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Abstract. We prove the existence of maximal surfaces in asymptotically flat
spacetime satisfying an interior condition. This uses a priori estimates which
can also be applied to prescribed mean curvature surfaces in cosmological
spacetimes and the Dirichlet problem.

1. Introduction

Maximal surfaces are spacelike submanifolds of a Lorentzian manifold which
locally maximize the induced area functional. This leads to a nonlinear elliptic
equation which is interpreted geometrically as the vanishing of the mean extrinsic
curvature. More generally, one considers surfaces of prescribed mean curvature.
The main interest in such surfaces presently comes from general relativity, where
there have already been many applications. For example, they have been used to
prove positivity of mass [SY1], analyse the space of solutions of Einsteins
equations [FMM] and in numerical integration schemes for Einsteins equations
[P, ES]. Further references can be found in review papers such as [MT, ChY].

It is clear that a good understanding of the existence and regularity properties
of such surfaces is needed. In this paper we prove the existence of asymptotically
flat maximal surfaces in asymptotically flat spacetimes satisfying a uniformity
condition in the interior (Theorem 5.4). Along the way we show that the Dirichlet
problem in nonflat spacetimes is solvable (Theorem 4.2) and prove the existence of
constant mean curvature surfaces in cosmological spacetimes (Theorem 4.1). The
result for cosmological spacetimes was first proved by Claus Gerhardt, but our
proof appears to be simpler.

These results hold under very general conditions. For example, the usual
energy inequalities on the curvature tensor [HE] are not needed, the mean
curvature can be nonconstant and singularities protected by barrier surfaces (i.e.
crushing singularities [ES]) are permitted. The restrictions are that the spacetime
admits a smooth time function and that some compactness condition is satisfied.
This latter condition is needed to ensure that spacelike surfaces with given
boundary do not reach arbitrarily far into the future (past). An instructive example
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of Brill [Br] of a spacetime having a compact surface (with boundary) with a
noncompact domain of dependence, indicates that such a condition is necessary.
We note that this difficulty arises even when considering solutions of the
variational problem [Av, Go].

The first results in this area were due to Avez [Av] who showed that the
associated variational problem is solvable, assuming some compactness
conditions. However, the resulting surface is a priori only Lipschitz-continuous
and may be null. This illustrates the main difficulty of the problem and arises
directly from the form of the nonlinearity of the elliptic equation satisfied by the
defining function of the surface. In flat space R"'* this equation becomes

1

y\-\Du\
where u E C2(Rn) and the mean curvature is zero.

In 1968 Calabi [C] showed that for n^4 this equation has the Bernstein
property that the only entire solutions are linear. This was later extended to all
dimensions by Cheng-Yau [CY] and their estimates were used by Treibergs [T] to
construct and classify constant mean curvature surfaces in 1R"'1. For non-flat
spacetimes several authors used implicit function techniques to find solutions near
known exact solutions. We mention Choquet-Bruhat [Ch] and Stumbles [St] and
refer to [MT] for a review of these results. The main uniqueness theorem is due to
Frankel and Brill-Flaherty [BF] and applies only to constant mean curvature
surfaces in spacetimes satisfying the timelike convergence condition. In view of the
very general existence theorems in this paper, it would be useful to find stronger
uniqueness results.

The solvability of the Dirichlet problem and the regularity of variational
extrema in 1R"'1 were shown in [BS]. Previously weak results for the Dirichlet
problem in R"'* had been given by Bancel [Ba] and Flaherty [F]. Independently
Gerhardt obtained a gradient estimate similar to [BS] but valid for nonflat
spacetimes, and applied it to solve the prescribed mean curvature problem in
cosmological spacetimes. Generalizing a barrier construction of [BS], he was also
able to solve the Dirichlet problem in spacetimes conformal to a product.

This paper is organized as follows: In Sect. 2 we describe notation and give a
number of calculations of mean curvature and the first variation of mean
curvature. These calculations all rely heavily on the slicing provided by the time
function. Section 3 contains the basic gradient estimates, for surfaces with smooth
or empty boundary. These estimates are much stronger than those of [BS], [Ge]
since they depend only on pointwise bounds. Existence theorems are then derived
in Sect. 4 for situations in which an a priori height estimate follows, either from a
compactness assumption (Dirichlet problem) or from existence of barrier surfaces
(cosmological problem). Even here it is not necessary that the domain be bounded,
and an application giving constant mean curvature surfaces near a singularity of
Kasner type appeared in [B].

The main difficulty in applying the methods of Sect. 4 to the maximal surface
problem is in obtaining an a priori height bound. This is done in Sect. 5 by a test-
function argument exploiting the existence of barrier surfaces at spacelike infinity.
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The main result Theorem 5.4 constructs a maximal surface asymptotic to a given
level set of the time function. The asymptotic conditions required are standard
[ChY], and only a mild condition is needed in the interior in order to exclude
behaviour such as in Brills example.

