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Abstract. We study for which left invariant diagonal metrics λ on SO(N), the
Euler-Arnold equations

X = \X, λ(X)l X = (xtj) E so(N), λ(X}ij = λijXij9 λtj = λjt

can be linearized on an abelian variety, i.e. are solvable by quadratures. We
show that, merely by requiring that the solutions of the differential equations
be single-valued functions of complex time t e (C, suffices to prove that (under a
non-degeneracy assumption on the metric λ) the only such metrics are those
which satisfy Manakov's conditions λij = (bi — bj) (ai — 0/)"1. The case of
degenerate metrics is also analyzed. For N = 4, this provides a new and simpler
proof of a result of Adler and van Moerbeke [3].

Introduction

Recently the question of understanding the complete integrability (or the non-
integrability) of a Hamiltonian system has regained considerable interest. For
example, Adler and van Moerbeke [2, 3] have discussed and used a criterion to
decide what they propose to call the algebraic complete integrability of a
Hamiltonian system and, in a completely different vein, Ziglin [16,17] has proved
the (global) non-analytic integrability of the motion of a rigid body around a fixed
point in the presence of gravity except in the three famous well known cases of
Euler, Lagrange and Kowalewski (see also Holmes and Marsden [11]). One of the
most fascinating common features of all these investigations is the connection
between the question of the complete integrability of a Hamiltonian system and
the behaviour of its solutions as functions of complex time. Up to now, this
connection is not understood in general. In this note, we provide an interesting
new example of this connection by showing that, merely by requiring that the
solutions of the differential equations be single-valued functions of t e (C, suffices to
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single out the left invariant diagonal metrics on SO(N) for which the Euler-Arnold
equations, associated to geodesic motion on SO(N), form an algebraically
completely integrable system (in the sense of [3]).

The concept of algebraic complete integrability is a geometric requirement
which explains why, in many examples, most solutions of a Hamiltonian
completely integrable system have to be meromorphic in t e (C and in fact, must
blow up after a finite complex time. Namely, given a completely integrable system
with polynomial invariants, it happens quite often that the real invariant tori
obtained from Liouville's theorem are part of abelian varieties ( = complex
algebraic tori) and the flows (run with complex time) generated by the constants of
the motion are straight lines on these abelian varieties. When this does happen, the
phase variables, restricted to a generic complex level manifold defined by the
intersection of the constants of the motion, are meromorphic (abelian) functions
on a compact complex torus, which forces them to blow up along a codimension
one divisor. Hence, the solutions of the differential equations admit Laurent series
expansions in t e (C near this divisor and the system possesses "large" families of
complex pole solutions (depending on "dim phase space — 1" free parameters). As
was shown by Adler and van Moerbeke [2, 3], the existence of such pole solutions
can be exploited as a criterion to decide the algebraic complete integrability of a
Hamiltonian system. In [3], the criterion is used to detect the algebraically
completely integrable geodesic flows on 50(4) for a left invariant diagonal metric.

Now, trying to apply this method to the geodesic flow on SO(N) leads to
formidable computations which are in fact impossible to carry out even with the
help of a computer! To understand this, it is important to realize that the algebraic
complete integrability hypothesis is an assumption on the "general" solution of the
differential equations; namely, any solution with initial condition on a generic
complex level manifold defined by the intersection of the constants of the motion,
must blow up in a meromorphic fashion. In Sect. 1, we prove that such a generic
assumption certainly implies that all solutions of the differential equations have to
be single-valued functions of ίeC. Now, it turns out that the Euler-Arnold
equations associated to the geodesic flow on SO(N) possess a lot of linear invariant
manifolds on which they reduce to geodesic flow on SO (3). So, the solutions of the
differential equations with initial conditions on these invariant manifolds are
elliptic functions and this, without any condition on the metric. Surprisingly,
looking at solutions near these special a priori known solutions and imposing
these solutions to be single-valued functions of t e (C, will suffice to single out the
algebraically completely integrable geodesic flows on SO(N} for a left invariant
diagonal metric. For the sake of clarity we shall argue in two steps: Sect. 3 deals
with the case N = 4 while the general case will be treated in Sect. 4 by restricting the
flow to various linear invariant manifolds on which it reduces to geodesic flow on
SO (4). As a by-product, this will provide a very simple new proof of Adler-van
Moerbeke's result [3]. In Sect. 2, we recall some more or less well known results
concerning a class of algebraically completely integrable geodesic flows on SO(iV)
first discovered by Manakov [12] and in Sect. 4, it is proved that for Λ/^5,
Manakov's metrics are the only left invariant diagonal metrics on SO(N) for which
the Euler-Arnold equations are algebraically completely integrable.
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1. Algebraic Complete Integrability and Single-Valuedness of Solutions

In this section we prove that all solutions of an algebraically completely integrable
system (in the sense of Adler and van Moerbeke [3]) have to be single-valued
functions of t e C. By this we mean that, if it is possible to perform the analytic
continuation of a solution along some closed path in the complex ί-plane, the
result must be a single-valued function of t e (C. As emphasized in the introduction,
merely this property will suffice to single out the algebraically completely
integrable geodesic flows on SO(N) for a left invariant diagonal metric. But, first of
all, we need to explain the concept of algebraic complete integrability.

