and b in U.
Since PJ

sr is Markovian, we are almost done. It only remains to observe that
C%(Un) is dense in L2(p{x, ήdx).

We now discuss the sense in which/solves the backward martingale equation.
In general, / will only have first spatial derivatives and no time derivative, so
we can only expect/to be a weak solution. We have the following result:

Theorem 3.4. LetfeL2{p(x, s)dx) and ge2. Then :

(ptj> 9\ ~ (/, 9\ = ]((PτJ, Oτg\ + (PτJ, vWg\)dτ. (16)
s

When feQ) also, τ*->(Pτsf9g) is right differentiable at τ = s with derivative
) f

Proof First take/, ge@, and integrating by parts on our approximate sollutions,
obtain (16) in this case. Then approximate an arbitrary feL2(p(x, s)dx) with a
sequence / w e ^ . Since (16) holds for each fn and g, and since {Pτsfn,Oτg\ +
(Pτsfn, v-Vg\ converges to (Pτ>5/, Oτg\ + {PτJf v Vg\ uniformly in τ, we get the
first part.

Smoothness of/can be used in the following way: using (16), (13) and the weak
continuity equation, it is easy to establish that ioxfe£> lim || Pt + httf—f | | f + Λ = 0.

Then since (/, v Vg\ = Im <V<Aί? (Vg)fψt> and (/, ιι V^)t = Re<V^ f, (Vg)fΨt>
(where < , > denotes the inner product on L2(Un)\ it is easy to see that the integrand
in (16) is continuous at τ = s. Knowing this, we can divide both sides of (16) by A
and take the h-+0+ limit to complete the proof.

Equation (16) may not look much like (1), but if we write/(x, t) for Pt sf(x), the
left-hand side formally equals

J^(x, t)g(x)p(x, ήdx + J(φc, ty V/(x, t))g(x)p(x, ήdx

+ j ( φ , ty Vflf(x))/(x, t)p(x, ήdx,

and the right-hand side formally equals:

\{{\Δ + u(x, t)'V)f{x, ή)g(x)p(x, ήdx + j/(x, ή(v(x, t) Vg{x))p{x, ήdx.

Cancelling and rearranging, we would then have:

dJt- \Δf+ (v - uyVfjgp(x, ήdx = 0 for all g in C0(Un\

so (16) is the right result.
There are many further questions one can ask about the backward martingale

equation; however, the above theorems give us all the information we require in
the next section, and so we end our investigation here.

The method of combining the maximum principle and action estimates
is usually called an energy integral, so it's natural to call



Conservative Diffusions 309

T

^Vf-Vfpdxdt an action integral) has been employed by Nelson in [17] in a
o
different context. The method can only be applied to second order equations where
one has the maximum principle; but when it can be applied, it is at least as powerful
as the more usual coercivity methods e.g. those in Lions [18]. There is no coercivity
estimate for our equation; the ir V term is just too singular.

IV. Construction of the Diffusion

We assume given an interval [0, T] and functions u, v and p as in the last section.
We make the convention that wherever r, s and t appear denoting elements of (R,
O^r^sSt^T. Let Pt s denote the Markovian propagator of Theorem 3.3.

By path space £2, We mean (Mn)[0'T] with the product topology. (The dot indi-
cates one point compactification.) Let ξ(t) also denote the ί-configuration function
on £2, defined just as ξ(ή is for trajectory space. The Borel field of <%• is then just
gg = σ{ξ(t): fe[0, T]}, which is of the same form as the Borel field for Ωc. (The
topologies bear no such relation.) The past, present and future are defined and
denoted as before. Clearly Ωc c Ω; and it is a theorem of Nelson that Ωc is an
Fσδ in Ω, and hence a measurable set. In this section we will first employ a method
of Nelson to construct a probability measure Pr on Ω in terms of Pt s and p(x, Γ).
It will then be easy to show that under Pr, ξ(t) is a square integrable Markov
process such that ξ(t) has density p(x,1). To complete our analysis, we will show
that

th-* w(t) = ξ(t) - ξ(0) - \b(ξ(τ\ τ)dτ (1)
o

defines a Wiener process under Pr. This will imply that Pr(Ωc) = 1, and that the
restriction of Pr to Ωc is the unique (regular) Borel measure on Ωc making ξ(t) a
diffusion with density p and forward drift b. By b we mean u + v, and by b^ we will
mean v — u.

