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Abstract. We construct quantum stochastic processes whose multi-time
correlation functions, with suitable time ordering, can be obtained from a
quantum dynamical semigroup. We prove that such a process defines a
stationary Markov dilation of the associated semigroup if and only if (up to
technicalities) the semigroup satisfies the quantum detailed balance condition
with respect to its stationary state.

1. Introduction

Quantum dynamical semigroups have been widely used in the last ten years to
describe irreversible time evolutions of open systems. The connection with the
underlying Hamiltonian dynamics of isolated systems has been investigated in
both directions. For a class of models of open systems, it has been proved that the
reduced evolution converges to a dynamical semigroup in the weak or the singular
coupling limit [1,2]. Conversely, it has been shown that any dynamical semigroup
Φt on a C*-algebra S3 admits a unitary dilation, consisting of an embedding Ό of J*
into another C*-algebra «&/, a group oct of ^-automorphisms of J / and a norm one
projection Eo of si onto Ό (β) such that Φt=JQlEoθίjo for all t in R + [3-5];
however, the unitary dilation is far from unique.

More recently, it was recognized that a tighter connection between irreversible
evolution and underlying Hamiltonian dynamics could be obtained by the
consideration of multi-time correlation functions [6]. This leads to the idea of a
quantum stochastic process [7-9], which should be determined up to equivalence
by its multi-time correlations, much in the same way as a stochastic process in the
sense of Doob is determined by its finite-dimensional joint distributions. Then it
becomes possible to require that the unitary dilation defines a Markov process.
The convergence of multi-time correlations in the weak or the singular coupling
limit was proved by Dϋmcke [10,11] for a class of models; the converse problem
of Markov dilations has been investigated by Kϋmmerer and Schroder [12-14,
11]. Related works include the generalized K-flows of Emch et al. [15, 16] and the
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construction of quantum stochastic processes via the solution of noncommutative
stochastic differential equations, given by Hudson and Parthasarathy [17, 11], see
also von Waldenfels [18,11].

In the present paper, we associate a quantum stochastic process (in the sense of
Accardi et al. [8]) with a quantum dynamical semigroup of Lindblad type [19].
The construction is made via Dϋmcke's results on the convergence of multi-time
correlations in the singular coupling limit [10] and the reconstruction theorem of
[8]. Next, we prove that the process is stationary and Markov if and only if (up to
minor technicalities) the dynamical semigroup satisfies the quantum detailed
balance condition [20, 21] with respect to its stationary state.

Section 2 of the paper contains a collection of the definitions we need. We give
the construction of the process in Sect. 3, and we prove the connection with
quantum detailed balance in Sect. 4.

Before entering the technical details, we wish to give a rough idea of what is
going on. A quantum stochastic process (in the sense of [8]) over a C*- or W*-
algebra 0β consists of a family {jt: t e ΊR] of identity preserving embeddings of &
into another C*- or W*-algebra J/ , together with a state μ on sέ. It defines a
unitary dilation of a dynamical semigroup Φt on & if, in addition, there exists a
group {oct: t eIR} of ^-automorphisms of si such thatj^ — αj 0 , and the state μ is
obtained as μ = ρ °jά ιEQ, ρ being a state on 36 ̂  and Eo being a norm one projection
ontoj0(^) such that Φt =j$ 1Eoaΐjo. Conversely, a unitary dilation of Φt and a state
ρ o n f define a quantum stochastic process.

A process can be reconstructed uniquely up to equivalence from its correlation
kernels [8], defined as

w^...,^,...,^;^,...,^/^^ (1.1)

Au ...,An, Bu ..., Bne3$, t u ...5ίBe]R, n e N . However, a dynamical semigroup Φt

and a state ρ on f can only determine the time-ordered correlation kernels

(1.2)

The time-ordered kernels (1.2) do not suffice to determine all the correlation
kernels (1.1), unless the commutation relations oϊs/ are known in advance, as is the
case for classical systems, or for quasi-free Bose or Fermi systems [16,22,23, 8]. In
the general situation, a dynamical semigroup may have inequivalent unitary
dilations satisfying (1.2), corresponding, for instance, to an interaction of the
system of interest with a reservoir of boson or of fermion type.