Most of the results here are contained in [B].

2. Notation and Calculations

A spacetime if is a smooth (rc+1) dimensional manifold (Hausdorf and
paracompact) with smooth Lorentzian metric ds2 = g λμdxλdxμ of signature
(+ + ... H — ). We denote the metric pairing by < , •>, the canonical connection by
V and use the summation convention with index ranges l^ij, ...^ n,
1 ̂  λ, μ, . . . ̂  n + 1 . For simplicity we assume smoothness throughout and will note
weaker regularity conditions where appropriate. Since most of the calculations are
purely formal unless otherwise stated, we make no assumptions about the causal
topology of ̂  apart from requiring that 1f has a time function.

Definition 2.1. te C™(i^) is a time function if Vt is a nonzero, everywhere timelike
vector field. Thus -jΓ is time-oriented, with Vt lying in the past-directed timelike
cone. Associated to ί we have the reference slices £ft = {p<E ^:ί(p) = t}, which are
Riemannian submanifolds with respect to the induced metric and topology. The
lapse function α e C°°(^) of t is defined by

ί>, (2.1)

and thus the future-directed unit normal vector to the reference slices is

Γ=-αPf. (2.2)

Choosing an orthonormal frame {v J " on ̂  yields an adapted orthonormal frame
{vλ}l+1, where υn+1 = Γ, which defines a positive-definite norm on tensors on ̂ .
For example, if β( , -) e Γ(T*^® T*1T\ then

/ n + l \ l / 2

| |B||=sup Σ \B(v^\2) ,
\ λ , μ = l /

l|5||*= Σ II^BII
7 = 0

A spacelike surface Mci^ is a codimension-one submanifold of i^ with
Riemannian induced metric with respect to the induced topology. Denoting the
induced connection by PM, the operators divM,gradM= VM and ΔM are given by

^ = VMφ = e^e{ , φ e

ΔMΦ - divM gradM φ = (* A - Pef ̂

where {ej? is any orthonormal frame on M. Let N be the future-directed unit
normal to M, so the second fundamental form A(-, •) and mean curvature H = HM
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are given by

A(ei9e:) = <ei9rejNy9 (2.3)

H = A(ei9eύ = άivMN. (2.4)

The height function u e C°°(M) of M is the restriction of the time function to M,
u = t\M. Denoting the component tangential to M by (•)" we have

FMM = (Γί)ll = Fί + α" 1 vJV = α-1(vΛΓ-r), (2.5)

where v= — <T,JV> measures the "angle" between M and the reference slicing.
Observe that

|FMw|2=:oΓ2(v2-l), (2.6)

and hence v ̂  1, a result that also follows from Lemma 3.3. From (2.4) and (2.5) we

haVe Hv = divM(αFMιO + divM Γ, (2.7)

^Mw = α~ 1 vj f f + divA fΓί. (2.8)

Proposition 2.1. FP7ί/z ί/ze αfeoί e notations, we have

, (2.9)

where Ric( , •) zs ί/ze Λίccz tensor of i^9 and T(HT) is the variation of mean curvature
of M under the deformation vector field T. This can also be expressed in terms of the
Killing tensor &τg of T9 ^τg(X, Y) = (VXT9 7> + <FyT,Z> by the expression

T(HT) =i(F*^rf) (ei9 eύ - (Fβ|#rf) (N, et) -\H<£τg(N, N)

J). (2.10)

Proof. Fix p e M and choose an orthonormal frame {ej on M such that
(Pgf e7 ) (p) = 0. For generality let X be a vector field in a neighbourhood of M with
associated flow φs:^^i^, \s\ ̂  ε. In our case we have that X is transverse to M but
this is not necessary, provided we interpret X(HX) properly [SL]. Extending the
frame {et} by e^^φ^e^ gives a frame tangent to Ms = φs(M) with metric gtj(s)
= <£t (s), e/s)>, so gff/O) = δ f j and ̂ xet = [X, ej = 0. Let JV(s) be the future-directed

unit normal to MS9 so the second fundamental form A^s) is given by Atj(s)
= (ei9 FejNy(s)9 and hence (with the s-dependence implicit)

Direct computation at p now gives

i, X)et, ΛΓ> + < VxV^it Ny + 2< rxet,

y (ej(H) + <Λ(e;, ej)N, O) + <X

, N) + X{ V^, Ny - X(gij)Aij
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where precisely,

\s=0. (2.11)

Setting X= T gives (2.9). To motivate (2.10) observe that if X is a Killing vector
field, yxg = Q, then φs is an isometry and hence X(Hχ) = ϋ. The calculation is as
follows:

< Fβ *, FyV>

^^

,̂ -J? î̂  D
Observe that the calculations thus far have been intrinsic, in that they depend

only on the choice of time function and not on some local coordinate system.
However we will later need to do locaul calculations, so let (x^ί) be local
coordinates (ί is still the time function) in which the metric has the form

ds2 = - (α2 - β2) dt2 + 2βίdxidt + g^dx* , (2.12)

where α is the lapse function (2.1) and β = ββ^dj is the shift vector. We write di9 8t for
coordinate tangent vectors and denote partial derivatives by subscripts, so the
tangential gradient operator on the slices £ft is Dφ = gίjφidj = φidi, φ e C°°(^). The
future-directed unit normal vector T is given by

T=-~ocFt = a-1(dt-β), (2.13)

and then the second fundamental form A°j and mean curvature H° of the slices Sft

are
^=<5 i,Fβ jΓ>=iα-15 l f fy-iα-1J2P/ ϊ f lfy, (2.14)

H° = gijA°j=±a- lgijdtgij- α~ 1 div°(β) , (2.15)

where div° is the divergence on the slices £ft.
The height function u 6 C°°(M) can be extended to Ίf by requiring dtu = Q.

Since M is then a level set of (u — ί), we have

ΛΓ = v(C7+Γ), (2.16)

where U = (l+β- DuΓ^Du, and v = (l-|C/|2)"1/2. Choosing an orthonormal
frame on M with e^\VMu\~^VMu, we calculate H,
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where e1 = \Du\ ~ lDu if Du φ 0. Then

(2.17)

For later reference, we also calculate in the same manner

PMα>? (2.18)

since <17, FτΓ> = α"1l7(α) = α~1[7 Dα.
There is an alternative expression for H which illustrates the essential difficulty

of our problem. First observe that it is always possible to construct coordinates
(x\ t) in which the shift vector β vanishes. Lifting the coordinates (x1) to M gives
coordinate tangent vectors Xt = d{ -f utdt with induced metric

9ij = 9ij ~ *2UiUj , gij = gίj + α2 v W , (2.19)

which shows that the ellipticity of zlM is controlled by v. In particular, a calculation
based on (2.7) shows that

H = avgiju{ij + v(/f ° + Dw Dα) + v3(Du - Dα + \Du\2at - ̂ uWAty .

It is clear from this expression that the prescribed mean curvature equation is
nonuniformly elliptic, since

and hence an a priori estimate is needed for v.

3. Gradient Estimates

In this section we give some estimates for v. The techniques employed are simpler
than those in [BS, Ge] but the final estimates are significantly stronger. It is
interesting to note that the key inequality involving \A\2 occurs in some form in all
of the preceding works: [BS, CY, Ge].

The previous notation will apply. We use c to denote constants depending only
on n, and C for constants depending on geometric data. Important constants are
denoted C l 5 C2,..., w, δ,....

Definition. Let ^~+ Ίf denote the bundle over Ίf with fibre at p e i^ consisting of
future-directed unit (timelike) vectors at p. Then F e C00(5r

+

/^) satisfies the mean
curvature structure conditions ("the structure conditions") with constant A if, for
any spacelike surface Mci^, the function FeCco(M), F(p) = F(p,N(pJ), p e M
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SatίsfieS \F(p)\^Λv, (3.1)

|<7^PMF>|^yl(v3 + v2μ|) for all peM. (3.2)

If the mean curvature HM of a fixed surface M satisfies the structure conditions we
say that HM satisfies the structure conditions along M (with constant A).

Some examples of functions satisfying (3.1), (3.2) are:

(3.3)

with H ^ l l ̂ oo, since by (2.19)

l<τ, rMφy\ = \gijxt(</>) (xj9 τ>ι ̂  v2 n vφ\\ ,
so the structure conditions hold with A = \ \ φ \ \ ί ;

F(p,v(p)) = (X,vy, (3.4)

where X e Γ(ΊY') is a smooth vector field on if with || X \\ ί < oo. Using (2.16) gives

(3.5)
and (2.3) gives

l<FM£r>H<FrΛΛΓ>+,^ (3.6)
and hence yl = c| |X| |1.

The main gradient estimates are given by the following:

Theorem 3.1. Let (i^, g) be a spacetime with time function t such that

(3.7)

and suppose that M is a compact spacelike surface with height function u and mean
curvature H satisfying the structure conditions along M with constant Λ.

(i) If dM =

v(p)^2exp{Kmin(m+— u(p),u(p) — m_)} for all pεM, (3.8)

where K = K(C1,A) and m+ =supMw, m_ =infMw.
(ii) //5MΦ0, then

v(p)^2exp{&min(m+ — u(p},u(p) — m_)}supa Mv for all p e M , (3.9)

(in) If dM φ 0 and dM satisfies the conditions

/ n + l \ l / 2

(3.10)

u\dM = const, (3.11)

where HδM is the mean curvature vector of dM, then

v(p)^2exp(Km) for all p e M , (3.12)

where K = K(Cί,A) and m = supM|w|.
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(iv) // 5MΦ0 and p e M is such that

(3.13)

then

v(p)£2exp{K(m+-ι<(p))}, (3.14)

w/zere K = K(C1?/1, ε"1). The analogous statement when u<inίdMu is also true.

