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Abstract. Solutions to the classical periodic and non-periodic Toda lattice type
Hamiltonian systems are expressed in terms of an Iwasawa-type factorization
of a "large" Lie group. The scattering of these systems is determined in the non-
periodic case. For the generalized periodic Toda lattices a generalization of
Kostant's formula is obtained using standard representations of affine Lie
groups.
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0. Introduction

This paper is the second in a proposed series of three papers on classical and
quantum mechanical systems of Toda lattice type (cf. [G-W2]). The main purpose
of the present paper is to study the solutions of the classical periodic and non-
periodic Toda lattice type systems. The third paper (in preparation) studies the
solutions of the quantized systems. (The complete integrability of both classical
and quantized systems was proved in [G-W2], and the eigenfunctions for the
quantized non-periodic systems were constructed in [G-W1].)

The phase spaces for these Hamiltonian systems can all be realized as coadjoint
orbits for suitable finite-dimensional solvable Lie groups. The basic idea that we
exploit here is that the "Lax form" of the systems immediately points to the
solution in terms of an Iwasawa type factorization of a "large" Lie group. (This has
been also observed by various other investigators, e.g. [Syl, O-P, R-S1, G-S]; cf.
the review article [S-T-S].) For the non-periodic Toda systems this "large" Lie
group is a split finite-dimensional real semi-simple group G. Our main results in
this case can be phrased in the following form: The generic Hamiltonian systems of
non-periodic Toda type are linearly imbedded in the action of a vector group on
the real flag manifold for G. The scattering of these systems is then naturally
determined from the Bruhat decomposition of the flag manifold. We also obtain a
general method for constructing new completely integrable systems in terms of the
root system of G. (Special cases of this construction have been treated by Symes
[Syl, Sy2].)

In the case of the periodic Toda lattices, our results are more technical and less
explicit. This time for the "large" real Lie group we must take one of the infinite-
dimensional Banach Lie groups G constructed in [G-W3]. The Lie algebra of G is
the (completed) affine Lie algebra associated with a finite-dimensional real semi-
simple Lie algebra. The appropriate Iwasawa factorization of G was established in
[G-W3]. The preliminary form of the solution to the periodic Toda systems is then
given in terms of this factorization, as in the non-periodic case. We then express the
solution in terms of representative functions of the "standard" (infinite-
dimensional) modules for G. The formula we obtain is a generalization of
Kostant's formula [Ko] (which gives the solution of the non-periodic Toda lattices
in terms of matrix entries of finite-dimensional representations of G) to the
periodic case. To obtain explicit solutions, the next task is to calculate the
representative functions defined by highest weight vectors along certain one-
parameter subgroups of G. We derive a non-linear system of ordinary differential
equations satisfied by these functions. In the special case of SL(2,IR)/V, we can
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identify these functions with Jacobi theta functions. For general groups we find the
representative functions corresponding to the fixed points of the periodic Toda
lattices. We expect that for general initial values these functions are given in terms
of the restrictions of Riemann theta functions to an imbedding (corresponding to a
specific choice of a basis of holomorphic differentials) of a hyperelliptic curve into
its Jacobian variety. Evidence in this direction can be found in the papers [R-S2,
A-vM].

The detailed organization of the paper should be apparent from the table of
contents. The opening sections on Lax equations and Euler equations
(Sects. 1.1-2.1 and 3.1) apply to both the "periodic" and "non-periodic" systems.
(One of the main purposes of [G-W3] is to provide the necessary Banach-Lie
group results which permit such a unified treatment.)

The middle sections (Sects. 2.2-3.6) analyze the systems of "non-periodic Toda
lattice type" in terms of the Riemannian symmetric space G/K and the coadjoint
orbits 0 of S (G = S - K split semi-simple as above, with K maximal compact and S
solvable.) The Hamiltonians for these systems come from K-invariant functions on
G/K via the Killing form of g, and mutually Poisson-commute on 0 (this is the
basic "involution theorem" for Toda-type systems). One has a distinguished
Hamiltonian, namely the function corresponding to the Killing form on g, and one
looks for other functionally independent such Hamiltonians. This naturally
suggests that 0 be considered "generic" if it has the property that we call
"J-regularity": independent sets of K-invariant functions on G/K give rise to
independent Hamiltonians on 0. Under this condition (which we show is satisfied
by the orbits associated with the generalized non-periodic Toda lattices), the
scattering for the flow corresponding to the Killing form is given by a specific
element of the Weyl group. When 0 is J-regular and has minimal dimension
(= 2 rank (G/K)), this flow is then completely integrable. We call such orbits "Toda
orbits," and set up a general root-system technique for obtaining them. A related
notion of Toda orbit was introduced by Symes in [Syl]; our work corrects an
error in [Syl] concerning the appropriate form of the regularity condition. Our
scattering results also yield information on the "ζλR" algorithm for diagonalizing a
real symmetric matrix. The technical machinery used in this part of the paper
consists of standard facts about the Bruhat decomposition of G, as in [He2, Wai,
War], together with some root system calculations [Bo2].

The last part of the paper (Sects. 4 and 5) treats a class of systems which include
the generalized periodic Toda lattices. These systems can be viewed as the geodesic
flows on certain (finite-dimensional) solvable Lie groups. The "explicit"
integration of the geodesic flow is then obtained via an Iwasawa factorization in a
suitable infinite-dimensional group G and the representation theory of this group,
as explained above. The paper [G-W3] provides the technical tools for much of
this part. For this explicit solutions in terms of Jacobi elliptic functions, we use the
classical work of Jacobi and his successors in the theory of elliptic functions [Han,
W-W].

The principal results of this paper were the subject of lectures by the authors at
the University of California, San Diego in the Spring of 1981 and at the
Oberwolfach Conference on Harmonic Analysis and Representation Theory, July
1981.
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1. Lie Group Factorizations and Lax Equations

7.7. Factorizations and Flows

Let G be a Lie group, with Lie algebra g. (We allow dimg = oo, in which case we
assume that G is a Banach-Lie group as in [Bol].) Suppose that there are closed
Lie subgroups S and K of G, with corresponding Lie algebras s and ϊ, such that

g = ϊθ* (Banach-space direct sum) (1)

the map S x K^>G given by s, fc->sk is an analytic manifold isomorphism. (2)

Let TΓj : g->I and πs : g->s be the projections corresponding to decomposition (1),
and let k : G->K, s : G->S be the analytic maps defined implicitly by (2). Thus for
g G G we have the factorization

g = 8(g).k(g). (3)

Consider the homogeneous space S\G with its natural right G-action. By the
decomposition (3) we may identify 5\G with K, thus making K a right G-space.
Explicitly, the action of g e G on k e K is given by fc 0 = k(fc#). In particular, an
element X e g defines a vector field X on K via the action of the one-parameter
group exptX on K:Xf(k) = (d/dt)f(k(kexptX))\t=0, for feC*>(K), kεK.We
may calculate X as follows:

Lemma. For X e g, /c e K, one has

Xk = L(π^ά(k)X)\. (4)

//ere L(7), /or y e ϊ, is the right-invariant vector field on K defined by Y: L(Y)f(k)

Proof. We can write

- exp [ίπ§

Hence if /e C°°(K) and ί is near 0, then by the Campbell-Hausdorff formula,
/(k(/cexpiZ))-/(exp[i^(Ad(k)X)]k) + 0(i2). This implies (4). D

1.2. Solution of Lax Equations

Suppose now that in addition to the decomposition Sect. 1.1 (1), we also have a
decomposition

g = I0p (Banach space direct sum), (1)

where p is a closed subspace of g such that Ad(7Γ)pCp.

Proposition. Given X0 and Γ0ep, set fct = k(expίy0), X(f) = λd(kt) Jf0, and Y(t)
= Ad(kt) - Y0. Then the pair X(t\ Y(t) satisfy the "Lax equation"

(2)



Systems of Toda-Lattice Type. II 181

Proof. By Sect. 1.1, Lemma, we can write Ad(fcί+s) = Ad(exp(5Zί)/cf) + 0(5
where Zt = πl((Y(tJ). Hence

(3)

which yields (2). D

Corollary. Assume that there is a non-degenerate continuous K-invariant bilinear
form B on p. Suppose φ e C£(p)κ has a gradient Vφ relative to B. Then the Lax
equation

dX/dt = [_πl(Vφ(X)\ XI X(G) = X0 (4)

on p has as solution

X(i) = Ad(k(expί^(Jr0))) - X0 . (5)

Remark. Here C£(p)κ denotes the real-valued smooth Ad(K)-invariant functions
on p. The gradient hypothesis means that there is a smooth map Vφ : p->p such
that dφx(Ύ) = B(Vφ(X), 7), for X, Yep. This is automatic, of course, when
dimp < oo, since φ is assumed to be smooth. The existence of B is also automatic
when K is compact.

Proof of Corollary. By the K-invariance of B and φ we have F^(Ad(fc) X)
= M(k) Vφ(X}. Hence taking Y0=yφ(X0) in the Proposition gives Y(t)
= Ad(/c,) Vφ(XQ} = 7φ(λd(kt) *0) = 7φ(X(t)). Π

2. Solution of Lax Equations on p

2.1. Lax Equations on Riemannian Symmetric Spaces

Let G be a finite-dimensional linear, connected semi-simple Lie group. Fix an
Iwasawa decomposition G = NAK (g = n + α + ϊ) and a Cartan decomposition
G = exp(p)K (g = ϊ + p), where K is a maximal compact subgroup. Let Δ =Δ(§, α)
be the roots of α on cj, and Δ + the set of positive roots defining N. Set S = NA,
s = n + α, and let B be the Killing form on p. The assumptions of Sects. 1.1-1.2 are
satisfied here, so we can solve the Lax equation Sect. 1.2 (4) via the K-component of
the one-parameter group generated by Vφ(XQ). Let us consider this family of one-
parameter subgroups for varying φ and fixed X0 e p.

Let α+ be the open positive Weyl chamber associated with n. By the polar-
coordinate decomposition of p, there exists k0eK and H0 in the closure of α+ such
that X0 = Ad(/c0) H0. When X is regular, the element k0 is uniquely determined
modM, where as usual M is the centralizer of A in K. If p' denotes the set of regular
elements of p, then the map K/Mxα+->p', given by /cM, H-^Δd(k)Ή is an
analytic manifold isomorphism [He2, Chap. IX].

Suppose φeC£(p)κ. If #eα then P^(#)eα [G-W2, Lemma 8.1].
Furthermore, if H is regular, then α = { V φ ( H ) : φ e S(p)x}, where S(p) denotes the
real-valued polynomial functions on p. Indeed, the differentials of a set of / = dimα
basic polynomial invariants are linearly independent at H [Bo2, Chap. V, Sect. 5,
Proposition 5].
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Suppose X0 = Ad(ko)ΉQ as above, and φeC£(p)κ. The solution X(t) in
Sect. 1.2, Corollary, to the Lax equation Sect. 1.2 (4) is then given as

X(f) = Ad(k(/c0 expf F0(ff o))) - H0 . (1)

To interpret this formula geometrically, observe that the right action of A on K
(Sect. 1.1) gives rise to a right action, call it η, of A on K/M: (kM) η(a) = k(kά)M.
Hold ξ0 = k0M and HQ fixed, and define y(φ) = ξ0 η(Qxp7φ(HQ)). Then {y(φ):φ
εC£(p)κ}Cξ0'η(A), with equality when H0 is regular. Furthermore, X(t)
= Ad(y(tφJ) H0. Thus it is evident that the flows on p defined by the Lax equations
Sect. 1.2 (4) correspond to the right action of A on K/M. We shall make this
correspondence more precise at the end of Sect. 2.2.

2.2. Asymptotic Behavior of Solutions and the QR Algorithm

Continuing in the context of a Riemannian symmetric space G/K of non-compact
type, we recall the Bruhat decomposition of G, in the following form [He2,
Chap. IX]: Let M' = Noτmκ(A), and set W = M'/M, the Weyl group of G/K. For
each w e W , denote by Mw the coset w viewed as a subset of M'. Let Δ*
= {aeΔ+ : — w αezl + }, and set

αe Jvv

Then the Bruhat decomposition may be written as

G- U SN~MW (disjoint union) (1)
weW

[He2, Chap. IX, Sect. 1]. Since G = SK, we obtain from (1) a corresponding
decomposition of X, in the following form:

Lemma. For w e W, define a map βw: N~ x MW->K by n, wh-»k(π)m. Then βw is a
regular analytic imbedding, and

K= U k(AΓ~)Mw (disjoint union). (2)
weW

Here the analytic manifold structure on Mw is obtained from that of M by
translation.