What is worse, Eq. (1.2) does not provide sufficient information for the
construction of a quantum stochastic process associated with a dynamical
semigroup. Hence we must resort to a different method of construction; here we
employ the results of Dumcke [10] to define the correlation kernels of the process
as

(1.3)
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where {ocε

t:te R} is the time evolution of a composite system, becoming more and
more singular as ε->0. The process constructed in this way satisfies (1.2). We do not
know, in general, whether the limiting process (J/ , {jt: t e R}, μ) is equipped with a
group αr of ^-automorphisms of si such that jt = ajQ. However, this is certainly the
case if the process is stationary: then also μ°(xt = μ and ρoφt = ρ. Moreover, if we
let Φt

+ =jo 1Eoa^tjo, t e 1R+, we have

ρ(Φt

+(A)B) = ρ(AΦt(B)) for all A, B'mM.t in R + , (1.4)

and it follows from the construction (cf. [24]) that the infinitesimal generators L
and L+ of Φt and Φt

+ respectively satisfy

L(B)-U(B) = 2i\_H,B~] (H = H*) for all B in Λ. (1.5)

Equations (1.4) and (1.5) together define the quantum detailed balance condition
[20, 21]. Conversely, for a quantum dynamical semigroup of Lindblad type
satisfying the detailed balance condition, we prove that the associated process is
stationary. The Markov property, defined in terms of conditional expectations,
follows with the aid of Takesaki's theorem [25].

As pointed out by Kummerer [12], Eq. (1.4) is a necessary condition for the
existence of a stationary Markov dilation. The additional condition (1.5) seems to
be related to the method of construction; however, we are not aware of any
example of a stationary Markov dilation for a quantum dynamical semigroup
which does not satisfy detailed balance.

2. Definitions

Throughout the following, J* will denote a PF*-algebra.
A dynamical semigroup {Φt: t e R + } on J* is a weakly * continuous semigroup

of completely positive identity preserving normal linear maps of S6 into itself, Φo

being the identity map.
A dynamical semigroup Φt on J* will be said to be of finite Lindblad type if it is

norm continuous, with infinitesimal generator L given by

L(B) = ilH9B]+ Σ VJ*BVJ-KVJ*VJ,B]+ (2.1)

for all B in 08, where H = H*e&, VjS^J=l9...,JV (cf. [19]).
A norm continuous dynamical semigroup Φt = expLί on & is said to satisfy the

detailed balance condition [20, 21] with respect to a faithful normal state ρ on & if
there exists another norm continuous dynamical semigroup Φf

+ =expL+£ on @&
such that

ρ(L+(A)B) = ρ(AL(B)) for all A, B in St, (2.2)

and

L(B)-L+(B) = 2i[H,B\H = H*e J*, for all B in @. (2.3)

A stochastic process [8, 9] over J* is a triple (J/ , {jt: t e R}, μ), where s$ is a C*-
algebrajf is a ^-representation of @S into J / , withj f(i^) = 1^, for each ί in R, stf is
generated by jt{β): ί e R, and μ is a state on si.
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Two stochastic processes over g& are said to be equivalent if they have the same
correlation kernels, defined by

wtl,...,tSAu...,An;Bu...,BJ = μ(jt{Aΐ)^ (2.4)

for all Al9 ...,An, Bu . . . ,£„ in J>, t u ..., tn in R, and n in N . By going to the GNS
representation and taking the double commutant, it is always possible (up to
equivalence) to assume that si is a W*-algebra and μ is a normal state; we shall do
so in the following. In the special case when j t is faithful and normal for all t, we
shall say that (si 9 {jt:teR},μ) is a W*-stochastic process.

A stochastic process is said to be stationary if, for all Al9 ...,An, Bί9 ...,Bn in
&,tu . . . , ί π , t in R a n d n in N one has

w ί l , . . . , ί n ( ^ i , . . . , ^ ; β i , . . . , ^ ) = v v ί l + ί 5 . i > j ί n + ί ( y l 1 , . . . ? v 4 w ; β 1 ? . . . , β n ) , (2.5)

or, equivalently, if there exists a group {at: t e R } of ^-automorphisms of si such
that j t = α j 0 , μ = μoat{or dill t in R.