Remarks. (1) The condition (3.7) could be replaced by

U R ί c l l , ||logα|| l5 \\VT\\ ̂ C,.

(2) The main estimate (3.12) is extended to nonconstant boundary data in
Corollary 3.4. Note the very weak dependence on the geometry of f - this is
essential for the applications to unbounded domains.

(3) It will be clear that the proof requires only that ds2 e C2, ίeC 3, and
Me C3. In addition, the Einstein field equations are not assumed in any form.

Proof. Let K be a (large) constant to be fixed later, and consider the maximum
point q e M of eKuv. First suppose q e Int(M), so

(3.15)
,v at q.

Using (2.8), (2.9), (2.10) and the structure conditions, we estimate

(3.16)

>3 for any ε>0.

Let {λt}l be the eigenvalues of A( , ) with l/l j^maxl/y, then

2-/ί2 (3.17)

by the Schwarz and arithmetic-geometric mean inequalities, since H^Σ^λ^
Thus

>4 for any ε>0,

and combining this with (3.17) gives

|FMv|2-Cv4^ at q.

Substituting this and (3.16), in (3.15) gives

at q,
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and since | VMu\2 = u~ 2(v2 — 1), we can choose K = K(C^ A), so that this gives v(q)
^ 2, and hence

v(p)^2exp{K(supMw-w(p))} for all peM. (3.18)

Applying the same argument to e~Kuv gives (3.8) and (3.9). To show the main
estimate (3.12), let q + , q_ denote the maximum points of eKuv, e~Kuv, respectively. If
either of q + , q_ e Int(M), then by the above argument we are done, so we consider
the remaining case q + , q _ e dM . Since u\dM = 0, we can take q+=q_=q. Letting et

be the inner normal to dM in M, we have

(3.19)

But dM is a level set of w, so

(3.20)

for some choice of sign [if | VMu\ (q) = 0, we are done], so choosing the appropriate
sign in (3.19) gives

Kv|FMw|2^|<FMw,PMv>| at q. (3.21)

The right-hand side is estimated using (2.8) and ΔMu = (eiei—Ve.e^(u) as follows:
the term with e1 is calculated using (3.20), (2.6)

and the terms in e2, ...,en are estimated by

Wefr - V™e^ (u) = AdMu- <ffaM, e, > e, (u) = - <#aM, VMu) ,

since u\dM = const. Here H6M is the mean curvature vector of dM,

H9M=-Σ*2(rβie^9

where (-)1 denotes the component orthogonal to dM. Collecting terms gives

v<FMt/, FMv> = (v2- IXoΓXF^, FMt/> + <#,M, F

and from (2.6), (2.8) and the structure conditions we have

|<PMw,FMv>|^α

where C = C(C1,Λ, \\Hdm\\), and hence at q,

For K = K(C19Λ, | |£ΓaMll) chosen large enough this is a contradiction, and hence
the interior estimates (3.18) must hold. This proves (3.12). Finally the estimate
(3.14) follows from the interior maximum argument applied to the function φ(u)v,
where φ(ύ) = (eu — £suP,Mw)£ t π

To handle nonconstant boundary data we show that the time function can be
modified to incorporate a given spacelike surface as a level set. This result is also
useful in barrier arguments.
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Proposition 3.2. Let dt = — α2Pf be the coordinate vector in the zero-shift coordinate
system and let the associated flow be <^s:f^->f^. Suppose ^ is a given spacelike
surface with height function w, and define ^s = {p e i^:φ^s(p) e &*}.

(i) Suppose δ > 0, m, B < oo aresuchthat φ_s:^s-^^ is a dίffeomorphism for \s\
<(5, and

sup^w — mϊ#>w = 2m, supsup^v^β, (3.22)
S

where v = v(s) = — <N(s), T> and N(s) is the future-directed unit normal to £fs (hence
£fs is spacelike).

(ii) Suppose i^ can be written as the disjoint union

τr = %u/+(^)u/-(^_,), (3.23)

where /+, /~ denote the chronological future, past with respect to 1^ [HE], p. 182,
ana

%= u &,.
Then there is a time function Γe C°°(f ) such that

Q } , (3.24)

Further, letting α, T denote the lapse function and future unit normal with respect to
t, we have |<Γ, T>|^5,

|| f \\k£C2(k,m9δ9B, \\T\\k9 \\Dw\\k.^ | |α|| f c), (3.26)

where w is extended to % by dtw = 0, and

\\Dw\\k;«Λ= Σ
7 = 0

Remark. Condition (i) is trivially satisfied if y is compact. Condition (ii) says that
^ is "large enough" in i^ .