Consider

i = J-τ— x e l R ™ , m = 2n + k, J(x) polynomial in x , (1.1)
(JsC

a Hamiltonian completely integrable system with n + k functionally independent

invariants H1,...,Hn+k of which k lead to zero vector fields JΊ n+j I = 0
\ dx J

( j = l , ...,/c)1, the n remaining ones being in involution ({HbH , }=0). By the
n + k

Arnold-Liouville theorem, if the invariant manifolds Π {Hi = ci}c'Sam are
i = l

compact then, for most values of qeR, their connected components are
diffeomorphic to real tori R"/Lattice and the flows φ\(x) defined by the vector fields
XH. (i= 1, ..., n) are straight lines on these tori.

Let now x e (Cm, t e (C. By the functional independence of the integrals, the map

I:(Hl9...9Hn+J:<Cm-+<Cn+k (1.2)

is submersive [i.e. dH^x), . . ., dHn+k(x) are linearly independent] on a non-empty
Zariski open set ScCm. Let A =/(Cm\S) be the set of critical values of /, i.e.

A = {c = (cd€ <Cn+k\3xeΓl(c) with dH1(x),...,dHn+k(x)} (1.3)

linearly dependent

and denote by A the Zariski closure of A in C"+/c. Following Adler and van
Moerbeke [3], we define

Definition 1.1. The system (1.1) will be called algebraically completely integrable
with abelian functions xt (in short a.c.i.) when, for every ce(Cn+k\A9 the fibre
Ac = I~ί(c) is the affine part of an abelian variety Άc&<Cn/Lc and moreover, the
flows φftx), x e Ac, t e C, defined by the vector fields XHι (i = 1 , . . . , n) are straight
lines on (Cn/Lc9 i.e.

-^)) (1-4)

with fj(t l , . . . , tn) abelian (meromorphic) functions on (CΠ/XC, fj(p) = x; (j = 1 , . . . , m) .

From (1.4), it is clear that the algebraic complete integrability assumption
implies that any solution of (1.1) (or of any other commuting vector field XH) with
initial condition on a non-critical level manifold Ac = I~1(c) is a meromorphic
function of t e (C and thus, a fortiori, it is a single- valued function of t e C. That this

1 Usually, Hamiltonian completely integrable systems possess trivial invariants
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forces in fact all solutions of (1.1) to be single- valued functions of t e C will now be
established but, before this, we need some Lemmas.

Lemma 1.2. The set V} (1.5)

is a non-empty Zarίski open set in (Cm. Hence A is everywhere dense in (Cm for the
usual topology.

Proof. Since a polynomial map is continuous for the Zariski topology,
A = I~ί ((CM+/C\2Γ) is certainly a Zariski open set in (Cm. Suppose it is empty, i.e.
/(Cm) C A. By the functional independence of the integrals, the map / is submersive
on a non-empty Zariski open set Sc(Cm and thus I(S) is open in (C"+/c. Now, by
Sard's lemma for varieties [13, p. 42], (C"+/c\2ί is a non-empty Zariski open set
(hence everywhere dense for the usual topology) in (C" + fe. So, /(S)n((CM + /c\J) φ φ, a
contradiction. This proves Lemma 1.2.

Lemma 1.3. Suppose you have a system

x=/(x); xe<Cm, / holomorphic on Cw, (1.6)

such that all solutions of (1.6) with initial conditions in a dense set ^4cCm are
(analytic) single-valued functions of ίe(C. Then

(i) all solutions of (1.6) are single-valued functions of ίe(C,
(ii) if φ(f) is a particular solution of (1.6) holomorphic along some closed path I in

the complex t-plane, the analytic continuation along I of any solution of the
variational (linearized) equations:

(1.7)

has to be single-valued.