Proof. Obviously (2) is just a restatement of (1). The map βw is an immersion
because this is true for the map S x N~ x MW-»G given by multiplication [Wai,
Corollary 7.5.20]. Under the identification of K with S\G, the set k(N~)Mw

corresponds to the orbit SwNM of JVM. Since there are only \W\ such orbits, each
orbit is open in its closure, hence regularly imbedded [War, Lemma 5.2.4.1]. D

Now we combine the Bruhat decomposition (2) of K and the polar-coordinate
decomposition of p. Letting Cl(£) denote the closure of a set E, we have

l(α+)= U Ad(k(ΛQ).Cl(w α+). (3)
weW

Thus X e p can be written as

X = Ad(fc) H = Ad(k(w))w H, (4)
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where HeCl(α+) is unique, ήeN~, and w i s unique modP^ = {re W:r H = H}.
(Here w H denotes the action of W on α.) In any event, the elements H and w H
are uniquely determined by X.

Theorem. // X e p is given by (4), then

lim k(expίJSQ = Jkc ok(n)-1, (5)
f-> + oo

where k^ e K and AdfTc^) w - H = w - H. In particular,

lim Ad(k(expίX)) X = w #. (6)
f-> + 00

Proof. By (4) we have exp tX = i(n) exp(ίw H) k(n) ~ l . But k(s#fc) = k(0) k for 5 e S
and fceK. Since k(ή) = s(ή)~1ή, it follows that

k(exp tX) = k(n exp ίw H) k(n) ~ *

= k(exp( — ίw H)ή exp(ίw H)) k(n)~ x .

The eigenvalues of ad(w H) on ήw are non-negative (and strictly positive if Jί is
regular), so that

lim
ί-> + oo

where G! = {̂  e G : Ad(0) w H = w H}. Note that if Jf is regular, then ήao = l.
From the root-space structure of the Lie algebra of G1 one sees easily that

/CQO = kζήoo) e G! also, which gives (5). Since Ad(k(n) ~ *) X = w H9 we obtain (6)
from (5). D

Remarks. 1. If X is regular, then k^^l and limί_> + 00k(expί-X') = k(ή)~1. In this
case the theorem has the following geometric interpretation: If H e α+ and ξ is in
the set k(ΛΓ-)MwC&/M, then

lim
t-> + oo

(where A acts on the right on K/M as in Sect. 2. 1, and we view w as a point in K/M).
2. The relation (6) is a continuous time version of the "QR algorithm" for

diagonalizing a symmetric matrix [Ru, Satz 12.6]. To verify this, define βn, Rn, Tn

by the recursive algorithm

Tn + 1 = Qn + ι&n + 1 (note reversal of order) .

It then follows inductively that

Hence Qn...Q1=k(expnX).> and so by (5),
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exists. Furthermore, by (6),

lim Tn = exp Ad(k)X = exp w - H . D
«-» oo

Now we introduce the following decomposition of the set of regular elements in
p : For w e W7, define

pXw)+=Ad(k(JV;))w α + . (7)

By the theorem we have p'(w) + = Ad(k(ΛΓ~))w α+. From the lemma above and
the polar coordinate decomposition of p', we see that p'(w) + is an imbedded
analytic submanifold of p' of dimension equal dim(nw) + dim(α). Furthermore,

p' = U p'(w) + (disjoint union). (8)
weW

In particular, if vv0 denotes the unique element of W which sends Δ + to — Δ +, then
dimp/ = dimp/(w0)+ >dimp/(w)+, if wφw 0 . Thus when we solve the Lax equation
dX/dt = [πl(X),X'] with "generic" initial data Z(0)ep'(w0) + , then the solution
tends to the negative Weyl chamber w0 α+ as ί-> + oo. Thus the same behavior
occurs in the discrete time QR algorithm in Remark 2 (cf. remarks after Satz 12.6 in
[Ru]).

Under suitable regularity assumptions on the initial data, we can obtain the
asymptotic behavior of the solutions to the general Lax equations Sect. 1.2 (4) from
the theorem above, as follows:

Corollary. Let Xep',ψε C£(p)x, and assume that Vφ(X) e p'. Write X = Ad(fc) H,
withkeKandH G Q + . Choose\vi e Wsothatw1 Vφ(H)ea+ , and choose w 2 e W so
that fewΓ1 eSN~2MW2. Then

lim Ad(k(expίF^CT))) - X = \v2\v1 Ή. (9)
ί-> + 00

Proof. There exist representatives w feMW ι, for z=l ,2 , and n2<=N~2 such that

1. Hence

- Ad(fc) - Vφ(H} = Ad(k(ή2)) w2 H! ,

where H j = v^ Vφ(H). Since 7ί1 e α+, we obtain from (5) that

lim
f-> + oo

Thus the limit in (9) is Ad(k(ή2)"*) X = w2w1 H. D

Remarks on "Linearization." With the Bruhat decomposition oϊK/M at hand, we
can be more precise about the nature of the simultaneous isospectral flows on p
associated with all the K-invariant polynomials on p. Suppose X0ep'. Write
X0 = Ad(k(w0)) H0, where n0 e N ~, H0 e w - α+, and w e W. As noted at the end of
Sect. 2.1, the flows passing through X0 are parametrized by the subgroup A via the
formula

l)) #0. (10)
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We may view (10) as the composite of two maps: the linear action of A on nw:

α-»Ad(α) Z0, Z0 = logή0? (11)

followed by the non-linear map

Z-+Ad(k(expZ)) H0, Z e nw . (12)

By the Bruhat decomposition the map (12) is injective and regular. Thus the
dimension of the "isospectral leaf through XG is dirndl — dim Cent^(Z0), and the
maximal leaves occur when Cent^(Z0) = {!}. We shall study this case in detail in
Sect. 3.2.

2.3. Scattering

We continue in the context of Sect. 2.2. If X e p, set

φ+(X)= lim Ad(k(expίX)) X. (1)
t-» + 00

We note that replacing X by — X in (1) gives

-φ+(-X)= lim Ad(k(expuQ)-X. (2)
ί-> - 00

Calling the limit on the right side of (2) φ-(X), we thus have

-φ+(-X) = φ-(X). (3)

The "scattering transformation" associated with the Lax equation
d X/dt = [πt(X)9 X] is then the map φ_(X)-^φ + (X) from α to α. We shall calculate it
for the regular trajectories of the system, i.e. when X e p'.

There are elements k+εK such that φ±(X) = λd(k±) X. Thus φ+(X)
= Ad(fe + fcl *) φ-(X). But if two elements of α are conjugate under K, then they
are conjugate under W [He2, Chap. VII, Proposition 2.2]. Hence we obtain
the following:

Lemma. There exists w = w(X) e W such that φ+(X) = w φ-(X).

Remark. lϊX e p', then φ±(X) e αnpx. In this case fc+fel x e M' so that the element w
in the lemma is /c+fcl^M.

To calculate the element w(X), let px(w)+ be defined by Sect. 2.2 (7), and set
+}. (4)

Taking into account the relations (3) and ww0 α+ = — w α+, we have

p'(w)_ = -p'(w)+. (5)

Thus from Sect. 2.2 we know that p/(w)± are imbedded submanifolds of p' of
dimension equal dim (11̂ ) + dim (α). Also from Sect. 2.2 (8) and relation (5) we have

. (6)
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In particular, since dimp'(w) + <dimp if wΦw 0 , we see from (6) that

o)- (7)

is open and dense in p.

Theorem. L et X e p/(w1) + n'(w2)- . Then φ + (X) = w1w0w^" l - φ-(X). In particular,
if X ep", then the scattering transformation for X is vv0 ("generic scattering").

Proof. By definition, φ_(X)ε W 2w 0 - a+ and φ + (X)e w± - α+. Hence w^w^1

φ-(X) and φ+(X) are in the same Weyl chamber. Since we also know that
= w φ_(X) and φ-(X) is regular, this implies that w = w1w0w^"1. D

3. Integrable Hamiltonian Systems on Iwasawa Groups

3.1. Solution to Euler Equations on s*

Let the notation be as in Sect. 2. We now relate the "Lax equations" on p to "Euler
equations" on s*. This connection is by now well-known (cf. [Syl, O-P, R-S1,
Ad]). For the reader's convenience and to establish notation, we describe the result
with sketches of proofs.

Let B denote the Killing form on g. Then I = p1 and p = ϊ1 relative to B, so we
have a linear isomorphism ψ: p-»s*; ψ(X)(Y) = B(X, Y). By the decomposition
cj = f0<5 we also have a linear isomorphism π s: p->s. Since B(X9 Y) = B(πs[X)9 Y)
for X, Y e p, it is clear that

π.(X) = ψ*-\X*), (1)

where ιp* : s-»p* is the adjoint oί\p and X^>X* is the map from p to p* defined by
the form B. One also has the map /->/b from s* to s, such that ψ(X)* = π^X) for
Xεp.

Suppose φeC£(p)κ. Then \Vφ(X),X] = Q for Xep. To see this, take
Γ e ϊ and calculate as follows: B(Y, [_Vφ(X\ Jf]) = B([X, 7], F^(X))
-(^0^(^~ί[Γ,Z])U0-(d/Λ)^(Ad(exp-ί7) Z)|ί=0-0. Since [p,p]Cϊ and
β|f x f is non-degenerate, the result follows.

One next observes that if X, Y e p and [X, Ύ~\ =0, then

ιp([πί(y),^])--πs(7)^(X), (2)

where the dot on the right side of (2) denotes the coadjoint action of 6 on 0*. (To
verify (2), note that [X, F] = 0 implies [^(7),*]= -[πs(F),JΓ] and use the
invariance of the form B.) In particular, if φ e C^(p)κ, then

tp([^(P^(Z)), Z]) = - πn(Vφ(X)) - ψ(X). (3)

Finally, to obtain an "Euler equation" on s* for the function Hφ(ξ) = φ(ψ ~ 1(ξ))
from the "Lax equation" for φ, we use (1) to calculate that πs(7φ(X)) = ψ*~ 1(dφ(X))
= dHφ(ψ(X)). [Here 7φ(X)* = dφ(X) by definition of the gradient, and we identify
$** with 5, so that dHφ maps s* to s.] Substituting this calculation in (3) then
completes the proof of the following result [Syl, Theorem 2.2]:
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Proposition. Let φ e C£(p)A and define Hφ(ιp(X)) = φ(X) for X <= p. Then under the
map ψ the vector field X-+[πl(Vφ(X}\ X] on p corresponds to the vector field
ξ->-dHφ(ξ) ξon**.

Corollary. Let £0 = ι/?(X0)es*. Then the solution to the "Euler equation"
ξ = -dHφ(ξ) ξ, ξ(ty = ξ0 on s* is given by

1 - { o . (4)

Proof. By the proposition and Sect. 1.2, Corollary, one has ξ(t)
= τ/;(Ad(k(expίF^(JSO)) JSQ. Since [Vφ(X),X'] = Q, we can exchange the K and S
components of exptPφ(X) as follows:

Ad(k(expί FtypO)) X = Ad(s(expίP^(X)) ~ 1 expί F^(JSQ) - X

This implies (4) by the invariance of the form B. D

Recall that the Poisson bracket of functions F1 and F2 on 5* is defined by
{Pi* F2\ (ξ) = ξddF^ξ), dF2(ξ)]). A basic observation in this regard is that when
F~Hφί with ^eC£(p)x, then {Hφi,Hφ2} = 0. There are several proofs of this
"involution theorem" (cf. [Ra]). The argument which seems most suitable for both
the finite and infinite-dimensional cases is due to Symes [Syl], and goes as follows:
Let ξ = ψ(X). By the calculations above and the invariance of the form B, one has

[HΦ19 HΦ2} (ξ) = B([π.(rφι(X))9 π.(rφ2(X)y], X)

l [π,(rφ2(X))9

But the last expression vanishes since [p,I] Cp and ϊlp. In particular, this proves
the following result (cf. [G-W2] for a proof that also applies to the quantized
systems):

Theorem. Let I = S(p)K

9 and set J = {Hφ :φel}. Then J is a Poisson-commutatίve
algebra of functions on s*.