Proof. Normalize t by sup^w= — inf^w^m, and coordinatize ΰllδ by

** = {/> = (y, 0 :p = ̂ - wcywίyλ J> e 5M* - w(y)| ̂  5} .

Let χ e CC°°(R), h e C°°(R) be functions satisfying

iδ), J χ = l
0

0 if s^-δ, ί h = δ,

lf s -'
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and define functions χ+, χ_ e C°°(1R), F e C°°(R2) by

The time function Γis defined explicitly by

+ t(p) + m + 2δ

ί A(s)ώ;
I — oo

Then F(z,z) = 0 gives (3.24), while (3.25) follows from h(s) = Q for s^-δ.
t

and ί(p) — w(p) ̂  i<5 then since J /z(s)ds = ί for ί ̂  (5,

= ί+i ί
— oo

and similarly for ί-wg — ^<5, so Γis C°°. If

which gives (3.26), and if

n=&l+ψ)rt+ϊ(Yχ-(s)ds-ψ}Dw9 (3.27)
\-°o /

where ψ = (m + 2δ)χ + (t — w) + wχ_(ί — w). Then

Γ,I>|,
2 λ' 1/ 2

since { χ_ ̂  — 1, and the first two estimates of (3.26) follow now from 0^

). From (3.27) and (2.2) we have

M'-"2i^r)iD^"2

which yields the estimates for Pkl! D

The following linear algebra exercise shows that the norms || ||fc, || \\~k defined
by the reference slicings of ί, Γ respectively are equivalent.

Lemma 3.3. Let Tl5 T2, T3 be future-directed unit timelike vectors. Then

1 ̂  -<T19 Γ2> ̂ 2<T1? T3> <T2, T3> - 1 .

Thus in the situation of Proposition 3.2, the tilt functions v=— <T, JV),
v = - <f, AΓ> are related by

(3.28)



166 R. Bartnik

Corollary 3.4. Suppose i^ , M satisfy the conditions of Theorem 3.1 with dM
nonempty and smooth, and suppose έ?Ci^ is a spacelίke surface satisfying the
conditions of Proposition 3.2 with respect to some subset 1^'ci^ such that Mc^x,
and d^ = dM. Then there is a constant C = C(C1, A, C2(^), ||̂ M l l » SUPM!M|) such
that v(p) ̂  C for all peM.

Proof. The assumptions on ̂  give a time function fin 1f' such that t\dM = 0 and
Theorem 3.1 (iii) estimates v. The conclusion (3.26) of Proposition 3.2 and (3.28)
give the estimate for v. D

4. Existence Theorems

Existence and regularity results for surfaces of prescribed mean curvature follow
from standard elliptic theory once a uniform gradient bound is established. The
estimates of the previous section provide this once an a priori estimate for the
height function u is given. In this section such an estimate follows from
compactness or barrier assumptions.

Theorem 4.1. Let (̂ , ds2) be a C°° cosmological spacetime with time function
satisfying the estimate (3.7) and coordinatized by

so ̂  is a compact n-manίfold without boundary.
Suppose that FeC^C^+Ό satisfies the structure conditions (3.1), (3.2) with

constant A, and there are C°° spacelike Cauchy surfaces <9%, 5^_ in V such that

?+cΓ(P-), (4.1)

F(p,N+)>Hy+(p) for all

for all

where N + , N _ are the future unit normals and Hy + , Hy _ are the mean curvatures of
y+, y_ respectively. Then there is a C°° spacelike Cauchy surface MC'f such that
HM(p) = F(p, JV(p)) for all

Proof.1 We will use the Leray-Schauder fixed point theory in the form of [LL,
Theorem 4.4.3]. The method is essentially that of [Ge] with some modifications.
We work in zero-shift coordinates, considering surfaces as defined by graphs over
5̂ , and by applying Proposition 3.2 twice we can assume that

Define the Banach space 93 = C1>A(50 and the subset

where λ9Kί9K2 are constants to be fixed later and | | l f λ is the Holder norm. We are
using the notation

v(w) = v(x, w) = (1 - α2 \Dw\2) ~ 1/2|(Xj W(JC)).

1 I would like to thank G. Galloway for pointing out an error in the previous version of this
proof
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For 0<ε^l define the operator 2ε:93nft->23 by letting u = Zεw be the
solution of

εv(w)-1w = v(w)-1F>v-J(w), (4.3)

where divw, Fw are evaluated with respect to graph(w) and

G(w); - v(w)2(α

Since weft this equation is uniformly elliptic with C°' A coefficients, so the Schauder
estimates [GT, Chap. 6] show that Zδ is well defined and compact, provided that
the operator

εv(w)~ 1φ

has trivial kernel. This follows from the Hopf maximum principle after noting that
the operator is of the form aliφij + blφi + cφ, with c<0.