Proof, (i) Let x° e Cm, x°φA and φ(t, x°) be the solution of (1.6) with φ(0, x°) - x°
holomorphic in t for |ί| small enough. Let /1 5 12 be two paths from 0 to w E C, w φ 0,
along which this solution can be analytically continued and denote by φ\t, x°)
(i=l,2) these analytic continuations. Let also Vi (ί=l,2) be simply connected
neighborhoods of l{ (i= 1, 2) in which φl(ί, x°) are holomorphic as in Fig. 1. By the
theorem of analytic dependence of initial conditions [5, Theorem 8.2, p. 35], there
exists then a ball B(x°, r)C<Cm of center x° and radius r such that for every
x e B(x°, r) the system (1.6) has solutions φl(t, x) with φ'(0, x) = x holomorphic in
teVt(i=l92) and x e B(x°, r). Since A is dense, we can find a sequence of points

Fig. 1
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xk = x° + εX, || uk\\ = 1, xk e A which converges to x° and so, for k big enough, the
system (1.6) has solutions φ\t, x° + &ku

k) with φ'(0, x° + sku
k) = x° + εfcw

fc = xfe,
holomorphic in FJ (z = 1,2), which can be expanded in convergent series:

Σ (£,*°K
s=l OXS

By hypothesis, since xfe = x° + ε kw f cey4, one has

in some neighborhood of w.
Letting fc->oo, εfc->0 and since |wj |^l, this obviously implies:

φl(t, x°) — φ2(t, x°) = 0 in some neighborhood of w

which proves (i).
(ii) Consider now a [necessarily single-valued by (i)] solution φ(t,x°) of (1.6)

with φ(Q, x°) = x°, which can be analytically continued along two paths 11 and 12 as
in Fig. 1. Given (5°e<Cm, δ° arbitrary, the system (1.6) has, for ε small enough,
solutions φl(t9x° + εδ0) with φi(09x

0 + εδ0) = x0 + εδ° holomorphic in V{ (i=l92)
which can be expanded in convergent series:

φ\t9 x° + εδ°) = φ'(ί, x°) 4- εδl(t9 δ°) + 0(ε2) ,

where δl(t9 δ°) are the solutions of the variational equations (1.7) in Vt such that
0)^^0. By (i), for ε small enough, one has

0 = φ\t, x° + ε<5°) - φ2(ί, x° + ε<5°) - ε(δ\t, δQ) - δ\t, δ°)) + 0(ε2)

in some neighborhood of w which implies δ1(t,δ°) — δ2(t,δ°) = () in some
neighborhood of w.

This finishes the proof of Lemma 1.3.

Corollary 1.4. // (1.1) is algebraically completely integrable with abelian functions
xi9 then the conclusions (i) and (ii) of Lemma 1.3 hold.

Proof. By the algebraic complete integrability assumption, every solution of (1.1)
with initial condition in the set A (1 .5) is a meromorphic function of t E C and thus,
a fortiori, a single-valued function of £ e <C. By Lemma 1.2, A is everywhere dense in
Cm. This proves Corollary 1.4.

Conjecture. If (1.1) is a.c.i. with abelian functions xi9 then all its solutions are
meromorphic functions of £e(C, i.e. the analytic continuation of any solution of
(1.1) can lead to at worst pole singularities.

2. Manakov's Geodesic Flows on SO(N)

From now on until the end of this note, we shall be concerned with the following
system of differential equations:

(2.1)
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Defining

Ag = λy-λH, (2.2)

(2.1) takes the explicit form

N

*ίj= Σ Ak

ljXikxkj . (2.3)
k= 1

Equations (2.1) are the well known Euler- Arnold equations associated to geodesic
motion on SO(N) for a left invariant metric λ diagonal in the usual basis
(eij)izi<jZN°ffae Lie algebra so (N). They form a Hamiltonian system with regard
to the usual Kostant-Kirillov symplectic structure on each orbit in so(N)*&so(N)

defined by setting the — polynomial invariants ΎΐX2ί ί 1 ̂ i^ — I equal to

generic constants. Functions H defined on the orbit lead to Hamiltonian vector
fields

(2.4)

In particular H = - Σ άyxfj leads to (2.1) while the orbit invariants ΎrX21 lead to
2 i < j

identically zero vector fields (see [4, Appendix 2]). Since the dimension of the phase
. JV(JV-l) [ΛΠ Al(N(N-l) ΓΛΠ\

space is - - -- — , one needs - I - - -- — 1 non-trivial invariants

to make the system completely integrable. One such instance is known and was
first discovered by Manakov [12], namely if the metric λ satisfies:

λ = ^~^1 o [jf , fe] + [α, λ(Xy] = 0, VJT
J

with (2.5)

Then Eqs. (2.1) become equivalent to

(X 4- ah) = [_X + ah, λ(X) + bh] (2.6)

with a formal indeterminate h. Equation (2.6) is an example of what is now usually
called a "Lax equation with a parameter." It means that, for each ΛeC, the
spectrum of the matrix X + ah is time independent or, what amounts to the same
information, if we form the characteristic polynomial

det(X + ah - zJ) = Q2

00(X) + V Σ GyPO^' + Π (akh - z) , (2.7)
r=l i+j=r k=l

the Qij(X) are constants of the motion where, because of the antisymmetry of X,

Q00(X) = ydctX = pfaffian of X,
(2.8)

Λ r I i +7 even when N is odd
= Q for < t l ,

[z +7 odd when JV is even.