Remark. The proofs and results of this section apply equally well to the case
dimg = oo, provided one assumes that Vφ exists in p (and hence that dHφ exists as a
map from s* to s). We shall use this in Sect. 4 without further comment.

3.2. J-Regular Orbits in s*

Let G be as in Sect. 2. We now make the additional assumption that 9 is split over
]R. In this case we have the triangular decomposition g = nφα0n, and α is a
Cartan subalgebra of g. Set / = dimα.

Given ξ e s*, set

*ξ = {Ye*:Y ξ = Q}9 Sξ = {seS:s ξ = ξ } .
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Since S is an exponential-solvable Lie group, the coadjoint orbit 0 = S ξ is an
imbedded manifold in $*, analytically isomorphic to S/Sξ [Be, Chap. I]. It is a
symplectic manifold relative to the canonical Kirillov-Kostant form ω°.

If ξ e n* we extend ξ to s by ξ(a) = 0; similarly, if β e α*, we extend β to s by
β(n) = 0. With these conventions we have

S (β + ξ) = β + S ξ (1)

for β e α* and ξ e n*, since jβ([s, s]) = j8(n) = 0. Thus for calculating S orbits in $* it is
enough to consider orbits of elements on n*.

In this section we study the isotropic foliations of these orbits associated with
the Poisson-commutative algebra J in Sect. 3.1, Theorem. (Since G is split, the
functions in J in fact come from G-invariant polynomials on g; cf. Sect. 4.1,
Lemma 1.)

Given a function FeC00^*), we have the differential <iF:s*->s. The
Hamiltonian vector field XF on the symplectic manifold (0, ω) corresponding to F
is (X\= -dF(ζ) ξ, [G-W2, Sect. 7]. Consider the distribution of tangent spaces
ξ->Lξ = {(XF)ξ:FeJ} in the tangent bundle of 6*. Since J is Poisson-
commutative, the subspace Lξ is isotropic for (ω°)ξ. In particular, one has

dim 0^2 max {dimLJ .
ξεO

Furthermore, iΐφί,...,φl are homogeneous polynomials which generate S(p)κ (cf.
[Hel, Chap. X]), and F{ = Hφi, then the vector fields {XFί : 1 ̂  i ̂  /} span L at every
point. In particular, dimL^/ for all

Lemma 1. Let X e p and set ξ = ψ(X). Then dimi^ = / iff X is regular and satisfies
the transversalίty condition

9xnα = {0}. (T)

(Here g* is the centralizer of X in §.)

Proof. Let u = {Vφ(X):φeS(ιρ)κ}. We observed in Sect. 2.1 that dimu^/, with
equality ifΠf is regular. The linear map Vφ(X)^dHφ(ξ) - ξ from u to Lξ is surjective,
by definition. Thus we may assume that X is regular. Now the centralizer of X in ϊ
is trivial, since g is split over R. Thus g* = ιιCp, as noted in Sect. 2.1.

The kernel of the map above is characterized by the equation

} = Q 9 (2)

by Sect. 3.1, Proposition. Thus the solutions to (2) satisfy Vφ(X) e pn$ = α. Hence
dimL^</ implies that condition (T) does not hold.

Conversely, suppose that (T) fails. Hence there is some φ with 0 φ Vφ(X) e α.
Then φ satisfies (1), which implies that dimL^</. D

Let Oes* be an S orbit. Define Oreg = {^eO:dimL^-/}. Since Oreg is the
subset of 0 on which the analytic vector fields XFί, l^i^l, are linearly
independent, it is clear that Oreg is open, and is either empty or dense in 0. We shall
say that 0 is J -regular when Oreg is nonempty. To state a criterion for J-regularity,
we need some additional notation.
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For α e A + choose 0 φ Jf α e gα, and let {X% : α 6 A + } be the basis for n* dual to
{JSΓJ. Given ξ e $*, define Φξ = {α e zl + : <pΓ J φ 0}. Writing α e J + in terms of the
set of simple roots Π = {αl9 . . . , αz} as α = n1α1 + . . . + fyocj, we define the support of α
to be Supp(α) = {αί: w fΦθ}. We then associate with ξ the following subset of 77:

= U Supp(α).
αeΦξ

Note that Φξ measures the extent to which ξ is "non-diagonal;" e.g. Φξ is empty if
ξ 6 α*. Our criterion for J-regularity is then the following root system condition:

Theorem 1. The set Oreg is nonempty iff there exists ξeO such that Supp(Φξ) = 77.

Proof. The necessity of the criterion in Theorem 1 is easily established. Indeed,
suppose that there exists a simple root α such that for all ξeO, α<£Supp(Φξ).
Choose 77 e α with α(77) = 1 and β(H) = 0 for βe 77\{α}. Then we have 771 Φξ, and
hence 77 - ξ = 0, for all ξ e 0. But 77 ιp(X) = ιp([77, J!f ]), for X e p. It follows that no
element of ψ~l(O) satisfies condition (T) in Lemma 1, and hence Oreg is empty.

The proof of the sufficiency of the criterion in Theorem 1 requires some
preparation.

Let i = α + n, and use the form B to define a linear isomorphism y:i-»s*.
Denote by α'^αnp' the regular elements in α. We shall first prove

there exists X e p' with ψ(X) e 0 iff there exists

77eα'and 7en with y(77+ Y ) ε O . (A)

Indeed, given 77 e αx and Y e n, a well-known result of Harish-Chandra [He2,
Chap. IX, Lemma 1.5] asserts that there exists ήe N' such that Ad(ή)77 = 77+ 7.
Set X = Ad(k(w))77ep/. Then

ιp(X) = s(n)-* y(H+Y), (3)

by the invariance of the form B. Hence if y(77+7)eO, then ψ(X)eO also.
Conversely, if Xep', then there exists k&K and 77eαx such that Ad(k)H = X.
Applying Sect. 2.2, Lemma, to write k = snm, with seS,nε N~ , m e Mw, one has
ιp(X) = s y(Ad(nm)H) = S'γ(wΉ+ Y) for some Yenw. Since w Jfϊeα 7, this
completes the proof of (A).

Next, let α e 77. We claim that

XαJ_Oiff for all ^eO, α^Supp(Φξ). (B)

To verify this, suppose that X^O and ξ e 0. Then [/(n) ξ vanishes on XΛ. But by
Lemma 1 of the appendix, for every y e A + such that α 6 Supp(y), there are positive
roots βl9...,βr such that zdXβr . . . adX^XJ = cXΓ with c φ 0. Hence ξ(Xy) = 0, so
that 7 φ Φξ. This shows that α ̂  Supp(Φ^). Conversely, if there exists some ξ e 0 with
ξpQφO, then trivially αeSupp(Φξ). This proves (B).

We can now complete the proof of the sufficiency of the criterion in Theorem 1.
Assume that there exists ξ0eO with SuppΦξo = Π. For each αe77, define an
analytic function rα on 0 by

ξεO. (4)
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From (B) we have rαφO. Since rα(α ξ) = a~Λra(ξ) for aεA, it follows that rα is
nonconstant, for every αeΠ. Since 0 is connected, there thus exists ξ1 eO such
that for all αeΠ, ra(^) + 0. Observing that X^X^^δ^β for α,j3ezl+, we then
have s £ι|0 = α*. It follows that the projection map from 0 to a*(ξ-+ξ\J is a
submersion at ξx. Hence the image of 0 under this map contains a nonempty open
set, by the implicit function theorem. We conclude from (A) that Onψ(p') is
nonempty. Finally, since this set is open in 0, there exists ξ2 e Onιp(p/) such that
rα(^2)φO for all αe/7. Then X = ψ~1(ξ2) is easily seen to satisfy condition (T).
Hence ξ2 e Oreg by Lemma 1. D

Remark. From the proof just given one obtains the following alternate necessary
and sufficient geometric condition for Oreg to be nonempty:

There exists ξεO such that the projection of 0 into α* is a submersion at ξ.
We can also express the criterion for Oreg to be nonempty in terms of Iwasawa

subgroups of S. For this, we introduce the following notation: Given
denote by Λ+(Πί) the positive roots in the span of Πv. Define

n(tfι)= Σ fl.
αeΛ + (Πι)

Clearly n(Π^) is a subalgebra of n stable under Ad (A). Let

where #α is the coroot to α. [So 5(#α,#) = 2α(#)/(α,α).] Define

The corresponding connected subgroup 5(11^) C S is an Iwasawa group for the split
semisimple group G(Π^)CG with Lie algebra g(771) = n(771)©α(I7'1)©n(Π1)~.

Via the root space decomposition, we identify \\(Π^* with the subspace of n*
spanned by {X* : o c E A + ( Π l ) } . We identify ^(Π^)* with the span of Π^. Then
11(77̂ * consists of all ξ e n* such that ΦξcΔ +(Π1), and we have $(11^* C 6*. These
identifications are consistent with the coadjoint representation:

Lemma 2. Let ̂  e n(Π^. I f X e 5(770, then ads(Πl)(X)*^ =X-ξ^ (where the dot
denotes the coadjoint action of 5 on s*). Furthermore, S^^ ξί=S - ξ^

Proof. Let α, β, y e A + . Then (Xa - X|) (Xγ) = 0 if β φ α + y. On the other hand, if
α, β E A +(Π1) and β = α + y, then 7 e zl +(771). Furthermore, Zα - Xj\a = δΛβu, H - Xj
= —β(H)X^, for /ίeα. From the definition of the embedding of $(11))* into s* and
these calculations it is clear that the first statement of the lemma holds. The same
calculations show that Xβ - ξ± = 0 and H ξ1 - 0 if β φ A +(Π1) and H e Π{. Since
a = a(Πi)@Πι, this gives the second statement. D

Combining Theorem 1 [and statement (A) in its proof] with Lemma 2, we
obtain the following description of coadjoint orbits:

Theorem 2. Let OC** be a coadjoint S orbit. Define 770 = {αe77: <JΓα,0>ΦO}.
Then there exists δea* and ξ e n(770)* such that 0 = δ + S(Π0) ξ. Furthermore, the
following are equivalent:

(i) 0 is J -regular;
(ii) 770 = 77;

(iii) there exists ξeO such that Supp Φξ = Π.
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3.3. Orbits of Toda Type

Let 0 C s* be a coadjoint S-orbit. We shall call 0 a Toda orbit if dim 0 = 21 and 0 is
J-regular, in the sense of Sect. 3.2. (Here / = dimα.)

These orbits are of interest because of the "involution theorem" of Sect. 3.1. If 0
is a Toda orbit and φeC£(φ)κ

9 then the Hamiltonian H = Hφ\0 is completely
integrable in the classical sense: Take φl9 . . . , φl as generators for S(p)x, and define a
map Λ:0->RZ by yl(Q = (^1(ξ),...9^(ξ)). If Λ(ξ) = c, then the level surface
("isospectral leaf) Λ~l(c) through ξ is smooth and has tangent space Lξ, with
dimL^^dimO, for all ξ in a dense open subset of 0. These Lagrangian
submanifolds give a foliation of 0 (possibly with singularities). The flow generated
by H (cf. Sect. 3.1, Corollary) follows the leaves of this foliation.

We observe that the Toda orbits are those of minimal dimension, if we exclude
orbits belonging to proper Iwasawa subgroups (Sect. 3.2, Theorem 2). We also
have from Sect. 3.2, Theorem 1, the following criterion for Toda orbits:

Proposition. Let 0 Cs* be an orbit of dimension 21. Then 0 is a Toda orbit iff there
exists ξeO with SuppΦξ = Π.

Example (Jacobi Matrices). The best-known example of a Toda orbit is the
following: Choose ε = (fiι, ...,βι) with each εt = ±1, and set

where H e α, cφ > 0, and θ is the Cartan involution. Then 0 = φ(Jε) is the S-orbit of
the element

The structure of 0 has been studied by several people, especially Kostant [Ko] (cf.
[G-W2, Syl] for further citations). It is obvious that SuppΦ^ = 77 and dimO = 2/,
so 0 is a Toda orbit by the proposition.