From the calculations of Sect. 2 we verify that

# (w) = v(w) (divw(αDw) + divw(7)) ,

so if w is a fixed point of σϊε, O^σrg 1, then

# (w) = σFB + (1 - σ)v(w)^° + εw . (4.4)

This satisfies the mean curvature structure conditions, so from Theorem 3.1(i) and
standard Holder estimates [GT, Theorem 12.6], we have the estimates

for some 0<Λ/< 1. Setting K1 = C'+1, K2 = C +1 and λ = λf shows that welnt(ft)
unless w touches 5̂ + or y_. But from (4.2), if u = σZεu and max^w = £0? Λen

at the maximum point. This contradicts the maximum principle so welnt(SV), and
the Leray-Schauder theory shows that Zε has a fixed point uε with mean curvature
H(uε) = FUε + εuε. By the Schauder estimates again, the fixed point wεeft is in fact
smooth. Since all the above estimates are independent of ε, we can take a
subsequence {tιβι; ε^O} converging to weC°°(<$0, which defines the required
surface. D

To state a theorem about the Dirichlet problem some terminology is needed:

Definition. The domain of dependence of £f C ̂  is

(4.5)

where D +, D ~ are the future, past domains of dependence with respect to ̂  [HE, p.
201].
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Theorem 4.2.Let(i^, ds2) be a C°° spacetίme with time function feC00^) satisfying
(3.7), and suppose that ̂  is a C°° connected spacelike surface with d^ smooth and
nonempty, satisfying

y, (4.6)

is generated by null geodesic segments with
endpoints on d£f (cf. [HE], Proposition 6.5.3) , (4.7)

is compact. (4.8)

Suppose that F<ΞC™(^~+ ̂ ) satisfies the structure conditions, then there is a spacelike
surface, Mci^ satisfying the Dirichlet problem:

HM(p) = F(p,N(p)) for all peM

dM = dά?. ( ^)

Remark. Assumption (4.6) is designed to avoid possible pathological cases, (4.7)
roughly says that D(ί?) has no "holes" and (4.8) is needed to apply the gradient
estimate. Note that (4.8) does not follow from compactness of if, as the Brill
example mentioned in the introduction illustrates.

Proof. Compactness of D(<9*) shows that Proposition 3.2 can be applied with
/Ϋr = D(ff'\ so we may assume ίf = {pεD:t(p) = Q}. By virture of (4.7) and the
definition of D(^\ we can introduce zero-shift coordinates (x, t) in D(^) by
P«->CX, 0; x = φ-t(p)e&'9 where φs is the flow of -α2Pί = dt. Compactness of D(^)
gives a uniform height estimate and hence uniform gradient estimates for fixed
points of the operator Zε of Theorem 4.1. The Leray-Schauder theory applies,
since any spacelike surface M C D with dM = d<9* cannot touch dD except at d^
because of (4.7). Setting ε = 0 gives the result. D

Remark. The above proof can be generalized to include upper and lower barriers,
exactly as in Theorem 4.1. This gives solvability of the Dirichlet problem near
crushing singularities [ES]. Formally, we have

Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold, but with (4.8)

replaced by D(^Γ(^} is compact . (4.8)'

where ί?+ is a future barrier surface. That is, έ?+ is a smooth spacelike surface
satisfying the topological conditions

~
(4.10)

and has mean curvature H+ satisfying

F(p,N+(p»>H+(p) for all

where N+ is the future unit normal to ίf+.
Under these conditions there is a smooth spacelike surface

satisfying the Dirichlet problem

for all peM
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Proof. Condition (4.10) ensures that Proposition 3.2 can be applied to make y+ a
level set of the time function. The remainder of the proof follows Theorems 4.1 and
4.2 and is omitted. D

5. Asymptotically Flat Maximal Surfaces

In this section i^ is a 4-dimensional spacetime with radius function reC°°(^) and
time function ίeCGO(/^) satisfying the estimates (3.7).

Definition. V is asymptotically flat if there is a constant ^0 ̂  1 such that the
exterior region i^E = {pEi^, r(p)^R0} has coordinates (x\t) such that

r _ f y 3 ϊ 2 \ l / 2
r~(λlX ) ' (5.1)

ds2 = - («2 - β2) A 2 + 2βidxidt + gijdx'dx 1 = gλμdxλdxμ ,

and there are constants C3, C4 such that

rΣlg^-ηώ+r2 Σ \8κgλtl\^c3, (5.2)
λ,μ κ,λ,μ

(5.3)

with C3/K0^10"2, where ηλμ is the Minkowski metric and H° is the mean
curvature of the slices ίfv

The interior region of ̂  is ir

ϊ= {pei^, r(p)^R0}. ^satisfies the uniform
interior condition if there is constant C5 such that for all qei^ with r(q) = R0,

sup (t(p)-t(qj)£C5 if

^sup (ί(«)-ί(p))^C5 if

Remarks. (1) The uniform interior condition is slightly stronger than saying the
Brill phenomenon doesn't occur. In particular it implies that D(ίf) is compact for
compact ^C^o

(2) For simplicity we have assumed that i^ has only one end but this is not
necessary - the generalization to a finite number of ends is immediate. Combining
this with the barriers provided by crushing singularities shows that the results
apply, for example, to spacetimes close to the maximally-extended Schwarzschild
solution.