Geodesic Flow on SO(N) 211

An elementary count shows one produces in this way the right number ( = ̂ dim
phase space) of non-trivial invariants. A nice proof of their independence and their
involutivity can be found in [15].

Also, the flows XQί. OΦO) can be linearized on an abelian variety as a
consequence of a recent general theory [1, 9]. Namely, consider the spectral curve:

R:{(z,h)e<C2\det(X + ah-zI) = 0 with Qij(X) = cij}. (2.9)

For generic c = (cl7), R is a non-singular algebraic plane curve of degree N, so its

genus is g = - - - . Because of the antisymmetry of X, the map i : R

( — z, — h)isan involution on R with fixed points the N distinct points
over h=ao, together with the origin (0, 0) in the case N is odd. By the Riemann-
Hurwitz formula, the quotient curve R0 = R/ι has genus:

and so, the Prym variety Prying in the Jacobi variety of .R has dimension

g — g0 = - ί - - -- — N = -dim (phase space). Let now Ac be the complex

affine variety defined by the intersection of the constants of the motion:
JV(JV- l )

cy}cC 2 . (2.10)

Clearly, by (2.7), the finite group action

with D = diag(l,dl9 ...,dΛ r_1),d ί= ±1, Π dt=l when JV is even2

leaves Ac invariant. Let also φ^l^j^go), tpk(l rg/c gg — #0) be a basis of
holomorphic differentials on R (2.9) satisfying ι*(φ?) = φ. and ι*(ψk)= —ψk. One
has then the following

Theorem 1 [1, 6, 10]. The system (2.1) with λ satisfying (2.5) is algebraically
completely integrable with abelian functions xtj.

More precisely, there is a one-to-one algebraic map from the affine variety AJG
onto a Zariski open set % C Prym^J?) :

i= 1

such that any smooth Hamiltonίan H(Qij(XJ) leads to a linear flow on Prym^R) i. e.

d 9 μί^
-fa .Σ j (<Pi, . . . ,<P e o 5 Vi 9 . . . ,V g -J = (0,.. .,0,fc l 9 . . . ,fc g _J.

2 When N is even, the restriction Πdt ~ 1 must be made so as to leave the pfaffian

QOQ(X) =]/άoϊx invariant
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Moreover,

with θ some translate of the θ-divisor in Jac(,R).

Finally, the variety Ac (2.10) itself is the affine part of an abelian variety Ac which
is an unramified cover of degree 2N~1 (when N is odd) or2N~2 (when N is even) of
PrymI(JR), obtained by multiplying some periods of Prymt(R) by two.

Remarks. 1. Theorem 1 is part of the following wider statement, a proof of which
can be found in [1, 6]. Namely, consider

i/ /nx diagpf) = 0 and spectrum of X + ah is fixed
Mc = {X egl(n,<C) , , ' _, . t. .

for each h e C with a = dιag(α l5..., aN}}.

On Mc, the group Π of invertible diagonal matrices acts by conjugation and it can
be shown that MC/Π = JacK\{a translate of the θ-divisor} with R the algebraic
curve defined by R: det(X + ah — zΐ) = 0. Functions defined on Mc invariant under
the action of Π (like x^x^) are thus abelian functions on Jac(#). Explicit formulae
can be found in [7, p. 82]. In particular, the divisor structure of x^ x^ is given by:

with 00, θy suitable translates of the 0-divisor of Jac(#).
2. In the skew-symmetric case, as explained above, the curve .R has an

involution z : (z, h)r\( — z, — /ι),the action of Π on the variety Ac (2.10) reduces to
the action G defined in (2.11) and AJG = Pryml(R)\(θQnPτyml(R)). The fact that
Ac itself is the affine part of an abelian variety Ac covering Prymz(.R) was first stated
and proved by the author in [10] for N = 4. In that case, the curve jR (2.9) has genus
3, the variety Ac (2.10) is an intersection of 4 quadrics in C6 and the abelian variety
Ac can be identified as a Prym variety Prym^C) of another genus 3 curve C nicely
connected with the geometry of the situation and which is only isogenous to
Prym,(R) (see [10, Theorem 4, p. 457]). As such this result does not extend to N ̂  5.
However it is easy to prove that Ac (2.10) is still the affine part of an abelian variety
Ac by using (2.12) and observing that

which shows that the functions x? restricted to AJG are perfect squares of abelian
functions defined on an abelian variety covering Prymf(K).3

The two next sections of this note will be devoted to the proof that (2.5) are the
only left invariant diagonal non-degenerate (i.e. all λ^ distinct) metrics on SO(ΛΓ)
for which (2.1) is algebraically completely integrable with abelian functions x f j .