One of Kostant's results is that 0 = Oreg in this case, so that the foliation of 0 by
isospectral leaves has no singularities. We now show that this result follows easily
from the results of Sect. 3.2. Let X e Jε. Clearly X satisfies the transversality
condition (T) of Sect. 3.2, Lemma 1, so we only need to prove that X is regular.
Write X = Ad(k(n)) - 77 as in Sect. 2.2 (4), where w e W, H e Cl(w - α+) and n e N~.
Then Ad(s(ή))Jr = Ad(n)H = H+ Y, where Yenw. It follows from Sect. 3.2 (3) that
y(H+Y)eO. This forces w = w0, since y(7)(Xα)φO for all αe77. Furthermore,
writing n = expZ, with Z e ή, we see that Y = [Z_ t, 77], where Z = Z_ 1 + Z_ 2 + ...
is the principal gradation of Z (cf. Sect. 4.2). Hence α(77) φ 0 for α e 77. But we
already have α(77) ̂  0 for α e 77, since 77 e Cl(w0 α+). Thus 77 is regular, and so is
X. D

3.4. Construction of Toda Orbits (Basic Examples)

In this section we construct Toda orbits under the assumption that g is split and
simple, i.e. the set 77 of simple roots defines a connected Dynkin diagram. The



192 R. Goodman and N. R. Wallach

orbits will be of the form S X* for suitable aεA+. We first observe that the
calculation of the dimension of such an orbit can be done via the root system, as
follows:

Lemma 1. For αe/ l + , set Γa = {βeA+ :a-βeA+}. Then

(1)

Proof. Let s0 = {Z 6 s : Z X* = 0} be the isotropy algebra of X*. We observe that
50 is stable under Ad(^4), and calculate that ^e$0 iff βφ{a}\jΓΛ. Thus

where the sum is over β e A +\({α} uΓα). Since dimS X * = dims — dims0, we obtain
(1) from (2). (Recall that dimg^ — 1, since g is split.) D

Theorem. Suppose that either α = oq + . . . + αz or else α = (Ή\ 4- . . . + ί/z)
v, wfere #; is

the coroot to αί5 ami v is £/ze "root <r-+ coroot" operation. Then S - X* is a Toda orbit.

Proof. By Lemma 1 of this section and Lemmas 2 and 4 of the appendix, we see
that dimS JΓ* - 21 Since Φξ = {α} when ξ = X*, it is clear that Supp Φξ = Π. The
theorem then follows by Sect. 3.3, Proposition. G

Remarks. 1. In the simply-laced case (A of type A, D, or £), the two choices of α in
the theorem coincide, giving rise to two such Toda orbits for each Dynkin diagram
(we could have taken —X* instead of X* in the choice of basis). In the multiply-
laced cases (A of type B, C, F9 or G), the two choices of α are distinct (the first is a
short root; the second is long). Hence we obtain four such Toda orbits for each of
these Dynkin diagrams.

2. For A of type >4ΪI_1(g = s/(n,R)), these Toda orbits were found by Symes
[Sy2, Sect. 10].

We turn now to a more detailed description of the orbit 0 = S X* when
a = (H1 + ... +#z)

v. Thus α is a long root. Similar results can be obtained in the
multiply-laced case for the short root α = ocj -f . . . + αz. Instead of using Lemmas 3
and 4 from the appendix, however, one must do a number of root calculations on a
case-by-case basis. We omit the details.

We first construct a 2i-dimensional subgroup of S which acts simply-
transitively on 0. Let {/?1? ...^^July^ ...,y {_ 1} be the polarization of Γα

described in Lemma 4 and Table 1 of the appendix. Set

Xί=Xβl > Yi—Xji> z=xx. (3)
By Lemma 3 of the appendix, we have the following commutation relations (after
an appropriate rescaling of Z) :

= Yi9 [Hβ, Z] = 2Z .

Here HΛ is the coroot to α. Set u = span{Jfί9 1^,Z: 1 ̂ i^l— I}. Then u is either
abelian (if /=!), or else a 21— I dimensional Heisenberg algebra with center
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spanned by Z. Let £/ = exptι be the corresponding Heisenberg group. Clearly A
normalizes U. Also, ad#α generates the usual group of dilations of (7, since βi(HJ
= yί(HΛ)=l (cf. appendix, Lemma 3). Let R = Qxp(JSJIΛ)U be the semi-direct
product of U with the dilation group. The Lie algebra of R is

u. (4)

Let δ0 be the isotropy algebra of X*. By (2) and (4) it is clear that

(vector space direct sum) . (5)

Since S is exponential-solvable, we know that the isotropy group S0 of X* is
connected. It follows from (5) that S0nR = { 1 } and 0 = R X%. Thus R acts simply-
transitively on 0. To obtain an explicit parametrization of 0 in terms of R, we
make the following calculation, where {Xf, Y*,Z*} are dual to {Xi9 Y^Z}:

Lemma 2. Suppose feU Z*. Write / = exp* exp(7 + CZ) Z*, where
Xespan{Xt} and 7espan{^}. Define ξ~Xf(X) and η—Y^Y). Then the
projection of f onto u* is

The projection of f onto α* is

ι=l

Proof. We first observe that

s α* = 0, (6)

YrZ*=Xf. (7)

Next, we claim that

Yt Xj = 0 (8)

for all i, j. Indeed, the left side of (8) has weight yt — βj relative to the coadjoint
action of α. But by Lemma 4(i) of the appendix, we know that y f > βj9 while all
weights of α on s* are negative, relative to the order on A defined by Λ+ . This
proves (8). Obviously Z Z* = α, so combining (6), (7), and (8) gives

exp(CZ + 7) - Z* - Cα + Z* + *Σ tyXf - (9)
i = l

Now consider the action of expJf on (9). We have

ΛΓ rZ* =-!}*. (10)

The higher order terms Xti... Xirn - Yj* e u1, Xtl... Xim - XJ E u1, by Lemma 4(ϋ) of
the appendix, if m ̂  1 . It follows from (9) and (10) that the projection of/ onto u* is
as claimed. Since Xt Xf = βi9 we also obtain the projection of/ onto α* from (6)
and (9) in the form stated. D

We can now give a set of global canonical coordinates on 0.
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Proposition. Let 0 = S X%, where κ = (Hι + ... + Hl)\ Let Xi9 Yh Z be as in (3).
Then /(Z)>0 for fε 0. The functions Pi(f} = f(XΪ)lf(Zγ<\ qi(f) = f(Yi)/f(Z^2

forl^i^l—l and pl(f} = f(Ha), qt(f) = ̂ log/(Z) are global canonical symplectic
coordinates on 0 ({pi,ql} = \ and all other Poisson brackets are zero). The map
f~*(Pι(Γ)> •• jP/(/)j^ι(/)j •••?<?/(/)) is an analytic manifold isomorphism from 0
onto R2'.

Proof. Let /e 0. Then / = exp(ί#α) exp(X) exp(Γ + ζZ) Z*, where

X=lΣξXt a n d y = Σ .
i = 1

Since jR acts simply-transitively on 0, it is clear that {ί, ξl9 . . ., £z_ 19 ^1? . . ., ̂ _ 15 (} is a
global coordinate system on 0. By Lemma 2 and the fact that /?/(#α) = γ^HJ = I,
we find that /(Z) = e2ί, and for 1 ̂  /- 1, /?,.(/) = ηi9 qt(f) = - ξt. Also qt(f) = - 1
and

ί = l

This shows that the p's and g's give global analytic coordinates on 0. From the
commutation relations after Eq. (3), it is easily checked that the only non-zero
Poisson bracket among the pt and g/ is {pi9 qt} = I (use the same argument as on p.
380 of [G-W2]). D

Example. Let G = SL(w, R), S = upper triangular unimodular matrices. Identify s*
with the lower triangular trace-zero matrices via the trace form. Let 0 be the orbit
of the elementary matrix Enί. If n = 2, then S = R is the "αx-hfe" group and
dim 0 = 2. The parametrization in the proposition above is

0

When n = 3, we still have N = U9 but dimS/R = 1. Now dimO = 4, and in terms of
the canonical coordinates in the Proposition, 0 consists of the matrices

P2 0 0

~P\e~q2 Pι#ι 0

e~2q2 q^e'q2 ~p2-

When n ̂  4, then N Φ U [dim TV = n(n -1)/2 while dim U = 2n - 3]. For n = 4, one
has dimJV/L7=l. An explicit matrix calculation of 0 in canonical coordinates
slightly different than those used above may be found in [Sy2, Sect. 10].

3.5. Construction of Toda Orbits (Amalgamation)

In this section we develop inductive procedures for obtaining Toda orbits of
S = S(Π) from Toda orbits for smaller Iwasawa groups S(Πί)9 where 77! C77. We
do not require that the Dynkin diagram for 77 be connected.

Recall from Sect. 3.2 that if 0 is a coadjoint S-orbit, then there is a unique
subset Π0 = Π1CΠ, and a £es* with SupρΦ^ = 77l5 such that 0 = S(ίI1) <!;.
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Writing α = ξ|α and ξι = ξ\n(π^ we have SuppΦξl = Π1 and 0 = ̂  + 0^. Here
01 = S ( Π l ) - ξ ί is a coadjoint S^ΉJ-orbit, by Sect. 3.2, Lemma 2. Conversely,
every such orbit Ol may be viewed as an S-orbit. In this connection, we will say
that G! is J^-regular when it satisfies the regularity condition of Sect. 3.2 relative to
the group

Proposition 1. Let Π = Π^Π2, with Π^ and Π2 disjoint. Assume that 0{ is a
coadjoint S(Π^)-orbit for i= 1,2 and set 0 = Ol-\-02 (vector sum). Then

(a) 0 is a coadjoint S orbit;
(b) Π0 = Π0^Πθ2;
(c) dim 0 = dimOί+ dim 02.
In particular, if Ot are Jrregular (respectively of Toda type) relative to 5(77,-)

for i= 1,2, then 0 is J -regular (respectively of Toda type) relative to S.

Proof. Pick ξt e Ot with Supp Φξi = Π0i, and setξ = ξ1 + ξ2. Since 5(77,) fixes *(Πj)*
for ϊ'Φ7, one has (s^) ζ = sί ζι+s2 ζ2

==(s2sι)' ζ, when steS(n \). The group S
is generated by 8(11^) and S(772), so S- ξ = 01 + 02, proving (a).

By definition, Π0 = {α e 77 : Xα φ O1}. Since n^ln^-)* for i Φ;, it is thus clear
that (b) holds. We also have s(771)*nδ(772)* = {0}, so (c) is obvious.

When Ot is JΓregular for -5(77 )̂, then Π0. = Πiy so that by (b) we have Π0 = Π.
Thus 0 is /-regular, by Sect. 3.2, Theorem 2. If Ot is a Toda orbit relative to 5(77 )̂,
then 770. = 77; and dimOl = 2Card(77ί). Hence 0 is J-regular and
dim 0 - 2 Card (77) by (b) and (c). D

Corollary. Let Π = Π^ u . . . u77r be α disjoint union, and suppose that Ot C 5(77,-)* are
Toda orbits, forl^i^r.SetO = 01 + ... + Or (vector sum) . Then Oisa Toda orbit
forS.

Examples. 1. Take Π— {αj, 0^5(77^ - JSf*, for 1 < ί̂. Then each Oi is a two-
dimensional orbit associated with a non-periodic Toda lattice of one degree of
freedom. Forming 0 = 01 + . . . + 0/? we obtain the Toda orbit for the non-periodic
generalized Toda lattice associated with 77 (cf. Sect. 3.3, Example).

2. Let 77 be of type A2k(G = SL(2k + 1, R)). Take Πi = {α2ί_ 15 α2ί}, for l^i^k.
Then each subgroup G(77;) is a copy of SL(3, R), embedded in block diagonal form
in G. Take Ot to be the four-dimensional Toda orbit for the corresponding
Iwasawa group St described in Sect. 3.4, Example, and set 0 = 0^ + . . . + Ok. Then
the canonical coordinates pί? pi+ 15 qt, qi+ ! on each orbit Of jointly give a canonical
parametrization of 0. When fc = 2, then 0 consists of the 5 x 5 lower triangular
matrices of the form

P2

e~2q2

0

0

0

PlP2

q^e~q2

0

0

0

0

P3~ P2— Pill

0

0

0

P3P4

0

0

ό
0
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The boxes in dashed lines indicate the orbits Ol and 02, with overlap in the middle
of the matrix.