We start by constructing barrier surfaces at spacelike infinity (Proposition 5.1),
then prove the fundamental height estimate (Theorem 5.3) from which the
existence of maximal slices follows easily (Theorem 5.4).

The radial mean curvature equation in R3'1 for w = w(r),

^flatJ

can be solved with H= — Λr~3 in r^R, giving

/ / r \ 4 / / Λ \ ~ 2 \ ~ 1 / 2

w-(r)=- 1+5-2 - l + δ-'X-'Λlog - , (5.5)
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with δ=-w\l-w'2)~1/2(R). A calculation shows that w"^0 for r^>R when
A^2δR2 so we set 5 = 4/3, Λ = 8R2β, and then (1 -w/2)~1/2^5/3 for all r^R.
Now setting w(oo) = 0 gives

o o / Q \ - l / 2

w(r) = R j 1 + — s4(l+21ogsΓ2 ds, (5.6)
r / J R \ 16 /

and then w(R) = C6R, where C6^2 is an absolute constant.
Then in the metric (5.1) by (2.17) we have

(5.7)

By asymptotic flatness there are constants R l 9 C such that

and the last two terms of (5.7) can be estimated by

Since '̂ = (50.+0(r'1), F= Fflat + 0(r~2) by asymptotic flatness (5.2), we can
estimate

and thus

U ΪC C\since by (5.5),

w /(r) - 2/tr - 3(1 - w/2)3/2 log ( *- } .
\R/

Since Λ= f £2, we can find K^^o, C3? C4) such that H(w)g -R2r~3 for r^
^R!. We have shown

Proposition 5.1. Tftere are constants Rl=R1(R0, C3, C4), C6, C7 swc/z ί/iaί /or any
^R! the surface W Λ defined by (5.6) is spacelike for r^R and satisfies

(5.8)

(5.9)

(5.10)

(5.11)

The above construction generalizes to handle H° = 0(r~2~ε), ε>0. For
simplicity we now redefine R0 to the R1 given by the proposition - it is not difficult
to check that this only changes C5 by no more than 2(R1 — R0). Write w — wRo.
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Corollary 5.2. Suppose that M is a compact maximal surface with height function u

such that dMc^n^o- Then

either supM\u ^ C6R0 , or supM\u\^supMnifl\u\ . (5.12)

Proof. It is clear that the translated surfaces defined by w + τ, τelR also satisfy (5.8)-
(5.11). Since similar considerations hold for the functions -w + τ, τeIR, it will
suffice to prove the estimates for supw.

Consider Mr\i^E as a graph over ^'C^o0^? an<i define

τ0 - inf {τeIR : w(x) + τ ̂  u(x) for all

Since H(w + τ0) < HM the maximum principle shows that the contact point
ni^E must satisfy either r(x0) = jR0 or x0e<3M, and then τ0^0. The conclusion
(5.12) follows from (5.10). D

Notice that this says we may assume sup|w| is attained in ^nM.

Theorem 5.3. Let i^ be an asymptotically flat spacetime with uniform interior
satisfying (3.7) and (5.3-5), and suppose M is a compact maximal (H = 0) surface
with dMci^Er\^Q and \\HdM\\ ^Ci Then there is a constant C8 = C8(R0, C1? C3,
C4, C5) such that supM |w|^C8, where u is the height function of M.

Proof. It suffices to estimate supMw and for simplicity we scale ̂  so that .R0 = 1.
Constants depending on ̂ 0? C l9 C3, C4, C5 but not on supMw will be denoted by C.

Define the modified time function on i^E, t(p) = t(p) — w(r(p)), pe^, and use r to
indicate quantities defined by the ί-slicing.

Let ipeC^R+j satisfy φ(0) - 0 and y/(s), ιp(s) > 0 for s > 0, and let M - Mr\i^E

n [p : t(p) ^ 0} . Then M has boundary consisting of components where ύ = 0 and a
set B C Mn {p : r(p) = R0 — 1 }. Multiplying (2.7) by όίψ(u) and integrating by parts
over M gives

<,7Mu9σydJ^n-1= j a^(w)[Hv-divMf+<FMw,PMa>]di;M
M

+ [&2ip'(u)\yMu\2dvM,
M

where σ is the outer normal of dM, dvM is the volume form on M and J^n~1 is
Hausdorf measure on <3M. From (2.6), (2.18) and # — 0 this can be written as

[ &ψ(u)H0vdvM = ^ ψ(u) (v2 - 1) ̂  (u) + Ί(S) - &Al t + ̂  ff*\ dvM

l , (5.13)
B

where A°ίl = \U\~2A°(U, U) in the notation of Sect. 2. By asymptotic flatness (5.2)
and Proposition 5.1 there is a constant C9 = C9CR0, C3, C4) such that

lαlϊi-αίv+lJ-^-ίtdOI^Cgr"2 for r ^ l . (5.14)