3. Geodesic Flow on SO(4)

In this section we provide a very simple new proof that Manakov's metrics (2.5) are
the only left invariant non-degenerate diagonal metrics on 50(4) for which (2.1) is
algebraically completely integrable with abelian functions xtj which was first

3 A similar situation arises in the Neumann problem, where Ac is a covering of the Jacobi
variety of a hyperelliptic curve and is discussed in full detail in [14, pp. 87-88]
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proved in [3]. As explained in Sect. 1 (Corollary 1.4) it will be sufficient to prove
that they are the only metrics for which the solutions of (2.1) are single-valued
functions of t e (C.

Theorem 2. For N = 4,if the solutions of (2. 1) are single-valued (analytic) functions
of t e (C, then either

or

λi2 = λ34 and λ23 = λ14 and λl3 = λ24, (3.2)

and this without any (non-degeneracy) assumption on the metric λ.

Remarks. 1. Conditions (3.1) and (3.2) were discovered by Adler and van Moerbeke
in [3] using their a.c.i. criterion. In that paper, it is assumed that all λtj are distinct.
Looking at the proof, it is sufficient to assume Π^ — Λ,ίfc)φO, which explains the
occurrence of (3.2).

2. Condition (3.1) defines an algebraic variety in (C6, a Zariski open set of
which can be rationally parametrized by (2.5) and corresponds thus to Manakov's
flows (see [3, p. 310, Lemma 3] or Lemma 4.1 in the next section). Under condition
(3.2), Eqs. (2.1) (N = 4) decouple into two copies of geodesic flow on 50(3) in
the variables x^2±x^ι, ^13+^42? ^21+^43 corresponding to the well known
decomposition so (4) = so (3)0 so (3). So, in this case, the system linearizes on a
product of two elliptic curves.

Proof of Theorem 2. From the explicit form of the differential Eqs. (2.3), it is easy to
see that the system (2.1) (N = 4) possesses the following five linear invariant
manifolds:

(3.3)

and

•* 5 Ξ 1^32 ~ ̂ 41? ^13 ~ ̂ 425 ^21 —-^43} ' (3-4)

corresponding to five copies of so(3) sitting in so(4) on which (2.1) (N = 4) reduces
to geodesic flow on S0(3). Hence, the solutions of (2.1) (N = 4) restricted to Γf

(lgz^5) are elliptic functions. By Lemma 1.3(ii), if the solutions of (2.1) (N = 4)
have to be single-valued, the same must then hold for the solutions of the
variational Eqs. (1.7) along the special a priori known s0(3) solutions. This will
now be analyzed. For the sake of clarity, we shall first assume all 4 *ΦO.

Case L 774$ ΦO. Eqs. (2.1) (N = 4) restricted to Γ1 reduce to:
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As is well known, (3.5) is solved in terms of elliptic functions (depending on two free
parameters) with four distinct simple poles in their smallest common period
parallelogram. Around each of these poles, one has the following Laurent series
expansions:

*23(ί, α, β) = Γ \x°23 + (α + £)x°3ί
2 +•••),

x24(t,a,β) = Γ\xQ

24-κxQ

24t
2 + ...), (3-6)

with

\^24) ~ .24^43'
Ά23Ά42

3 2 4 3 0

The variational Eqs. (1.7) along the solutions (3.6) decouple into:

,

, (3.8)

and three other equations.
Now (for each α, β) Eqs. (3.8) form a linear system of differential equations with

regular singular points. According to the classical Fuchsian theory of such systems
[5, Chap. 4], to have single-valuedness of the solutions, all the roots of the indicial
equation have to be integers4. Using (3.7), a simple computation shows that the
indicial equation is given by:

(l-θ(r2 + r- 231 42-)=0,
\ /124/132/143/

with K defined by (3.1). So we must have

K = AllAl2A4lrί(rί-\-l); r^eZ. (3.9.1)

Repeating the same argument with Γ29 Γ3, and Γ4 gives:

K = A\*All

4A*lr2(r2 +1) r2 e Z, (3.9.2)

ff — A A A Y (Y I 1 Λ γ c. /I i ^ Q A \
— ^* 1 2"^^23"^^31 4\ 4 '^ / 5 4 '̂ ^ * \ •-'•"/

To handle Γ5? we first change coordinates to

1 32 419 2 13 42? 3 21 43 > (3.10)

4 Of course this does not guarantee the absence of logarithmic terms in the solutions of (3.8), but
we shall not need to worry about this point
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corresponding to the decomposition so(4) = so(3)0so(3). In these new
coordinates, Eqs. (2.1) (N = 4) restricted to Γ5 = {y4 = y5=y6 = 0} become:

$2 =

3)4-0; j>5 = 0; j>6 = 0,

and the variational Eqs. (1.7) along the solutions of (3.11) decouple into:

^4 = ̂ 36^(0^5-

(3.12)

plus three other equations, with Btj = μt — μ7 and

2μί = λ23-\-λ14,2μ14 = λ23 — λί4,

2μ2 = λ13 + ^24> 2μ25 = ^13 ~" ̂ 24 > (3.13)

2μ3 = Λ,12 + Λ34, 2μ36 = λ12 — λ^4 .

Assume first B21B13B32 + 0. Then, as above, Eqs. (3.11) are solved in terms of
elliptic functions and Eqs. (3.12) form a linear system of differential equations with
regular singular points. The indicial equation reads:

0 (3 14)

Imposing the roots of (3.14) to be integers, by using (3.13), we find

X = 2(l-ri)B21B13B32; r 5 eZ. (3.15)

If K φ 0, from the identity

(3.16)

and from the conditions (3.9.i) (l^z^4) and (3.15) one deduces immediately:

4 = Π — r 2 ϊ l 7-4- ^
1 5j ! + 1) r2(r2 + 1) r3(r3 + 1) r4(r4 +

Since K Φ 0, r^ + 1) > 0 (1 ̂  z ̂  4) and the above equality implies r5 = 0. But then
the indicial Eq. (3.14) has zero as a triple root. This always leads to logarithmic
terms in the solutions of (3.12) except if μ14 = μ25 = μ36 = 0, i.e. λ12 = λ34, λ13 = λ24,
and/l 2 3 = /l14.

In the case where B21B13B32 = 0, (3.9.i) (1 ̂  i ̂  4) and (3.16) immediately imply
K = 0.

Case 2. ΠA% = 0. If some Ag = 0, we just replace condition (3.9J) ({ίj,fc,/}
= {1,2,3,4}) by AfjAjjl

kAli = 0, and the previous argument goes through leading
always to K = 0. This finishes the proof of Theorem 2.
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Remark. In [16], Ziglin has applied Melnikov's method to prove that the motion of
a non-symmetric (i.e. all moments of inertia distinct) rigid body in the presence of
gravity does not have any additional real analytic first integral besides the known
ones, by rescaling the variables so that the system can be viewed as a small
perturbation of Euler's rigid body motion. In principle, such a rescaling can also be
made in the case of geodesic flow on S0(4). For example, corresponding to Γ± (3.3)
the variables can be rescaled as follows:

so that (2. 1) (N = 4) becomes equivalent to z = /(z, ε). However, the reason why the
method does not apply here is that, to prove a global result by Melnikov's method,
one must express (by some rescaling) the originally given Hamiltonian system as a
perturbation of a completely ίntegrable situation, i.e. the simplified system ε = 0
must possess besides the two orbit invariants and the Hamiltonian a 4th

independent invariant, which does not seem possible in this case.

4. Geodesic Flow on SO(N)

In this section we prove

Theorem 3. Under the non-degeneracy assumption on the diagonal metric λ that all
λtj be distinct, the system (2.1) is algebraically completely ίntegrable with abelian
functions xif if and only if the metric λ 'satisfies (2.5).

As announced in the introduction, this theorem will be a straightforward
consequence of the fact that all solutions of an algebraically completely integrable
system have to be single-valued functions of t e(C (Corollary 1.4) combined with
the characterization of the left invariant diagonal metrics on SO (4) for which the
solutions of (2.1) are single-valued (Theorem 2). But first, we need to introduce
some notations.