3. (Amalgamation with overlap) . Let Π = Π1 u772, as before, but now allow an
overlap of one root:

Π^Π2 = {δ}. (1)

Take βi e A +(/7ί ) such that Supp(ft) - 77f and dim 5(71̂  Xfr = 2 Card77ί? for i = 1 , 2
(cf. Sect. 3.4, theorem, for examples of such roots β^. With this choice, the orbit of
Xfc under S(77;) is a Toda orbit relative to $(77,.)*. Set ξ = Xjί + X$2. We want to
determine whether S •/ is a Toda orbit relative to s*. Since Γβi C A +(77Z) and A +(Π1)
r\Δ +(Π2) = {δ} by condition (1), the subsets Γβi, i= 1, 2, are either disjoint or else
satisfy

δ} (2)

Proposition 2. Assume (1) and (2) ftoW, wif/z βi9 ξ as above. Then S ξ is a Toda orbit
in s*.

Proof. Clearly Supp(Φξ) = 77^772 = 77, so by Sect. 3.3, Proposition, we only need
to check that dimS ξ = 2l9 i.e. that dims^dims — 21.

To obtain a set of equations defining &ξ, we note that if X = H + Σ fl

α^α is in 5?
with 77 e α, then

+ Σ axN^βί^X*. (3)
oceΓβ.

Here N^β are the structure constants defined by \_XΛ, Xβ"] = N^βX^+β. From (3) we
see that X es^iff

^-^^-ί + ̂ 2-^/12-^0* (4)

αβ = 0, for αeΓ^uΓ^^-δ,^-^, (5)

0. (6)

Counting equations, we find that dimS ^ =
+ Card(Γ^2), by condition (2). But we know by Sect. 3.4, Lemma 1, that Card(7}.)
- 2 Card (77;) - 2. It follows that dimS ξ = 2 Card^) + 2 Card(772) -2 = 21. D

3.<5. Scattering on J-Regular Orbits

Let 0Cs* be a J-regular 5 orbit, in the sense of Sect. 3.2. Consider the asymptotics
of the Hamiltonian flow on 0 coming from the Killing form on p. We saw in
Sect. 2.3 that this flow, viewed as a flow on p, has for "generic" scattering
transformation the longest element w0 of the Weyl group ("generic" in this case
meaning on the dense open subset p"). Now we shall sharpen this result by showing
that for almost all points of 0, the scattering transformation is still given by w0.

Theorem. Let 0 be a J-regular S orbit in s*. Let p"Cp be defined by Sect. 2.3(1).
Then φ(p")nO has complement of measure zero in 0 (relative to the canonical
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measure on 0). Thus for almost all choices of initial data in 0, the Hamiltonian
system ξ = — £b ξ on 0 has scattering transformation ξ(+ oo) = w0 ξ(— oo).

Proof. (A) For α 6 77, let rα be the analytic function on 0 defined in Sect. 3.2 (4).
Then rα is non-constant, by Sect. 3.2, Theorem 1.

(B) Define 0' = {ξ e 0: ξ(Hβ) Φ 0, Vβ e zl+ }. Then 0' is open in 0. Define τ : Of

-»0 as follows: Given ξeO\ write ξ = y(H+Y), where HE a' and Yen. Define
neN~ implicitly as a function off/ and Y by the equation Ad(ή) H = H -f 7, and set
τ(ξ) = s(n)~1 ξ[cf. Sect. 3.2, Theorem 1, proof of statement (A)]. Themapτ is analytic
on Of.

(C) For α e 77, set Cζ = {£ e 0': ̂ (JSQ = 0}. Then 0; has measure zero in 0 by
(A). Hence τ(O^) also has measure zero in 0, by (B). But ifweW, and w α e zl+ ,
then we claim that

φ(p'(w)+)n0cτ(θ;). (1)

Indeed, if X e p'(w) + then by Sect. 2.2 (7) and the proof of Sect. 3.2, Theorem 1, we
can write ψ(X) = τ(γ(H + Y)), with H e w α+ and Ye ήw. Since Xαlnw, we have
y(H + 7) e 0 ,̂ proving (1). In particular, if w φ w0, then there exists α e Π such that
w α e ̂  +. Hence by (1) we conclude that tp(p'(w)+)nO has measure zero in 0 in
this case.

(D) Since Oregc ψ(pO> we may use the decomposition Sect. 2.2 (8) of px to write

Oreg- U W(wK)nOreg}.
weW

By (C) all terms on the right have measure zero in 0 except for the term with w = w0.
Since the same argument applies to the J-regular orbit — 0, we conclude from
Sect. 2.3 (5) that t/;(p")nO has complement of measure zero in 0. Now apply
Sect. 2.3, theorem. D

Remarks. 1. For the examples of Toda orbits in Sect. 3.4, Proposition, one can
show by some detailed calculation that the sets 0^ in part (C) of the proof just given
are empty, when the root system is of type B, C, F, or G (multiply-laced). Thus Oreg

Cψ(p") in these cases, and every element of Oreg has scattering transformation w0.
For the simply-laced root systems (^4D£-type), the sets 0'Λ can be non-empty for
certain α.

2. In connection with the QR algorithm (cf. Sect. 2.2), it was known that for a
"generic" symmetric matrix, the diagonal entries produced by the algorithm
appear in monotone order [Ru, Satz 12.6, Remarks]. The stronger assertion made
by the theorem just proved is that this behavior is still "generic" among the
matrices restricted to lie on tp~1(0), where 0 is any J-regular orbit.

3. In the case of the Toda orbit 0 of Jacobi matrices described in Sect. 3.3, we
already noted Kostant's result that 0 = Oreg. It is obvious that O'a is empty for every
α e 77, by the explicit parametrization of the orbit. Hence by parts (C) and (D) of the
proof just given, we have OCφ(p/x) in this case. This proves the following
generalization of J. Moser's scattering results for the original non-periodic Toda
lattice (cf. [Ko, Chap. 7]):

Corollary. The scattering transformation for the generalized non-periodic Toda
lattices is always given by the longest element of the Weyl group.
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4. Hamiltonian Systems Associated with Affine Root Systems

4.1. Lax equations on loop groups

In this chapter we study a class of (finite-dimensional) Hamiltonian systems which
are obtained from affine root systems. To give a unified treatment of all these
systems within the framework of Chap. 1, we need to introduce some infinite-
dimensional Lie groups associated with affine root systems, and a suitable
Poisson-commutative algebra of functions. We first recall some well-known
structural properties of semi-simple Lie groups [He2], and the analogous
properties of the associated "loop groups" [G-W3].

Let Gc be a simply-connected complex Lie group, whose Lie algebra gc is
simple. Let gCg c be a normal real form, and let GcGc be the corresponding
connected real Lie group. Denote by σ the involutions of Gc and gc defined by this
real form. Fix Iwasawa and Cartan decompositions

G = KAN, g

Then u = I + z'p is a compact form of gc, and gc = u + e is a Cartan decomposition,
where e = m. Furthermore, α is maximal abelian in e as well as in p. Let Uc Gc be
the connected group with Lie algebra u. Denote by τ the involution (respectively
conjugation) of Gc (respectively gc) whose fixed-point set is U (respectively u). The
following result is an immediate consequence of the Chevalley restriction theorem
[Hel, Chap. X, Theorem 6.10]:

Lemma 1. The restriction map from S(z)u to S(p)κ, /->/|p, is bijective. Denote the
inverse map by φ^φ. (Here we identify S(e) with the polynomial functions on e via
the Killing form, as usual.)

Let Gc = C°°(T, Gc), where T= {z e C : \z\ = 1}, be the smooth "loop group" (or
"current group") associated with Gc. With the C°° topology, it is a Frechet Lie
group, with Lie algebra ojc = C°°(T, gc). We extend the conjugation σ of Gc and gc

to a conjugation on the loop group and algebra by setting (σ/)(z) = σ(/(z)),
(z = complex conjugate of z). We denote by G and § the fixed-point sets of the
extended σ. Then G is a real form of Gc, with Lie algebra cj. (In terms of Fourier-
series expansions on T, g c gc consists of the elements whose Fourier coefficients
are in g.) We extend the involution τ to Gc and gc by (τ/) (z) = τ(/(z)), for z e T.
[This formula for the extended involution τ can be viewed as follows: If / has a
finite Fourier series, for example, and is extended holomorphically to C x , then
(τ/) (ζ) = τ(f(ζ~ !)), where ζ e C x . Note that ζ-+ζ~ * is the involution of (C x whose
fixed-point set is the compact real form T.]

The extended involutions τ and σ commute, so G and g are invariant under τ.
Let g = ϊ + p be the decomposition of g into + 1 and - 1 eigenspaces for τ. Let K be
the fixed-point set of τ in G. Then G-K P, where P = exp(p) (cf. [G-W3,
Chap. 6]). Observe that if /eg, then /GΪ (respectively p) iff for all zeT, /(z)etι
(respectively e).
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From the Killing form B on g, we obtain a bilinear form B on g by integration
over TΓ:

Clearly B is positive-definite on p, by the corresponding property of B on p.
Likewise, one has p_Lf relative to B. Let d0 be the degree-derivation of g: d0x(elθ)
— — i(d/dθ)x(ew). Denote by ge the semi-direct product of g with Rd0, and set
αe = α®IRd0. Integrating by parts and using the g-in variance of B shows that
ad(x)|§ is skew-symmetric relative to B for any x e ge.

Given φ e S(p)κ, we may similarly define a function φ on p by integration over
T (taking into account Lemma 1 and the remarks above):

Lemma 2. // φ is a K-invariant polynomial on p, then φ is invariant under the adjoint
action of K on p. Furthermore, $ is differ entiable, and dφ(x) (y) = B(Vφ(x\ y), for
x, y E p, where Vφ(x) (t) = (Vφ) (x(ί)) for 1 e T. Thus φ has a gradient, relative to the
form B.

Proof. The K invariance of φ is obvious, as is the differentiability. The formula for
the gradient of φ, as a map from p to pc follows from the integral formula. Note
that φ(z) = φ(σz)~~ for zEp c , which implies that (Vφ)(σz) = σ(Vφ(z)\ Hence
Vφ(x) e p if x 6 p. D

Let δε(ae)* be defined by δ(ά) = 0 and <5(d0)=l. With the notation as in
Sect. 3.2, let α = Σ nμ{ be the largest positive root, and set α0 = δ — α. Then the

l^i^l
roots of ae on ge are integral combinations, with all coefficients of the same sign, of
the roots α0, α l 9 . . . , αz. Take H0 E α satisfying α^ff 0) = 1 , for 1 ̂  i ̂  /. Set

(Coxeter number of the root system of g). Let HeQ = hd0 + HQ, and define the
principal derivation of ge to be ad(7io) Note that this operator is skew-symmetric
relative to the form B. Since OC^HQ) = 1 for 0 ̂  ί ̂  /, one has the principal gradation

Σ §„,
«=t=o

where gM is the eigenspace for ad(ίίo) with eigenvalue n.
We recall from [G-W3, Sect. 6.8] the following properties of the Banach-Lie

group GwcG with Lie algebra gw C g. Here w is a weight function on Z, i.e. w is a
positive function on the integers such that w(k + m) ̂  w(k) w(w), and w(k)
= w( — k). We shall assume that w is rapidly increasing:

\imw(n)n~s=ao (1)
w-> oo

for all 5>0. We shall also assume that w is of non-analytic type:

limw(rc) 1 / π=l. (2)
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Take any faithful, finite-dimensional representation of G. Then Gw (respectively gw)
consists of the elements x in G (respectively §) whose matrix- valued Fourier series
Σ ane

ίnθ is absolutely convergent relative to the weight w :
neZ

IWL=Σlkllw(«)<oo. (3)
neZ

Note that by condition (1), the convergence of (3) implies that x is a C00 function.
Using (2) and results on the inner-outer factorization of matrix functions on the
circle, one obtains that Gw has Cartan and Iwasawa decompositions

GW = KW PW, §w=ϊw + pw (4)

G^ = K^'A'N^ §w=ϊw + α + nw. (5)

Here Kw = Kn Gw is a Banach-Lie subgroup of Gw with Lie algebra ϊw = gwnϊ, and
Pw = exp(pw). One has Nw = exp(nw), with nw the closed span, in the w-norm, of §„,