To construct the measure on Ω, consider ^ sp{Ω\ the set of all continuous
functions F onΩ which can be written as a finite sum of finite products of functions
of the form ω\-^f(ξ(t,ω)) for some/eC°°([R"). Such a representation is never
unique; we can always include a trivial dependence on ξ(ή for any t. This will not
cause any problems, and in fact we take advantage of it by always assuming an
ξ(T) dependence in every product we write. This will simplify some notation. Now
each/GC°°([R") is identified with a multiplication operator on L2(p(x, ήdx) for each
t in a natural way. We can then define a linear functional Pr : ^sp(Ω) -• U by:

(fn,Pτ>tn_ifn_1Ptn_utn2fn_2...Pt2ttιf1)τ (2)

n

for F of the form F(ω) = f l fMh> ω)) w i t h each/^eC φT) and tn = T, and then
i= 1

taking the linear extension to ^ (Ω). By Theorem 3.3, the right-hand side is

independent of the particular representation of F, and F\-+Pr(F) is a well defined
positive linear functional on ^sp(Ω) with Pr(\) = 1. Since ^sp(Ω) is an algebra
containing 1 and separating points, it is uniformly dense in ^(Ω). Pr therefore
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extends by continuity to a positive linear functional on ^(Ω\ also denoted Pr,
with Pr(l)= 1. Then by the Riesz-Markov theorem, there is a unique regular
Borel probability measure, again denoted Pr, so that:

Pr(F) = J F(ω)Pr{dω) = E(F). (3)

This method of constructing measures on function spaces from a Markovian
propagator differs from the usual Kolmogorov extension method in the important
feature that it gives us a regular Borel measure on a compact Hausdorff space. This
greatly facilitates the investigation of essentially topological questions such as
sample path continuity. The basic idea is due to Kakutani; it was developed into a
method by Nelson in [19].

Let Pr denote the measure just constructed; all other notation will be as before.
Assume henceforth that jx2p(x, 0)dx < oo.

Lemma 4.1. t\->ξ(t) is a square integrable Markov process under Pr which has a

jointly measurable version. Moreover :

(i) The image ofPr under ξ(t) has density p(x, t) with respect to Lebesgue measure
(ii) 11—> ξ(t) is strongly continuous into L2(Pr).

(iii) For any f and g in S (as in Sect. ///), the following limits hold:

lim \E((f(ξ(ή) -f(ξ(t - h)))g{ξ{t))) = - ( ( i j - (i, - u) V)f, g\, (4)

Hm \E({fξ{t + A)) -f(ξ(t)))g(ξ(t))) = {\Δ + (u + ι>) V)/, g\. (5)

Proof. First we note that by the construction of Pr, ξ(t) is clearly Markovian. Next

we verify (i). Let geC%(Un). Then by (2) and (3):

= $p(x,T)PTtg(x)dx

= Jp(x, t)g{x)dx

by (14) of Theorem 3.2. This proves the assertion about the density of ξ(t). With
this in hand we know that E(ξ2(ή) = \x2ρ(x, ήdx, and so by virtue of (iv) of Theorem
2.1, t^E(ξ2(ή) is a bounded measurable function on [0, T7]. In fact, E((ξ(ή-
ξ(s))2) = E(ξ2(ή) + E(ξ2(s)) - 2E(ξ(t)ξ(s)). An easy argument of the type used to
prove part (iv) of Theorem 2.1 together with Theorem 3.2 shows that \E(ξ2(s)) —
E(ξ{t)ξ{s))\ ^ k(t - s\ where k depends only on the energy. Since | jx2p(x, ήdx -
j x2 p{x, s)dx I ̂  h(t — s) for some constant h (as in (iv) of Theorem 2.1), we then have
the strong continuity claimed in (i).

Now the Bochner-Von Neumann theorem doesn't apply directly to ξ(t); but
by the strong continuity established above, the ξ(t) lie in a separable subspace of
L2(Pr\ and so the argument used to prove it applies. We therefore conclude that
our process has a jointly measurable version. It remains to prove (iii). We again
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compute using (2) and (3):

~E((f(ξ(t))-f(ξ(t-h)))g(ξ(t)))

= l((f,g\-(Pt,t-hf,g\)

= \(if, g\ - (/, g\-h) + {((f, g),-h- (Pt.,.hf, g\).

Now apply the weak continuity equation to the first term on the bottom line and
Theorem 3.4 to the second. Taking the limit h -> 0 + we get:

((»• V/, g\ + (/, υ Vg\) + βV/, Vg\ - (/, Wg\).