Given a stochastic process (si, {jt: ί e R} , μ), for any subset / of R, let siι

denote the W*-subalgebra of si generated by jt( 3S) :tel. Then the process is said
to be Markov if, for each t in R, there exists a conditional expectation £ ( _ ̂  t] of J /
onto ^ ( - o o j f ], which is compatible with μ in the sense that

( ( ] (2.6)

and satisfies

£ ( - o o . ί M ί f + oo)) = ̂ { t } . (2.7)

A stochastic dilation of a dynamical semigroup Φt on J* is a stochastic process
(eδ/, {/ί ί e R } , μ ) over ^ such that j 0 is invertible, and there exists a conditional
expectation E{0} of J / onto J / { 0 } , compatible with μ, satisfying

jo" %oMAX)' - MWkW UBi))
= ΦtMΐΦt2-tXA*...Φtn_tn_1(AΪBn)...B2)B1), (2.8)

for all Au ...,An9 Bu ..., Bn in ̂ , 0 ^ tx ^ ί 2 ^ ... ̂ ί w in R, and nin N. A stationary
Markov dilation [12-14] of a dynamical semigroup Φt on J* is a stationary Markov
W*-stochastic process (si, {jt:te R} , μ) over £8 such that there exists a normal
conditional expectation E{0} of j / onto stf{0], compatible with μ, satisfying

Φt=JolE{o}h{=hlE{-π,ojt) for all t in R + . (2.9)

A stationary Markov dilation is both a stochastic dilation [12, 9] and a unitary
dilation in the sense of the Introduction.

3. Stochastic Dilations

Let Φt = expLί be a dynamical semigroup of finite Lindblad type on a W* -algebra
&, describing the irreversible time evolution of a quantum system. We have

Vj9B ]+ (3.1)
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for all B in J>, where H = H*e&, VjG08, j= 1, ...,iV. We construct a stochastic
dilation of Φt by coupling the system to a suitable reservoir and taking the singular
coupling limit, as in [2, 10].

Let #" be the antisymmetric Fock space over the direct sum of N copies of
L2(R). Denote by Ω the vacuum vector, and by α / / ) , «//)* the annihilation and
creation operators for a fermion with wave-function / in t h e / h copy of L2(R). Let
{αf: t e R} be the weakly * continuous group of normal ^-automorphisms of
3 \ determined by

(3-2)

for all BmSt.f in L 2(R),; in {1,..., N} and t in R, where H = H* is the same as in
(3.1), and where ft(s) = f(s-t) for all / in L2(R) and all s, t in R.

Let {/ε: ε > 0} be a family of real-valued test functions in L2(R), such that

hε(t-s) = (fεjε); s,ίeR} ε>0, (3.3)

defines a positive symmetric function hε in L^R), with || /iε || i independent of ε, and
such that

\im$ g(s)h%t-s)ds = g(t) (3.4)
ε->0IR

for all continuous and bounded functions g on R and all t in R (for example, let
fε(ω) = (2π)" 1 / 2 exp [ - ε2ω2/8], leading toJz£(ί) - ε " γπ ~1/2 exp [ - ί2/ε2]).

Let Vε be the self-adjoint element of s$ defined by

Vε= Σ V;®aj(fε) + VjΘajifψ (3.5)
7 = 1

The integral equation

0 ] $ (3.6)

Aejtf, may be solved by iteration (Dyson series), and defines a weakly*
continuous group {aε:te R} of normal ^-automorphisms of sit. For each t in R,
define a faithful normal ^representation j ε of J* into s3 by

7?(B) = α?(B® 1) = t/?(B® 1) I/?* (3.7)

for all β in ^ and ί in R, where t/f e j / i s the solution of the differential equation

j t U't = iU't [H + Σ VftoafJ?) + Vj®aJJty~j, U% = 1. (3.8)

Finally, denote by Fo the map of si onto Si defined by

F0(B®A) = (Ω,AΩ)B, Be@,9 Ae@(&). (3.9)

Theorem 3.1 (Dύmcke [10,11]). For allB1,...,Bnin@, 11?..., tJnΈL and ninfi.the
expressions

Fo(JUBi)-MBn)) (3.10)
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converge in norm in the limit as ε—>0, uniformly for Bx, . . .,#„ in a compact ball,
tu ...,tnin a compact interval, and n in a finite set. The limit may be computed by
means of a term-by-term evaluation of a uniformly convergent Dyson series.
Moreover, for "pyramidal" time ordering, O^t1^...^tn, we have

lim FotiAAt).. .JΐMmM)- MBi))
ε~>0

..B2)Bi) (3.11)

for all A l 9 . . . 9 A n 9 Bl9...,Bnίn &.