We set SW = ANW9 §w = α + nw, and denote by k G^-^K^,, s:Gw->Sw, the
analytic maps defined by the factorization g = s(g)i(g). We denote by π{ : §w->ϊw

the projection corresponding to the decomposition (5), and denote by ψ : pw-*(§w)*
the map defined by the form B. It is easy to check that Lemma 2 is valid with K and
p replaced by Kw and pw. Also, if we take φ e S(p)κ and define a function Hφ on (§w)*
via the map ψ9 then Hφ is differentiable, and dHφ : (iw)* ->sw is given by dHφ(ψ(x))

By virtue of Lemma 2 and the properties just recalled, the results of
Sects. 1. 1-1.2 and 3.1 can now be applied in the present context, replacing G by Gw,
K by KW9 P by PW9 S by Sw, etc. We summarize the results as follows:

Theorem. Let φ e S(p)κ. Then the Lax equation

X = \πtf$(X))\ XI , X(0) = x0 e pw , (6)

has as solution the curve in pw

*(ί) = Ad(fc(ί)) x0, (7)

where fe(ί) = k(exp(F'^'(x0)). // FeS(p)x, i/ien F is constant on the curve (7).
Furthermore, the solution to the Euler equation

ξ=-dHφ(ξ) ξ, ξ(Q) = ξ0 = ψ(Xo) (8)

on (iw)* (where - denotes the coadjoint action) is given by

ξ(t) = s(tΓ1-ξQ9 (9)

where 5(ί):ιIIs(expίF^(xo))

Remarks. 1. Take a faithful matrix representation of Gc so that τ(0)~ x =g* is the
usual conjugate-transpose map. The solution (9) can be calculated from the "inner-
outer" factorization of the positive-definite matrix valued function θ^>expty(eίθ)
on T, where y = V$(XQ) e pw, and the variable ί now plays the role of a parameter.
To see this, combine the Iwasawa factorization expfj; = s(expίy)k(expίj/) and the
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equation exp2ry = (expίy)(expίj;)* to write

exp 2ty = s(exp ty) s(exp ty)* . (10)

Thus s(expίy) is the (suitably normalized) "inner factor" of exp2ίy.
2. The theorem is also valid if the weight function w only satisfies (2), but is not

necessarily rapidly increasing, e.g. w = 1 . In this case, Gw is a subgroup of the
continuous loop group on G. Conditions of the form (1) will be used when we
calculate in Sect. 5 the solution X(t), for special choices of x0, using representation
theory.

4.2. Finite-Dimensional Subquotients of g

To apply the results of the previous section to finite-dimensional Hamiltonian
systems, we consider in more detail the principal gradation of ge (cf. [A-vM]). As in
Sect. 4. 1 we take He

0 = hd0 + #0, where h is the Coxeter number of the root system
of g. Then g has the principal gradation

9= Σ 9n>
-h<n<h

where grt is the eigenspace for ad(H0) with eigenvalue n. Since τ(£Γ0)= — H0, one
has τ(gπ) = g_π. Let gn be the eigenspace for ad(#o) with eigenvalue n. For each n, §„
is finite-dimensional, and is spanned by elements xelkθ, where x e gr and r + kh = n.
Thus if n > 0 and l^r<h, then

X _ rt pinθ , ^ ,,ί(»+ 1)0 _ X ί«0 / ι \
9wΛ + r — 9re +9r-/ιe —Qre ' \L)

Since τ(gfe) = g _ fc, we have

where pk = {x + τ(x)|xegj.
Now consider the subalgebras n= Σ 9k (topological direct sum in g) and

/c>0

§ = α + n. From the above description of the root spaces, it is clear that ft is
generated by g1? and that nk= Σ 9r Thus the quotient algebra bfc = §/nfc+1 is a

r^k
finite-dimensional, exponential-solvable Lie algebra, with nilradical ufc = n/nfc+1.
As an ae module,

«*= Σ 9r. (2)

ί^r^k

Examples. 1. Consider bt. The space QI _ Λ = g_ 5 is one-dimensional, and by (1) we
have bί = a®u, where n = u1 is an /+! dimensional abelian ideal. Under the
adjoint action of α, u is the sum of one-dimensional weight spaces with weights
{-α}uJ7. These algebras were studied in [G-W2]. Note that if we form the
algebra b? by adjoining the derivation dQ, then the weights of ae on u are

#0,0^,...,^.
2. If k ̂  h — 1 , then we see from (1) that the Iwasawa algebra & = α + n for g can

be viewed as a subalgebra of bfe. Relative to the derivation d0,
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where vk is an ideal (the sum of the positive eigenspaces of d0). We may identify s*
with the subspace υk Cbjf. Since υfe acts trivially on υ^, the coadjoint actions of bk

and s coincide under this identification. For example, fix k = h — 1 and write υ = υfc.
Then one finds that bk = $ + x>, where o is an abelian ideal in bk. As an αe module, o
^elθn, where n is the span of the negative root spaces in g. Relative to the adjoint
action of n on r>, the commutation relations are adb(xn)(x_meίθ) = [xn, x_m~]^eiθ,
where b = bft, x, e gt , m > 0, n > 0, and [ , ] - denotes the projection onto n along s
of the bracket in g. In particular, the center of the nilradical ιιfe = n -f o of bk is / + 1
dimensional, and isomorphic to g&Θg-ι£ lθ as an ae module.

Denote by Bk the connected and simply-connected Lie group with Lie algebra
bk. It is clear from (2) that Bk = AUk, where [7fe = expιιfc, and that the map h,u
->exp/zexpw from α x ιιfc to Bk is an analytic manifold isomorphism. Consider the
coadjoint orbits of Bk, with their canonical symplectic structure. Given /e bjf, and
a weight function w as in Sect. 4.1, we may naturally view / as an element of (§w)*
which vanishes on n^+1 (Obviously replacing § by iw makes no difference in the
definition of bk.) The Lie group Bk may be identified with SjVk, where Vk is the
closed normal Lie subgroup of Sw with Lie algebra n^+ 1. The coadjoint Bk-orbit 0
of / is the same as the orbit of/ under the action of Sw, and the functions HΦ9 φ
e S(p)κ, restrict to analytic functions on 0.

Remark. When k g; h — 1 , we may view S as a subgroup of Bk, and identify s* with a
subspace of b^ as above. Clearly the S and Bk orbits of elements in s* coincide, and
the functions Hφ have the same restriction to these orbits as in Sect. 3.

Since £(g/5 g,-) = 0 if i +j Φ 0, and gf is non-singularly paired with g _ f, it is clear
that via the form B, we have a linear isomorphism vk : pk-^b*, where

Pfc = α+ Σ P7 . (3)
1^7'^fc

Use this isomorphism to define an inner product ( , ) on b f from the form B on pfc.
The theorem of Sect. 4.1 when applied in this case then yields the following result:

Theorem. Let Ocbfbea coadjoint Bk orbit, and let φ e S(p)κ. The Hamiltonian flow
on 0 generated by Hφ has the trajectories

t^s(t)-l f , feO, (4)

where s(t) = s(exp t Vf(x)) and x = vk

 1(/) E pk. In particular, the flow generated by
the Hamiltonian #(/) = £(/>/) is

ί^s(expίx)"1-/, (5)

and the functions Hφ, φ E S(p)κ, are constants of motion.

4.3. Geodesic Flow on Bk

As we have seen in Sect. 4.2, the form B on p gives rise to an inner product on bjf ,
k= 1,2, ... . This in turn induces a left-invariant Riemannian structure on the
group Bk. Since the inner product is not Ad(Bk) invariant, however, the geodesies
for this metric are not one-parameter subgroups of Bk. In this section we show how
the geodesies can be calculated from the flow 4.2 (5).
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Recall that the cotangent bundle T*Bk can be canonically trivialized as Bk x bjf,
with the left ^-invariant functions on T*Bk being identified with the functions on
β* [G-W2, Sect. 7]. Let b : b*->bfc and #: bk^b^ be the maps induced by the inner
product on bjf. Define a function H on Bkxb% by H(b,f)=^(f,f). Then the
integral curve through (b,f) for the Hamiltonian vector field generated by H on
the symplectic manifold T*Bk is

t^(by(t\(dL(y(tΓ\t}m*) (1)

Here y is the geodesic through 1 with tangent vector 7(0) = /b, and L(b) is left
translation by bεBk. (This is the "geodesic flow" on T*Bk; cf. [A-M, Chap. 3,
Sect. 3.7].)

Theorem. Let x e pfc, / = ψ(x) e bjf, and let Qk : Sw-*Bk be the quotient map. Then the
integral curve of the geodesic flow on T*Bk passing through (I,/) is

ί->(βfc(s(expίx)),s(expίx)"1 •/)• (2)

In particular, the geodesic through 1 with tangent vector /b is the curve t
->βfc(s(expίx)).

Proof. Set s(ί) = s(exρίx) and sk(t)==Qk(s(i)). We first calculate that

)-1)^)^). (3)

For this, it simplifies the notation to take a faithful matrix representation of Gc, so
that the elements of G and § are matrix- valued functions. Then dL(s(t)~ΐ)s(t)s(t)
= s(f)~ίs(t) (point wise matrix multiplication). Write s(t) = Gxp(tx)k(t)~1

9 where
fc(ί) = k(exp(ίx)). Differentiating gives the equation s(t) ~ * s(t) = k(t) xk(t) ~ 1

— k(t)k(tγl in §. It follows from the orthogonality of ϊ and p that

(s(ί)-1 s(ί))* = V>(fc(0 x)^s(ί)-1 •/ (4)

(cf. proof of Sect. 3.1, Corollary). Projecting this equation onto Bk, we obtain (3).
Now let t-+γ(i) be the geodesic through 1 with tangent vector /b. The

projections onto bjf of the geodesic flow are the integral curves for the Euler field /
-» ~f */(cf. [G-W2, Sect. 7]). Applying the theorem of Sect. 4.2 and (3) above, we
conclude that

dL(y(t) - %t) y(0 = dL(sk(t) - ̂  sk(t) (5)

for all t. From (5) and the formula for the differential of the exponential map [He2,
Chap. II, Sect. 4], it is a straightforward induction, whose details we leave to the
reader, to show that y(rt)(0) = 4°(0) for n= 1, 2, ... . Since y(0) = sfc(0) = 1, it follows
by the analyticity of the curves that y(t) = sk(t) for all t. D

Corollary. Define curves h(t) in α and u(t) in uk by the factorization Qks(expίx)
= expw(ί)exp/ι(ί) Then the tangent vector field along the geodesic y(t), when
translated back to I, is given by

Γl_-ad«(ί)Ί

lift). (6)
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Proof. With the notation as in the proof above, the left side of (6) is the projection
onto bfe of s(f)~ 1s(t), under the quotient map from §w to bk [cf. (4) and (5)]. By the
Iwasawa decomposition Sect. 4. 1 (5), we have s(f) = exp ύ(t) exp h(t\ where ύ(ί) e nw

projects onto u(t). By the formula for the differential of the exponential map, it
follows that

-
ί) + 5(ί) /ί(0

Multiplying on the left by s(t) and projecting onto bk then yields (6). D

4.4. Solution of Periodic Toda Lattices

We now specialize the results of the previous section to the group B±. In this case,
the nilradical 11 = 11! is abelian, and hence formula Sect. 4.3 (6) simplifies. As a
result, we can calculate the solution to the "generalized periodic Toda lattice"
Hamiltonian system from the ^4-comρonent in the Iwasawa factorization of expίx,

1, as follows:

Theorem. Let /0ebJ, x = vϊ1(fo)ep1, and let s(expίx) = expw(0exp/ϊ(0 as in
Sect. 4.3, Corollary. Then the integral curve with initial datum f0 for the system with
Hamiltonian !(/,/) is given by

/(0 = /i(t)* + Σ MXJe^Xf . (1)
i = 0

Here {Xt; O^i^l} is a basis for u with J^eii^, and {X*} is the dual basis.