Cancelling and integrating by parts, we obtain (4). Next:

l h))-f(ξ(t)))g(ξ(t)))

t + h

as in the proof of Theorem 3.4. So, for/and g in 3ι, it's clear that taking the h -• 0 +

limit we get, by continuity of the integrand, (0,/, g\ + (v-Vf, g)t. This proves (5).
Implicit in the above is the fact that E(b2(ξ(t\ ή) = j(u + v)2p(χ, ήdx and this

is uniformly bounded on [0, T] by Theorem 2.1. Moreover, it's clear (ί, ω)t—>
b(ξ(t, ω), t) has a jointly measurable version which is square integrable on

[0, T] x Ω. Therefore, by the Fubini theorem we can integrate pathwise to form
t

\b(ξ(τ\ τ)dτ, with a harmless abuse of notation. This random variable is clearly 0>t

s

and ^ s measurable and in L2(Pr). For future use we record the following estimate

of its L2(Pr) norm

((% Y\
Lemma 4.2. El \b(ξ(τ\ τ)dτ I I ̂  k(t — s)2, where k is independent of t and 5.

/

Proof. E( $b(ξ(τ\ τ)dτ ) ί El n(t - s)1/2( \b2{ξ{τ), τ)dτ 'U2'"2

= n2(t — 5) §Eb2(ξ(τ\ τ)dτ ̂  n2(t — s)2h for some constant h by
s

Theorem 2.1 Now we define η(t, s) by:

η(t,s) = ξ(t)-ξ(s)-]b(ξ(τlτ)dτ. (7)
s

Clearly η(t, s) is 0>t and #" s measurable and in L2(Pr). Intuitively, we are subtracting
the drift and initial value out of our diffusion on [5, ί] in forming η(t, s). Since the



312 E.A. Carlen

second order part of our generator is \A, η(t, s) should then be the increment of a
Brownian motion on [s, ί]. As indicated, we will prove this. We begin with:

Lemma 4.3. For each yeW1 and each se[0, T], let Zs(t) = Qxp(ίy η(t, s) +
y\t - s)β). Then EZs

y{t) = 1 for all t.

Proof. First notice that Zs

y(ί)Zι

y(t + h) = Zs

y(t + A). Also, for each ω we have:

ZJ(ί + A) = ZJ(ί) exp (y2hβ) exp ( - iy f (t)) exp (iy ξ(r + A))

- ' ί*Z;(ί)exp(i> («ί + A) - ξ(ί) + y2A/2 - )b(ξ(σ), σ)dσ))iy-b(ξ(τ\ τ)dτ.
t t

Now take the expectation of the term on the right. By a simple Taylor expansion
argument using the estimate (7), the error in replacing the exponential factor in the
integrand with 1 is o(h) uniformly in t. (By Fubini's theorem orders of integration
can be interchanged.) So, the expectation of the term on the right is:

t + h

- J E(Z;(t)iyb(ξ(τ),τ))dτ + o(h)
t

with the error uniform in t.

Next, write Et(Zs

y{ή) = g(ξ{ή); g will be (complex) bounded. Then using the
definition (2) and Theorem 3.4:

E(Zs

y(t)exp(-iyξ(t))exp(iyξ(t + h))

= E{gξ(t))exp{iyξ{t))exp{iyξ{t + h))
t+h

= (g,l\+ \{PJ*g,{L

2Δ+b-Sί)f)dτ,
t

where/(x) = exp(iy x) a n d / * is its complex conjugate. (The above inner product
notation is slightly abusive. We are working with real Hubert spaces throughout,
and no complex conjugation is taken in forming the implied integrals.) Since
{^Δ + b V)/= ( - y2β + iyb)f, we can rewrite the last integral as:

t + h

t + h

t
t + h

where as above, the error term is uniform in t.

Again, an easy Taylor series argument shows that t -• EZs(t) is continuous,
and EZs

y(t) = 1 + O(t - s). Finally, since exp (y2hβ) = 1 + y2hfl + o(h), we have
altogether that EZy(t + h) - EZy(t) = o(h) uniformly in t, and so the lemma is
proved.

Corollary 4.1. η(t, s) is gaussian with mean 0 and covariance διj(t — s).
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Proof. The characteristic function of η(t, s) is E(Qxp(ίyη(t, s))\ and by the above,
this is exp( — y2(t — s)/2).

Lemma 4.4. ίi—•w(ί) = η(t, s) is an (Ω, 0>v Pr) Brownίan motion started at s.

Proof. The adaptation is obvious, and with the above corollary, the connection
with the heat equation is immediate. The lemma is perhaps therefore trivial, but I
know of no theorem that can be quoted to assert the path continuity. However,
with the above information on the increments, Nelson's proof of path continuity
for the Wiener process [20] applies to our process with one modification: The
sets {ω: | w(ί.) — w(ί.) | > 2ε} are here known only to be measurable instead of open.
But since Pr is regular, they can be approximated on the outside by open sets with
an error of less than 2p(ε/2, δ) (using the notation of [20]). Using these sets, the rest
of the proof goes through with a factor of 2, and so ίι->w(ί) is continuous with
probability 1.