Let m = supM w — C5 — C6 and suppose m > 1 , so supM u is attained in i^l9 and by
(5.4) w(p)^ 1 for all peM, r(p)= l The gradient estimate (3.14) applies and gives

<zC for all peM, r(p) = 1, where C = C(C1? C5) does not depend on m. The
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boundary term in (5.13) is estimated now using Lemma 3.3, Proposition 5.1 and

(5.15)
B

To estimate the left-hand side of (5.13) we first calculate the volume form dvM in
local coordinates (5.1). The induced metric on Mn^ is given by

where the height function u has been extended by dtu — 0. A short calculation
shows that

and the volume form on M can be written

with respect to the lifted coordinates (xf) on Mnf^. Considering M as a graph
over ΩC^OΠ/^E and using Proposition 5.1, we can estimate

[ άψ(u)H°vdvM^ -C$ψ(u)r~3d3x, (5.16)
M Ω

where C = C(R0, C3)>0. Inserting (5.14), (5.15), (5.16) into (5.13) now gives

lιXu>-3J3x + Cl^(^^ (5-17)
Ω M \IP J

and we now choose ιp appropriately.
Since M is spacelike, in f^nM we have \Du\^2, and (5.4) gives

u(p)^supMu — C5 — 2(r(p)— 1) for all peM,

which in terms of m and w can be written

r(p)^(m + 2-u(p)) for all peM. (5.18)

Now define ψ by

ί4C 9(m+l)~ 2logs,

and φ(0)-0, so φeC1(R+) and

5-

[C9,

From (5. 1 8) we have C9r "
 2 ̂  4C9(m + 2 - fi) " 2 in M and then C9r "

 2 ̂  — (u) in M,

so the second term in (5.17) is positive and may be discarded. The definition of m
shows that supMt^m-hC5, so supMφ(tQ^exp(C9(2 + C5)) = C, and (5.17)
becomes
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Now ιp(u)^ 1 for u^ 1, so (5.18) shows that

Integrating shows that logmr^C which gives the desired estimate. D

The main existence theorem follows from this estimate and the techniques of
Sect. 4.

Theorem 5.4. Let i^ be a spacetime satisfying the asymptotic flatness conditions
(5.2), (5.3) and uniform interior condition (5.4) and suppose there are coordinates
(X f) in i^ which cover the region

if

if r(p)^R2}9 (5.19)

where C8 is the height estimate of Theorem 5.3, R2 = C8/C6 and C6, .R0 are given by
Proposition 5.1. Then there is an entire maximal surface M satisfying

HM = ° (520)
Mogr for ^' J

If the additional decay

r3Σ\dκdigμv\^C3 (5.20)'

holds, then

r\Du\ + r2\D2u\^C, (5.21)

and the mass of M [SY2] equals the mass of £f0.

Remarks. (1) The coordinate condition (5.19) can be weakened to allow for
crushing singularities in ̂ .

(2) This result does not need the Einstein equations, but to assert uniqueness of
the resulting surface the timelike convergence condition is needed [BF].

Proof. The uniform interior condition (5.4) and the global coordinates (5.19) ensure
that the Dirichlet problem

u = 0 n BR

(p) = 0 for r(p) = R

is solvable when R^R0, with solution UR satisfying

for C independent of R. The argument outlined in Theorem 4.2 shows that UR is
smooth, with derivatives estimated independent of R so there is a subsequence uRι,
RΪ^CO converging uniformly to MeC0^^) with H(u) = 0. The decay estimate
follows from the comparison principle applied to UR, R^R2 and the surfaces w^2.
The additional decay (5.21) follows from a standard scaling argument (e.g. [SY2,
Proposition 3]); for completeness we describe this proof, using the Schauder
interior estimates of [GT, Chap. 6].
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Let x0

e^o with r(x0) = 2R^> R0, and set Ω = {xe^0 : |x - x0| ̂  jR}. The uniform
estimates for |M|, v applied to Eq. (2.17) with [GT, Theorem 12.1] give the estimate
lDu~]ε;Ω^ Cfor some 0<ε< 1. We write Eq. (2.17) as <2%. + Z>^= -H°, where α'7,
ί?1 depend on α, /J1, #/7 , Du and α1-7 is uniformly elliptic, again by virtue of the uniform
estimates for |w|, v. Let xeΩ, and set Bfc^{ye5^0 : |x — y\^k}, /c=l ,2 . Then one
checks easily that

The Schauder estimates imply

u\2,ε ,Bί ^ C(\u\0;B2 + \H\ε;BJ ^CR'1 log*

for any xeΏ, and hence

ΛU+ W,U^ c(i + M'U) ̂  c .
Applying [GT, Theorem 6.2] now gives

where we use |P/f°| = 0(r~3). This gives the estimate (5.21). Note that if \VH°\
= 0(r~4), then (5.21) can be strengthened to

r\Du\ + r2\D2u\^Cr-l\ogr. D (5.21)'
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