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Abstract. We state and prove a new and previously unsuspected tree graph
inequality, which is significantly stronger than the one commonly applied to
cluster expansions. The older inequality controls the counting problem in the
convergence proof of such an expansion, but the new inequality does more: it
also exhibits extra 1/n! factors that can be applied to the cancellation of
number divergences. The proof of this new combinatoric estimate is completely
elementary.

1. Introduction

For the past two years a new method of tree graph estimation has been applied to
cluster expansions in statistical mechanics and quantum field theory [1-4]. The
technique is based on a very powerful and flexible combinatoric identity that first
appeared in [ 1]. However, the method has been slow to attract attention —in part,
because the combinatoric identity has to be supplemented with additional
topological ordering concepts if one wishes to apply it to the problem of cancelling
the number divergence appearing in a cluster expansion. The goal of this paper is
to prove a new and different combinatoric estimate whose application is equally
powerful but does not require these auxiliary notions.
For convenience we repeat the basic definitions given in [1].

Definition 1.1. Let (S,p;) be a pointed set with cardinality N. An ordered
connectivity graph (o.c.g.) on (S, p,) is a mapping G from {2, ..., N} into S x S such
that if G(i)=(g,(i), g,(i)), then

(@) g2()+9,() for i+j,

(b) 9:() e{pi}ofg.(Dlj<i}.
Definition 1.2. A tree graph of order N is a mapping # from {2,...,N} into
{1,...,N—1} such that (i) <i.
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Foreach o.c.g. G on (S, p;) we can associate a canonical tree graph 7 of order
N: we define it by

16 =95 '(9:() (I.1)
with the convention that g,(1)=p;,.

Definition 1.3. An unordered connectivity graph (u.c.g.) on (S,p,) is the range of
some o.c.g. on (S, py).

For a given o.c.g. G on (S, p;) we denote the u.c.g. arising from it by Tg.
Now consider the following monomials in sy, ..., Sy_;:

f('? S)_ 1—.[ (S)](l) 1 2) (12’)

The combinatoric estimate that has been applied in the past to the estimation of
cluster expansions (see, e.g., [5]) is well known:

1
P T <I dsi> fnss)se”, (13)
n i=

where |5| denotes the order of . The combinatoric identity introduced in [ 1] turns
out to be significantly more powerful:

N—-1/1

> 11 (J dSi) fols)=1, (1.4)
G:Tg=T i=1 \0

where f;(s)= f(ng;s). The usefulness of this identity was further advertized in [6].

We should mention in passing that one can combine (1.4) with Cayley’s theorem

[7] to replace (1.3) with an identity:

> T 1(5 ds)f(n 9= (15)

Inl=N i=

The proof is due to R. W. Robinson and is given in [1].
Our aim is to prove the following result:

Theorem 1.4. For a given tree graph n of order N, let d,(i) denote the cardinality of
n~1({i}). Then

"[ZN< I1 d,,(l)'> (f ds ) f;s)=4". (1.6)

Inequality (1.6) is obviously much stronger than (1.3). With regard to
applications, there are two important remarks to be made. First the application of
(1.6) to cluster expansions will yield the same new results as the application of (1.4)
already has in [1-4]. Second, (1.6) can be applied in the same simple manner that
(1.3) has always been applied — with the counting problem automatically solved by
a supremum over tree graphs. Compare this to the more subtle counting scheme
demanded by the application of (1.4) and the partial re-introduction of order to the
unordered connectivity graphs. The point is that (1.6) enables us to dispense with the
concepts of representation two and representation three [1-4].
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When informed of the above result, Tom Kennedy immediately noticed that a
c” bound on the sum in (1.6) follows from the result (9) in [6]. His argument is
delightfully brief, and we include it as an appendix. The catch to this, of course, is
that the result (9) in [6] is not so easy to prove: the argument combines (1.4) above
with the notions of representations two and three. (The outline given in [6] is
extremely terse and refers heavily to [1] without mentioning the notion of
representation three at all. A more expository description of the argument will
appear in [8].) Still, it is interesting that a bound like (1.6) follows from (1.4). We
should also mention that Kennedy (private communication) has an alternative
proof of (1.4)=((9) in [6]); it is more combinatoric in nature and does not use
representation three.

We prove our theorem from scratch —i.e., we do not assume (1.4) at all. Indeed,
the notion of tree graph is the only notion used; o.c.g.’s and u.c.g.’s are not needed.
The key to our theorem is the following identity:

Lemma 1.5. For a given tree graph n of order N, let n(y) denote the number of
permutations P of {2,...,N} for which o P is still a tree graph. Then

(Id8>f(17 s)= ( prons

This identity is stated in [1] without proof and without application. (At that
time it was just a combinatoric curiosity that had been incidentally discovered.)
We will give an elementary proof in Sect. 2.

N-1

(1.7)

l

N-1

Proof of Theorem 1.4. Clearly, [] d,(i)!isthe number of permutations P forwhich
i=1
neo P=n. Hence

= X H dy(D!, (1.8)

wedy, i=

where A, is the set of all tree graphs y for which p=# o P for some permutation P.
Bur for such v it is obvious that d,(i) =d,(i), so (1.8) becomes

N—-1
n(n) =14, i1=_[1 d,(i)!. (1.9
It follows from Lemma 1.5 that
> ( 7 d (o') (f d5>f(n 9= ¥ (110)
=N Wi=n 1A,

Let 2 be the set of sets 4,; since 2 partitions the set of tree graphs, we have
1

Ini= Nl7fl i geulAl

=31

Ae?