At last we come to our existence theorem.

Theorem 4.1. Given u, v and p as above, there exists a Borel probability measure
Pr on Ωc such that:

(i) t \—> ξ(t) is a square integrable Markov process under Pr which has a jointly
measurable version.

(ii) The image ofPr under ξ(t) has density p(x, t).
t

(iii) w(ί) = ξ(t) - ξ(0) - \b{ξ(τ\ τ)dτ is an (Ωc, &>t, Pr) Brownian motion.
o

(iv) For any/eC^([Rn), the following limits exist strongly in L2(Pr):

lim Ut(f(ξ(t + A)) -f(ξ(ή) = {\A + b(ξ(t\ t)'V)f(ξ(t)\

lim \Et{f{ξ{t)) -f(ξ(t - A))) =-§Δ- b#(ξ(t), ί) V)/(ξ(ί)).

t

Proof. By the Fubini theorem, t\—>$b(ξ(τ), τ)dτ is almost surely continuous. By
o

Lemma 4.4, 11—• η(t, 0) is almost surely continuous. Therefore, 11—• ξ(t) is almost
surely continuous, and Pr(Ωc) = 1. Let Pr be the restriction of Pr to Ωc. Then (i)
and (ii) are immediate consequences of Lemma 4.1, and (iii) is an immediate
consequence of Lemma 4.4. To prove (iv), employ a Taylor expansion, using obvi-
ous estimates on the Wiener terms and Lemma 4.2 on the drift terms.

The configuration process under Pr is therefore our desired diffusion. (A
diffusion is sometimes required to be a family of probability measures Prχ s on
Ωc under which Prχs{ξ(s) = x} = 1, as in [11]. These can be recovered from Pr
since Ωc is a Polish space and has regular conditional probabilities.)

As for uniqueness, we make the following comment. Consider an approximat-
ing sequence of backward drifts as in Sect. III. For our given final density, there is a
unique measure Pr1 making the configuration process a diffusion with final density
p(x, T) and backward drift bι (x, t). It is not hard to show Pr as above is the weak
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limit of the Pr\ Clearly, there is only one solution to our problem with this stability
property.

Conclusion.

The results presented here provide the solutions of the stochastic differential
equations

(1)

arising in stochastic mechanics when the configuration space is Rn and the poten-
tial is Rellich class. The methods are of considerably greater generality than the
results. For instance, if the configuration space is a compact Riemannian manifold,
the PDE results of Sect. Ill and the construction of the measure in Sect. IV go
through virtually unchanged. Therefore one can take R3 x SO(3) as the configura-
tion space and following Dankel [21] incorporate spin into stochastic mechanics.
It is also easy to generalize the class of admissible interactions so that magnetic
fields are included using virtually the same analysis as that in Sect. II. Other
generalizations are quite likely possible. Finally we observe that the time interval
on which we worked was arbitrary, and so we have constructed a probability
measure on the trajectory space for all times.

The project of developing stochastic mechanics into a detailed mathematical
theory has only recently begun, and it is impossible to predict the scope of the
theory to emerge. Nonetheless, it seems unlikely that detailed knowledge of the
sample paths of these conservative diffusions would fail to shed light on mathemati-
cal problems arising in ordinary quantum mechanics, at the very least.

For example, Shucker [22] has shown that, under some assumptions on the
initial conditions, if the solutions to (1) exist for zero potential (i.e. when b comes
from a solution of the free Schroedinger equation), then

lim -ξ(t, ω) = p(ω) exists a.s. (2)
ί->αo t

and that p has the same distribution as the ordinary quantum mechanical momen-
tum. I have recently proved such a result for a more natural class of initial condi-
tions and for a wide class of potentials. These results will appear in a stochastic
mechanical treatment of quantum scattering.
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Note added in proof. The proof given of Lemma 4.4 is brief enough that it borders on the cryptic.

In particular, it should explain why η(t, s) is independent of 0> s. Professor P.A. Meyer kindly pointed

this out in a letter to the author and offered the following explanation (slightly rephrased): Let AeR"

be such that Pr{ξ{s)eA} = 1/α > 0. Let Zs

y(t) = aχ(ξ(s))Zs

y(t), where ZJ(ί) is given as in lemma 4.3. Then

the statement and proof of lemma 4.3 hold with Zs

y(t) replaced by Zy(t). This shows that conditional on

ξ{s)eA, η(t,s) is still mean zero with covariance δij(t — s). Together with the Markov property, this

shows that ^(ί, s) is independent of &>s.

Also, murky phrases such as "close to being a small perturbation" occurring in the introduction do

have precise, but much lengthlier, formulations. These can be found in the author's Princeton thesis.