Let X = (xtj) G so(N). To each choice of four distinct indices 1 ̂  m, n, r, s ̂  N,
there corresponds a copy Γmnrs of so (4) in so(N):

Γmnrs = {Xij = Q if ί or jφ{m,n,r,s}}. (4.1)

Relative to each such copy we define

*^mnrs ^mn'Vsv^nr""" 'υms ^mr ^ns)

+ Anrλms(λmr + λns — λmn — λrs)

+ λmrλns(λmn + λrs — λnr — λms). (4.2)

The following expression for Kmnrs will be useful

lζ _ Λnm Arm Asm > AΠS AW Λsr /Λ Λ \
^mnrs — ̂ m ^rs ^sn ~r ^nm^rm^sm \^'°}

N(N-l)

Note Kmnrs = — Knrsm = — Knmrs. Let K be the algebraic variety in (C 2 defined
by

JV(iV-l)l

(4.4)
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Lemma 4.1. The Zariskί open set Kn{ΠAfjή=Q, l^iJ.k ^N} of the algebraic
variety K (4.4) can be rationally parametrized by

0i, bt 6 (C, Π (<*>i - β/) Φ 0. /n particular dimK = 2N-3.
i<j

The proof of Lemma 4.1 is delayed to the end of this section.

Proof of Theorem 3. Suppose (2.1) is algebraically completely integrable with
abelian functions xij9 all λtj distinct. Then, by Corollary 1.4, the solutions of (2.1)
must be single-valued functions of t e (C. From the explicit form of the differential
Eqs. (2.3), one sees easily that each Γmnrs (1 ̂  m, n, r, s ̂  N) (4. 1) is a linear invariant
manifold of (2.1) on which (2.1) reduces to geodesic flow on S0(4), i.e.

xίj= Σ ^-kjxίkxkj if iandje{m,n,r,s},
^M«.».r,.} ^ ^ ^ (4_5)

So, in particular, the solutions of (4.5) have to be single- valued. By Theorem 2, this
implies Kmnrs = Q and by Lemma 4.1, it follows then that λ must satisfy (2.5). This
establishes Theorem 3.

Now, from Theorem 2 and the proof of Theorem 3, the question arises
naturally whether allowing some λtj to become equal could lead to new
algebraically completely integrable flows. That this is not the case is insured by the
following

Proposition 4.2. Let N^5 and λ be an arbitrary diagonal metric on SO(N). Then, if
the solutions of (2.1) are (analytic) single-valued functions of ίe(C, λεK (4.4).

In proving this proposition, the two following lemmas will be useful:

Lemma 4.3. Let l^m,n,r,s^N and assume some A*f = 0 with ij, k e {m, n, r, s}.
Then Kmnrs = 0 if and only if (λy = λίk, λtj = λlk) or (λίj = λίk = λίl) or (λtj = λik - λjk)
with I defined by {ij, /c, /} = {m, n, r, s}.

Proof. Obvious from the formula (4.3) for Kklij.

Lemma 4.4. Let N = 5. If the metric λ satisfies

(ί) ^12 — ̂ 34 — ̂ SSJ^IS— ̂ 24 — ̂ 25?^23— ̂ 14 — ̂ 15 an&
All Λ21 /|32 A

Λ12Λ23Λ31 π=U Or

(ϋ) λl2 = ̂ 34, ^13—^24? ^23—^145 ^51 —^52 — ^53—^54 an^ ^12^23-^31 Φ 0, a^

solutions of (2.1) (N = S) cannot be single-valued functions of ίeC.

The proof of Lemma 4.4 is delayed to the end of this section.

Proof of Proposition 4.2. Assume first N = 5 and suppose the solutions of (2.1)
(JV = 5) are single- valued. Then, as in (4.5), for each choice of indices
l^m, π, r, 5^5, the solutions of (2.1) (N = 5) restricted to Γmnrs must be single-
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valued and so, by Theorem 2, one of the two following conditions has to be
satisfied:

(τ . T T ι i T 1 \ f^r ί T T ' V C\\
V* mnrs ' Amn ~ Ars> Amr ~ Ans> Ams ~ Anr) OΓ V^ -* mnrs ^mnrs ~ υ)

We now distinguish several cases.

Case 1. At least three "I conditions" are satisfied. For example /1234, /ι235, and
1245 are satisiied, i.e. ^^2^ 34~~ 35~~ 45 and. •^j[3~~^23

:=zA^4

zr:: :A24

==/i^5 : : :=/l25.
By Lemma 4.3, this immediately implies ^1234 = ̂ 1235 — ^1245
— ̂ 1345—^2345—0.