Proof. By equation Sect. 4.3 (6), we have

i). (2)

Take ^Γeιια, write f(t) = ft, and consider the function q(f)=ft(X). From the
Hamiltonian equations for the flow and (2), we calculate that

Since h(Q) = Q, it follows that

(Wt». (3)

Expanding the u* component of f(t) according to the basis {Xt} and dual basis
{Xf} and using (2) and (3), we obtain (1). D

Assume that /0 is generic, in the sense that ct = f0(Xi) Φ 0 for 0 ̂  i <; /. The orbit
0 = Bί -/o then has dimension 2/, and we can write the solution (1) in terms of
canonical symplectic coordinates q1,...9ql, pl9...9pι on 0 as follows: As in
[G-W2, Sect. 7], we parametrize points of 0 as

/= Σ P A + Σ*je~-qjXf, (4)
i = l 7 = 0
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where £j = sgn(Cj) and

i
<lo = y- Σ n#i (5)

i=ί

/Recall that α0 = — Σ n&i on a-\ Here γ is a constant on the orbit, with
V i^ί
ey - Ico^1... c?'| the value of the Ad*(51)-invariant function |S| [G-W2, Eq. (9.1)].
Note that if

i
/ol«= Σ ^af,

ι=l

then /o has coordinates p{ = a^ qt = — log|c f |. If we take Xt to be a unit vector
relative to the inner product on b1? then the Hamiltonian H(f) = %(f,f) in these
coordinates becomes

#=1/2 Σ faφffij+lβΣe-2*'. (6)
U=l J = 0

Comparing (1) and (4), we see that along the solution curve,

«Xί)=-log|cJ.|-αχft(ί)), for O^/. (7)

Since pj = {H, p}} = dH/dqj = np~2q° — e~ 2qj, we can calculate Pj(f) by a quadrature
from (7). Or we can use the equation qk = {H, qk] to obtain pj by inverting the linear
system

Σ(α*«M=-9*, IZk^l. (8)
j = ι

Remark. From the calculations above, it is easy to see that on each orbit 0, the
flow has exactly one fixed point, characterized by the equations

Pj = 0, qj = q0-^ognp l^j^l. (9)

To prove this, it suffices to show that Eq. (9) determines qj uniquely, when q0 given
by (5). But the coefficient matrix is / + ι;τw, where u = [l 1...1] and
w = [«! n2... nj. Any vector in the null space of this matrix must be a multiple of υ.
Since wτt> > 0, v is not in this null space. Hence the matrix is invertible.

5. Periodic Toda Lattices and Representations of Affine Groups

5.1. Standard Representations

In this chapter we show how the solution to the (generalized) periodic Toda lattice
systems in Sect. 4.4 can be calculated in terms of representative functions on a
Banach-Lie group Gw, which is a central extension of the loop group Gw. The
structure and representation theory of these groups was worked out in [G-W3],
We summarize now the results relevant for the present application.

Let w be a weight function as in Sect. 4.1. Assume that w satisfies the non-
analyticity condition Sect. 4.1 (2) and the following stronger version of the rapidly
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increasing condition Sect. 4.1 (1):

3σ, l<σ<2, such that lim |rcΓ1/σlogw(X) = oo - (1)
M-» OO

[For an example of a weight function satisfying both these conditions, take
^<s<l/σ and set w(X) = exp(|rc|s).] Then there is a complex Banach-Lie group
[Gc]w which is a central extension of [G^ by C x . The Lie algebra [gc]w of this
group is the corresponding one-dimensional central extension of [gc]w, and is just
the completion in the w-norm Sect. 4.1 (3) of the affine Kac-Moody algebra gc

associated with gc. We shall denote the corresponding completed "normal real
forms" by Gw and gw. Thus gw is a central extension of the Lie algebra gw in Sect. 4.1
by R. There is a Cartan decomposition Gw = Kw - Pw, Pw = exppw, and an Iwasawa
decomposition Gw = JVW A - Kw, obtained by lifting the corresponding
decompositions of Gw. Here A = A expRc, with c a basis for the center of g, and
NwttNw. There is a projection

Pw-»Pw (2)

with kernel Re. For fc^O, define the finite-dimensional subspace pk of pw to be the
inverse image of pk under (2), and let Ψ : p*-»bjf be the composition of the map (2),
restricted to pfe, with the map vfe in Sect. 4.2. Thus Ψ is surjective, with kernel Re.

The algebra gc admits a family of irreducible "standard modules" Vλ,
parametrized by the dominant integral functionals λ on α, that are completely
analogous to the irreducible finite-dimensional representations of gc. These
modules carry a positive-definite Hermitian form < | > which is contravariant
relative to the involution τ of Sect. 4.1 : <Jf u \ u> = — <w | τ(X) - y> for X e gc and
u,υe Vλ. Let Hλ be the completion of Vλ in the norm defined by this inner product.
If σ and the weight w are related by (1), then there is a Frechet space S*, of "Gevrey
vectors of order σ", with VλcS*CHλ. The representation of gc on Vλ extends by
continuity to a continuous representation of [gc]w on S*. Furthermore, this
representation can be integrated to a holomorphic representation πλ of the group
[Gc]w on Sλ

σ.
For any pair of vectors w, veS*, one thus has a holomorphic function

0-><πA(#)φ> on [Gc]w. In particular, let υλ be a normalized highest weight vector
for Vλ, and define

<πλ(0)Vλ\Vλ> for gεlG^. (3)

Hg = expX, with τ(X)= —X, then ψλ(g) = ψλ(g~1)>0. (For further properties of
the functions ψλ, cf. [G-W3, Chap. 6].) When λ is one of the "fundamental weights"
ώp 0 ̂  i ̂  /, then πλ is called a "fundamental representation." We shall write πl for
πλ, V1 for Vλ, vt for vλ and \pt for ψλ in this case. We note from [G-W3, Sect. 6.2]
that if λ = Σ W ώ;, where (mj are non-negative integers, then

ψώι)=ήψώr. (4)
i = 0

Lemma. Let x e pw, ί e R, and de/ϊne h(i) eaby the Iwasawa factorization expίx
= n - expft(ί) fe, vv/zere n e Nw and k e J?w. TakeX e pwwhieh projects onto x in (2).
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Then

h(f)= Σ C i ( ί ) H i 9 (5)

where cf(ί) =—\ logtpi(exp — 2t X). Here Ht is the coroot to αt for 1 ̂  i ̂  /, and H0 is
the coroot to — α. (Recall that the coroot Ha e α ίo α e α* is defined by (Ha, H)

Proo/. This follows from [G-W3; formulas 6.5 (2) and 6.6 (1)]. D

5.2. Solution of Periodic Toda Lattices via Representative Functions

Continuing with the notation of the previous section, we recall that the extended
Cartan matrix [^4y]o^i,j^/ °f the root system of g is defined by Atj

= 2(ai,aj)/((xpttj), where α 0 = — α. Let {^/i^iO^i^/} be a set of canonical
generators of the affine algebra g. The commutation relations are

[hj9 e^ =

Note that p1 has ba.sis {/z^^ +

Theorem. The solution to the generalized periodic Toda lattice system, with
Hamiltonian Sect. 4.4 (6) and initial data pf(0), ̂ (0), 1 ̂  i ̂  /, is given in terms of the
fundamental representative functions as follows:

«/(*) = ίi(0) + 1/2 Σ ^o logφ/exp - ί JQ , (1)
j = o

and pt is obtained either by quadrature from

Pj = nje-^-e-^, (2)

or by inverting the linear system

f f a a ) P - l / 2 ,.Σ (a(, a;)py- 1/2 _ u ψ /eχp _

for l ^i ̂ l. Here X ep 1 /s defined by

X= Σ (a£,aί)pl(0)Λί+ Σ («J ,aJ )
1/2e-'!'(0)(ej.+/J.), (4)

t = 1 7 = 0

and ^f0 is defined by Sect. 4.4 (5).

Remark. Equation (1) also holds for q0(t), as is easily checked.

Proof. It is a straightforward calculation, using the invariant form and the
commutation relations [hb et~] = 2ei9 \_eb /J — hb to verify that we may take the set
{μίψ(eί

jr fi)} as the orthonormal basis {Xf} in Theorem 4.4, where μ? = (α/5 α^/4.
With X defined by (4), we then have

= Σ 2Pl<0)α£+ Σ 2e-*<°>A?. (5)
ί=l 7=0
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Now apply Sect. 4.4, Theorem and Sect. 5.1, Lemma to the solution with initial
data/o given by Ψ&X). D

Corollary. The functions e~2qί(t} extend meromorphically in t, and are the ratio of
two entire functions of exponential order of growth ^2.

Proof. By [G-W3, Theorem 6.1], we know that φi(t) = ψί(exptX) is an entire
function of ί, and satisfies the growth estimate |^(ί)|^^4exp.B|ί|2+ε for all ε>0,
with constants A, B depending on ε and X. (Since X is in the finite-dimensional
space p1, || X || w < oo for any admissible weight function w.) The result now follows
from formula (1). D

Remark. If we let y-> + oo in the defining relation Sect. 4.4 (5) for qQ [i.e. set the
coefficient of X$ in (5) to zero], then the element X in (4) lies in the finite-
dimensional algebra g. In this case

Ψλ(QxptX) = Σc»eμt,
μeΣ

where Σ is the spectrum of the self-adjoint operator QΛ(X), cμ^0, and Σcμ= l
Here QΛ is the irreducible finite-dimensional representation of gc with highest
weight A = λ\a . In this case formulas (1) and (3) become Kostant's formulas for the
solution of the generalized non-periodic Toda lattices ([Ko, Theorem 7.5] see also
[Syl]).

Example. Take G = SL(/t,]R), n^3. In this case Sect. 4.4 (6) is the periodic Toda
lattice Hamiltonian, in a particular choice of canonical coordinates. The extended
Cartan matrix A^ = — 1 ifi—j = ± l(modn), Au = 2, and all other entries are zero.
If we define yt = log [φi/φi - J, where φ^t) = ̂ (exp — tX) and the subscripts are read
mod(w), then we can write (1) as

(6)

We then obtain p^f) by quadrature from

Ci Φf '
where logc^ — ̂ (0).

For the case SL(2,R) (the periodic Toda lattice with one degree of freedom),
the extended Cartan matrix has A1Q= — 2, and the formulas above become

#ι(0 = #ι(0) + log[^ι(0/^o(0] ? (8)

5.3. Differential Equations for Representative Functions

Using representation theory, we now obtain a system of non-linear differential
equations satisfied by the basic representative functions ψt along certain one-
parameter subgroups QxptX. Assume that

x= Σ Φi+ft (i)
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is in p1, where c^elR [e.g. in Sect. 5.2 (4), take initial data Pj(0) = 0]. For λ a
dominant integral functional on ά, set φλ(t) = φλ(exp — tX)9 with X given by (1).
When λ = ώi is a fundamental weight, write φλ = φt. Recall (Sect. 5.2, Corollary)
that φt extends holomorphically to an entire function of ί and {cf}, of exponential
order ^ 2 in t.

Proposition. For 0 ̂  i ̂  /, one /zαs

^logφί(ή = cfΠΦj(tΓA'i, (2)

w/ί/z miίiα/ conditions φt(Q) = 1 and ^-(0) = 0. In particular, φί is an even function of t
and {Cj}.

Proof. We first recall that the action of the canonical generators eί9 fi9 ana ht on the
highest weight vector ΌJ is given by

erVj = Q, h i ' V j = δijvj, (3)

and if i φj, then

fi Vj=Q. (4)

From the commutation relations for the canonical generators, one calculates that

hjfί - vt = (δy - Atj) frvi9 βjfi vt = δtj hrvt. (5)

Now fix ί, write et = e, ft = f, ht = h, vt = v, and consider the vector

in V1® V1. From (3) and (5), it follows that ξ is a highest weight vector in the tensor
product representation, with weight

Furthermore, </ ι;| £>>=() and

so that ξ is a unit vector, relative to the canonical inner product on V1® V1. Thus
we may calculate the representative function ψλ using the vector ξ and the
representation π'Oπ':

( g ) v \ f . v y , (6)

for g e [Gc]w. When g = exptX, we can calculate the right side of (6) in terms of
derivatives of φi9 using (3), (4), and (5):

(d/dt)φi(t)= -<π'(exp-ίJr).X φ>= -c£<^(exp-iX)/-i?|t;> (7)

(d/dt)2 φi(t) = cί(πί(Gxp-tX)f v\X v} = cf <πf(exp -ίJSQ/ υ\f v} (8)

(In the last equation we have used the self-adjointness oΐX.) Thus (6) implies that
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On the other hand, we can also calculate φλ using Sect. 5.1 (4), which gives

Substituting this in (9) and dividing by φf9 we obtain (2), since Ait = 2. The initial
condition ^-(0) = 0 follows from (7). The uniqueness of solutions to the system (2)
implies the symmetry under changes of sign of ί and ct. D

Example. Take G = SL(rc,]R). Then Eq. (2) reads

-r^-logφi(t)= ——-— *+ , (10)
at φi^t)

where the subscripts are read mod(n).