=2, (1.11)
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so we need only show that |2 < 4". Now we have already noted that d(i)=d,(i) for
y € A,. The converse is also true: if d,(i) = d,(i), then we can choose a permutation
P that maps each v ~!({i}) one-to-one and onto 5~ *({i}), in which case y =#o P.
Thus, 4, is uniquely determined by d,, and so we can define a mapping I" from

N-1
{(Ml, ... My_IM; is a nonnegative integer and Y MizN—l} (1.12)
i=1

into ZU{¢} by letting I'(M,, ..., My _,) be that 4, for which d,(i) = M;, with the
convention that I'(M, ..., My _,)=¢ if there is no such tree graph #. Since the
mapping is clearly onto, it follows that |#| is bounded by the cardinality of (1.12).
On the other hand, it is a standard combinatoric fact that the cardinality of (1.12) is
bounded by 4. [J

2. Proof of the Lemma

Clearly, (1.2) can be written as

fls)=T1 5, 1)
where N(k) is the cardinality of
{iln(sk=<i-2}. (2.2)
Hence
N-1/1 N-2 1
i1=—[1 (({ dSi) flnss)= kljl W’ (2.3)
so it suffices to show that
n(n)= :Ij (N(k)+1). (2.4)
For convenience we define F(k) as the cardinality of
{iln(=k}. (2.5)
Since #(i) <i, we have the inclusion
{il2sisk+1}C{iln( =k}, (2.6)
and therefore the equality of (2.5) to the disjoint union
{iRgigk+1}uliln@®zk<i—1}. 2.7
But the latter set is just (2.2), so
F(ky=k+N(k). (2.8)

Let ko= sup{n(i)|2<i=< N}: clearly,
d(ko)=N—1—F(ko—1). 2.9)
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We are interested in all permutations P for which #o P is still a tree graph (i.e.,
n(P(i))<i), so we are free to map the elements of #~'({k,}) one-to-one into
{ilko<iZ N}. Thus, the (i) =k, classification of the permutations is an (N —kg)-
choose-d,(k,) situation, where permutations of the subset are included, so we have
split the set of allowed permutations into

d.(ko)! (N—k0> (N —ko)!

dy(ko)) ~ (Flkg—1)—ko+1)! (2.10)

classes [where (2.9) has been applied].
Now consider a class (i.e., fix the permutation at the (i) =k, level) and look at
the possibilities for the (i) =k, —1 level: clearly,

d,(ko—1)=F(ko—1)— F(ko—2). @2.11)

We are free to map 1~ !({ko,— 1}) one-to-one into the subset of {ilk,—1<i<N}
complementing the subset already determined by the choice made at the #(i) =k,
level. Since the latter subset has d, (k) elements, it follows from (2.9) that the former
subset has

N—ko+1—d,(ko)=F(kg—1)—ky+2 (2.12)
elements, so we have split our class of permutations into
Flko—1)—ko+2\ (Flko—1)—ky+2)!
d,(ko—1)! =
d,(ko—1) (F(ko—2)—ky+2)!
sub-classes (where (2.11) has been applied).
Continuing this process, we see that at the 5(i)=k,—k level (where the

permutation is fixed at all higher levels) we are free to map ™~ *({k, —k}) one-to-
one into a pre-determined subset of {i|k,—k <i< N} that has cardinality

(2.13)

k—1
N—ko+k— 3 d(ko—7). (2.14)
£=0
But the summation is just the cardinality of {i|#(i) >k, —k}, which is obviously
N —1—F(ky,—k). Hence
(2.14)=F(ky—k)—ko+k+1, (2.15)
so we have split our sub*~!-class into

F(ko—k)—ko+k+1>

k=) 210

d,(ko—k)! <

sub*-classes. On the other hand,
d,(ko—k)=F(ko—k)—F(ko—k—1), (2.17)
S0 (2.16) can be written as

(F(ko—k)—ko+k+1)!
(F(ko—k—1D)—ko+k+1)!"

(2.18)
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In summary, the total number of permutations P for which o P is still a tree
graph is given by

(N—kg)! ko=t (F(ko—k)—ko+k+1)!

= 2.19
)= Flha—D—ko £ 11 bk Flho—k—D—kg k1> 1
which obviously telescopes into
ko—1
n(n)=(N —kg)! k]—[ (Flkg—k)—ko+k+1). (2.20)
=1

Applying (2.8), we see that

ko—
7ln)=(N—ko)! T (N(ko—k)+1)
(221)
=(N—kg)! kl:I1 (N(k)+1).

Since k, is the maximum value of y, we know that for k=k, F(k)=N—1, and
therefore N—k=N(k)+ 1. Thus

N-2

(N—ko)!= kl__[k (N(k)+1), (2.22)

and so we finally have (2.4). O

3. Appendix
Kennedy’s observation that the result (9) in [6] implies

= @GO (J‘ dsi) flnis)c (1)

is worth presenting because it is very brief and relates this paper to [6]. The essence
of (9) in [6] is the inequality

2 2 I1CE@, Xt)I1 (d,,(l)')ﬂ<f dS) f(n;s)

X Inl=N i

<4y (sup 3 C(x, y))N"l, (3.2)

yeAd xeA

where C is a positive function on 4 X 4 and X ranges over one-to-one mappings of
{1,..., N} into 4 with X(1) fixed. Now pick |4|= N and C(x, y)=1: the inequality
becomes

;MIF:NIJ(d,,(i)!)l:I@ d&) f(n;)<4"NVTL (33)

Since there are (N —1)! mappings X in this case and the summand no longer
depends on X, we have

NAJN—-1

= GO fa) sz B s 34
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