Case 2. Two "/ conditions" are satisfied. For example /1234 and /1235 are satisfied,
i.e. A1 2 = ̂ 34 = A3 5, A! 3 = λ24 = λ25 and /123=

:A14 = /115. By Lemma 4.3, these
conditions imply K1245 = K1345 = K2345 = 0. If AllA^AH + Q, by Lemma 4.4 (i),
all solutions of (2.1) (N = 5) cannot be single-valued. Thus A\\A\\A\\ = 0 implying

Case 3. One "I condition" is satisfied. For example /1234, //ι235> ^1245? ^1345?
and //2345 are satisfied. If 7I^4|)ΦO, //ι245, //ι345, and //2345 imply K1234 = 0 (see
the proof of Lemma 4.1). Suppose now some Afj = 0. If 1 rg 1,7, fc ̂  4, from /1234 and
Lemma 4.3 it follows that K1234 = 0. So the only cases still to be considered are:

(aMU = 0 or (b) Ali = 0 (l^ij^4).

We do this schematically. Define fc, / by {ίj, fc, /} = {1, 2, 3, 4}

(a) ^Ϊ5 = Ay, AIJ = λkb λik = λji, λu = λjk

f i j fc5

^1234 —
"iJiJK

Aij~Ai5

"if*

Aΐj All A 51 _
~
_Λ
~ υ

ίklS

— Or ^51 — 52 — 5 3 "
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(b) A5i = λ5p AIJ = λkb λik = λfl, Au = λjk

285

1
A5i — A5j A5ί~

Aki — Akj

1
^1234 — 0

1

//,,,
>J.λsl=λ,t λsl-λ

'/,«
go to (

1

[
5r

a)

— A

5ί = λ5j

go to (a)

— 0

The upshot is that Case 3 always leads to ^1234 = 0 or (K ί 234Φθ and λsl=λS2

= ̂ 53 = ̂ 54). By Lemma 4.4 (ii) the last case does not correspond to a situation
where all solutions of (2.1) (N = 5) are single-valued and must be rejected. This
proves Proposition 4.2 for N = 5.

If JV>5, one considers the invariant manifolds Γmnrsl = {xij = 0 if i or j
φ {m, n, r, 5, /}} on which (2.1) reduces to geodesic flow on S0(5). From the previous
discussion, it follows then immediately that, if the solutions of (2.1) are single-
valued, all Kmnrs = Q, i.e. λεK. This establishes Proposition 4.2.

We end this section with the proofs of Lemmas 4.1 and 4.4.

Proof of Lemma 4.1. Assume first N = 4. From

. b,-b,

it follows that

= 0 = 0 A\\a2

(4.6)

- 0 . (4.7)

Since α2α3α4φO, by (4.3), (4.7) implies K1234 = 0. Conversely,
1 ^z,7, fc^4}, (4.6) can be solved for at and bt by

_
—c

with c an arbitrary non-zero constant, Π (̂ - —fl7 )φO.

(4.8)
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If N^5 and λeKn{ΠA%*0}9 from K123j-0 and (4.8) it follows that

α2-α3
(4β9)

<*3-aj

with

Equations K12ij = 0 imply

λ =^12 ~ 4
(4.10)

J α^-α,.

with

^21 j i l

IJ1 '

Choosing c' = ̂ 32(^/2)" 1 shows one may take α = αί? &ί = feί in (4.9) and (4.10).
This establishes Lemma 4.1.

Proof of Lemma 4.4. Consider the following linear invariant manifold Γ of (2.1)
(N = 5):

* = 1*32 — ̂ 415^1 3 —^425^21 ~ *43 anC* ^51 ~ ̂ 52 ~ ̂ 53 ~ ̂ 54 ~ ̂ 1 •

Changing coordinates to yt (1 ̂ i^6), x5i (1 ̂ i^5) with yi defined by (3.10) and
since, by hypothesis, in both cases (i) and (ii) λ12 = λ34, λί3 = λ24, and Λ2 3 = λί4, Eqs.
(2.1) (N = 5) restricted to Γ = {y4 = y5 = y6 = x51=x52 = x53 = x54 = 0} reduce to:

Vι = A\ly 2y3,y2 = A2

2\y ̂ 3,y3 = Ally ^y2,

j>4 = 0,y5 = 0,j>6 = 0, (4.11)

As in the proof of Theorem 2, (4.11) is solved in terms of elliptic functions and the
variational Eqs. (1.7) along these solutions decouple into

53 J
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and six other equations. Equations (4.12) form a linear system with regular
singular points. In case (i) the roots of the indicial equation are — 1,0, ̂ , ̂  while, in
case (ii), putting λ5i = Q (which can always be done), one sees easily that — \ is
always a root of the indicial equation. So, in both cases, all solutions of (2.1) (N = 5)
cannot be single-valued. This achieves the proof of Lemma 4.4.

Acknowledgements. I wish to thank Mark Adler and Pierre van Moerbeke for several useful
discussions concerning this work.
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