5.4. Matrix Entries Associated with Fixed Points

We assume for simplicity that the root system of g is simply-laced, and we
normalize the inner product so that (αt , αt ) = 2, for 1 ̂  i <Ξ /. Take

where the coefficients ct satisfy

(There are 2l choices of sign for these coefficients. Let nt = cf as usual.) This choice
of X corresponds to the fixed-points of the corresponding periodic Toda lattice (cf.
Sect. 4.3 and Sect. 5.2, Theorem). We write

ι = l

Then from the commutation relations among the canonical generators (Sect. 5.2),
we have [u, v] = c, where

spans the center of g (cf. [G-W3, Sect. 1.3] for details). Hence

exp tv exp tu = exp t(u + v) exp ̂  t2 [y, u\

= exp tX exp — \ t2c .

Thus πA(exp tX) vλ = exp Q t2λ(c}\ πΛ(exp tv) vλ. Now <πA(exp tv) vλ | t>λ> = 1 . Hence
we can calculate the representative functions ψλ along the subgroup generated by
X:

et2λ(c}/2. (1)

Taking λ = ώt to be a fundamental weight, we have λ(c) = 1 for i = 0, while λ(c) = nt

for l^i^l [G-W3, Sect. 1.3]. Hence the functions φtf) = ψλ(exptX) are as
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follows:

(2)

where n0 = 1 .

5.5. Explicit Solutions for SL(2,IR)Λ

We conclude by calculating the basic representative functions φt of Sect. 5.3 in
terms of theta functions and elementary functions in the case of the group
SL(2,R)Λ. For this, we will use the connection between representative functions
and the periodic Toda lattice [Sect. 5.2, Eqs. (8) and (9)], together with the
differential equations derived in Sect. 5.3.

LetZbedefinedby5.3(l),withi=landc 0 = i(l+fc),c1 = i(l-fc).Herefcisa
parameter which we take in the range — 1 <fc< 1. Define the functions φ0(f) and
φι(t) as in Sect. 5.3 in terms of X. Let ql9 p1 be the canonical coordinates for the
periodic Toda lattice with one degree of freedom, and set q0 = y — ql9 as before, with
y depending on the associated coadjoint orbit. Relative to the dual of the Killing
form for s/(2, R), one has (α1? oq) = \. Hence by Sect. 4.4 (6), along the trajectories of
the system one has ql = —8H/dp1 = — ip1? while q0= — 4ι andp1=e~2q° — e~2q\
as derived in Sect. 4.4. From the equation for p1? it is natural to define

Then along the trajectories, x, y, and z satisfy the system of bilinear differential
equations . . ,Λ.x=—yz, y = xz, z=—xy. (1)

Now choose the initial data and coadjoint orbit so that

0, ίo(0)= -l

Then x(0) = fc, y(0) = 0, and z(0) = 1 . Hence it follows from (1) that x, y, z are given
in terms of the Jacobi elliptic functions as

x = fccn(ί,fc), y = ksn(t,k), z = dn(ί,fc) (2)

[W-W, p. 493]. Returning to the canonical coordinates, we thus have the solution
to the periodic Toda lattice for this choice of initial data:

> (3)

) = 2ksn(ί,k). (4)

Comparing (3) with Sect. 5.2 (8), we see that

Φι(t) _ dn(f, fc) + k cn(ί, fc)

Φ^)~ ΓTfc ' (5)

Using (5) in Sect. 5.3 (10), together with the basic identities

dn(ί,fc) + fccn(ί,fc) _ 1+fc

dn(ί, fc) - fc cn(ί, fc) 1 - fc'

fc2cn(ί,fc)2 = dn(ί,fc)2 + fc2-!,
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we find that φ0 and φί satisfy the equations

2(log^oΓ = dn2 + k dn en + 2(fc2 - 1) , (6)

1)
// = dn2 -k dn en + 2(fc2 - 1) . (7)

These equations can be integrated as follows: Following the standard notation
in the theory of elliptic functions, as in [W-W], we let

K=*f (l-k2sm2ΘΓ1/2dθ, E=πf(l-k2sin2θ)1/2dθ
o o

be the complete elliptic integrals of the first and second kind with modulus k. Let
the number q, 0 ̂  q < 1 , be defined implicitly in terms of k by the equation [W-W,
p. 481]

Take Jacobi's original theta function Θ(t) = Θ4(πt/2K,q). Then (d/dt)2 log Θ(t)
= dn2(t,k)-E/K [W-W, Sect. 22.73]. Furthermore,

=/£dn(α)cn(α).

[W-W, p. 516]. Recalling from Proposition 5.3 that $(0) = 0, and ^(0)=1, we
calculate from (6) and the cited formulas that

2 Θ(ί) dn(t,fc)-/ccn(t,fc) 2v;2

-- e ' (8)

where v = (k2 — l)/8 + E/4K. Similarly, starting with (7), we find that φ^(t)2 is given
by the right side of (8), with k replaced by — fc.

As noted in Sect. 5.2, we know that the functions φt are entire functions of t.
Hence the right side of (8) must be the square of an entire function. To calculate this
function explicitly, we use the infinite product expansions [Hancock, p. 255(1)]:

where an - qn + 1/2eίu, bn - qn + 1/2e~iu, and u - πt/2K. Here G - G(k) is independent
of ί. Using these factorizations in (8), we see that the zeros of Θ indeed cancel the
poles of dn — k en, and we obtain the factorization

^0(0 = Go e"
2Π(l-αn) (!-&„), (9)
n = 0

with an, bn, v as above, and G0 a constant (depending only on /c), determined by the
initial condition < 0̂(0) = 1. Similarly, we have

φί(t) = G1e
vt2Π(l+an)(l+bn). (10)
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From Jacobi's infinite product expansions of the theta functions [W-W,
Sect. 21.3], we may also write these formulas as

(9)'

φ,(f) = e«2Θ,(ϊ u, 41/2)/6>3(0, q^2) , (10)'

with u and v as above.
From their representation-theoretic definition, we know that the functions φ^f)

are positive for real ί, and positive-definite for purely imaginary t [G-W3, Sect. 6].
From the Fourier series for Θ4 and formula (9)', we calculate that

φ0(ίt} = C0e-bt2Σ(-lTe-ε(n+ct}\ (U)
neZ

where C0, ε = — ilogg, b = v+l/(εK2), and c = π/(4εK) are positive constants
depending on k. There is a similar formula for φίt It would be interesting to have a
representation-theoretic interpretation (or derivation) of these formulas, as well as
a "physical" interpretation via the periodic Toda lattice.

Remark. In the case of the "twisted" affine Lie algebra A\ (cf. [G-W3, Sect. 6.9]
and [R-S1]), the solutions to the corresponding Toda-type system can be
expressed in terms of the Weierstrass σ-function.

Appendix. Some Root System Results

Let A be a reduced root system, A + a set of positive roots, and Π = {αl5 . . . , αz} the
set of simple roots in A + . Define, for 1 ̂  i^ /,

7=1

(the set of positive roots containing α£). For γ as above, set \γ\= Σnt

Lemma 1. Let y e Δ* and suppose that \γ\ ̂  2. Then there exist βί9 . . . , βr e A + such
that

(a) αί + β1 + . . .+f t f eZl + for l^k^r;
(b) *i + β1 + ...+βr = γ.

Proof. By induction on \γ \. If |y | = 2, then y = αf + α .̂ Thus we may take r = I , β^ = α;

in this case. Assume now that the lemma holds for roots of length < m, and take y
with \y\ = m. Then y £ 77, so there exist α, /? e zl + such that y = a + β. Since y e z^+, we
may assume that αezl^. By induction, we can find a sequence j8 l9 ...,j8r for α.
Adjoin /?r+1 = /? to get a sequence which works for 7. D

Assume now that A is irreducible. Given αezl + , set/^ = { / ? e Z l + : α — βεA+}.

Lemma 2. Let α = oq + . . . + α,. T/zen Card(Γα) = 2/ - 2.

Proo/. By [Bo2, Chap. VI, Sect. 1, Corollary 3 to Proposition 19], Γα consists of all
roots of the form

ieY
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where Y and its complement are non-empty connected subsets of the Dynkin
diagram for Π. Using the classification of Dynkin diagrams, it is easily verified that
there are 21 — 2 such subsets Y (cf. Lemma 3 and Table 1). For a proof without
classification, we could also invoke the following combinatorial result, whose
proof we leave to the reader (cf. [Bo2, Chap. 4, Annexe, Proposition 2]):

Scholium. Let Γ be a tree with I vertices. Then there are exactly 21 connected subsets
of Γ whose complements are also connected. (Here we allow the empty set as a
connected subset.)

Recall that A has elements of at most two lengths (which we call short and long;
in the case of only one root length, all roots will be called long).

Lemma 3. Suppose that α e A + is long.
(i) // β,yGΓΛand β + yeΔ, then β + y = u\

(ii) IfβeΓΛ9then* + βφA;
(iii) Card(/^) is even.

Proof. (This argument was suggested by [Jo, Sect. 2].) We first claim that if β e ΓΛ,
then

2(α,/9/(α,α)=l. (1)

Indeed, we have ||α-/?||2= ||α||2-2(α,/0 + 1|/?||2, so the assertion follows
immediately once we know that β and α — jB have the same length. But the case β
short, α — β long (or vice versa) cannot occur, since it would imply 2(α,/?)
= \\β\\2 < INI2> contradicting the root system axiom that 2(α, jS)/(α, α) be an integer.

With (1) established, now let β,yeΓΛ and assume that β + γeA. Then (β + y, α)
= (α,α)by (1), while ||/? + y| | ̂  ||α|| since β + y is a root. Hence the Cauchy-Schwarz
inequality forces β + y = a. Similarly, \\κ + β\\2= ||α||2 + 2(α,/0+ ||β||2 = 2||α||2

+ \\β\\2> ||α||2, so a + βφA, since α is long. This proves (i) and (ii). As for (iii), we
observe that the map sending βtou — β has no fixed points on /^, since 2βφA. Since
this map is an involution, we obtain (iii). D

Definition. Let α e A + be long. A polarization of ΓΛ is a partition of Γα into
complementary subsets {/?l5 ...,βr} and {y 1? . . . , yr}, such that βt + y£ = α for 1 ̂  i ̂  r
(where 2r = Card Γα).

By Lemma 3 it is clear that polarizations exist, and have the property that

β( + βjφΔ + , γt+yjφΔ+. (2)

We now fix

(3)

where Ht is the coroot to αί5 and v is the operation of passing from root to coroot.
Thus when all roots have the same length, then

α = α1 + ...+α /. (3)ADE

When the ratio of squared root lengths is 2 : 1, then

« = 2 Σ α,+ Σ«i
short long
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Finally, when this ratio is 3 : 1 (G2 root system), then

α = 3α!+α2, (3)G

where α t is short. In all cases α is long (see Table 1).

Lemma 4. Let α be as in (3)A_G. Then the set ΓΛ has 21 — 2 elements, and admits a
polarization Γa = {/?15 ...,/? /_1}u{y1, ... j^^} with the following properties:

(i) There is a monotone ordering βi < /?2 < < A - 1 < 7; < α for a^ i> relative to
the lexicographic order on A+ associated with the set Π;

(ii) For any choice of indices il9 ... , ίn with n^2, one has

Proof. See Table 1 for the existence of a polarization having property (i). In the
calculation of Table 1 we make frequent use of the property that the sum of the
simple roots in any connected subset of the Dynkin diagram for Π is a root (cf.
Lemma 2). Property (ii) follows immediately from Lemma 3 (i). D

Table 1. Polarizations of Γa9 α = (Hβl +... + HJ

A, Diagram: Q Q Q

«! α2 α/

Polarization:

Diagram:

Polarization:

Diagram:

Polarization:

with
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Table 1 (continued)

Dj Diagram:
jθα,_,

X
«I-2

Polarization:

α,

Diagram:

(%l (%2 &1-4

Polarization:

Diagram:

<*! α2

Polarization:

Diagram:

Polarization:
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