Proof See [10] for the case of pyramidal time ordering and the Appendix for the
general case. D

Let j / δ be the VF*-subalgebra of s3 generated hyft(β): t e ]R. Let ρ be a normal
state on Si such that the GNS representation πρ is faithful, and let με be the
restriction of ρ o Fo to j / ε . Then we have

Theorem 3.2. The correlation kernels w^ ί n of the quantum stochastic process
(s$E, {jt'-te ΊR], με) converge in the limit as ε-+Oto the correlation kernels wtl,...,tn°f
a quantum stochastic process (si,{jt:teΊR],μ), which is a stochastic dilation of
Φt = cxpLt.

Proof. For all Au ...,An, B1, ...,Bnin J*, t u ...,tnin R a n d n i n N , the expression

converges in the limit as ε->0, by Theorem 3.1; denote its limit by
w ί ! , . . . , ί n ( ^ i ? . . . , 4 ; ί u •',&„). This defines a family {wίl? . j ί n : ί1? . . . , ί B e R , n e N }
of functions

n times n times

which inherit from {wflf..<>in:il5 . . . , ί n elR,/ί6N} the following properties:
CK1 (projectivity): If Ak = Bk = i, k= 1, ...,n, then

where the marking "above a symbol indicates that it must be omitted;
CK2 (positivity): w?1 ί n is a positive definite kernel [4] on ( l x . . . x l )
x(J*x ... x J>);

CK3 (normalization): wt(ί, t) = 1
CK4 (sesquilinearity): wίl>#<#>ίn is linear in the last n arguments and conjugate-
linear in the first n arguments;
CK5 (^-condition): the map An,Bn\->wtUm^ttn(Al9 ...9An;Bl9 ...,#„) of J* x ^ into
(C factors through the map An, Bn\-*A*Bn of J x J into SS\
CK6 (multiplicativity): if ίk = ίk_1? fe = 2, ...,n, we have

Wtlt...,tSAl9...9An;Bl9...9Bn)
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These are the hypotheses of the reconstruction theorem of [8], hence there exists a
stochastic process (si, {jt: ίeR},μ), unique up to equivalence, such that (2.4)
holds.

We regard si as a von Neumann algebra of operators on a Hubert space Jf,
with a cyclic vector ξ such that (ξ,Aξ) = μ(A) for all A in si. Denote by Po the
orthogonal projection of #? onto J f 0=j0(^)ξ, and let πo(B): Beέ% denote the
restriction of jo(B) to 2tf0. Since μ(jo(B)) = ρ(#) for all 5 in ^ , the triple (jfθ9 π 0 , £) is
a realization of the GNS representation associated with the normal state ρ; then π 0

is normal, and faithful by assumption. Hence also j 0 is invertible.
Now we prove that PosiPo Q πo(J*). Since P o ( )P0 is a normal linear map and

πo(J*) is a von Neumann algebra, it suffices to prove that P0AP0 e πo(&) for A of
the form

since the linear span of such ^4's is weakly* dense in si. For all φ=jo(Ao)ξ9

Ψ=Jo(Bo)ζ' Ao, Boe^, we have

(φ9PoAPoψ)=limwε

Ottίιm.mttJίAθ9Al9...9An;Bθ9Bί9...9BJ

= Q(A% lim F0[?tl(Aΐ).. .fiMΪMBJ.. ftl(l

X , (3.12)

where we have used 'o^) = 5 ® H for all ε. Since (3.12) holds for φ, ψ in a dense set in
Jf 0, this proves Pos/PoQπo(&).

Then we define a map £ { 0 | on si by

^ o i C ^ - J o π o H P o ^ ^ o ) : ^ ^ . (3.13)

E{0] is a norm one projection of si onto ^/ { 0 }, hence a conditional expectation, by
Tomiyama's theorem (see e.g. Theorem 5.3 of [4]). It follows from (3.12), in the
particular case φ = ψ = ξ, that

μ(A) = ρ°jo 1 {̂0}(-̂ ) for all A in ,oi,

so that £ { 0 } is compatible with μ. For all Aί9..., An, Bu ..., Bn in ^ , 0 ^ tγ ^ ... ^ ίΠ

in 1R and rc in N, we have, from (3.12) and (3.11),

This concludes the proof that (si, {jt:te R } , μ) is a stochastic dilation of Φv

Theorem 3.3. The process (si,{jt:telR},μ) satisfies the following "Markov
property at ί = 0": for all A_ in s/{^ODθ] and A+ in si[Of + ao), one has

where E^ is the conditional expectation of si onto si^ defined by (3.13).
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Proof. It suffices to show that, for all s l 9 . . . , s m in R ~ , ί1? . . . , ί w in R + , Al9 ...9Am,

Bu . . . , £ „ in J*, and m, rc in N , one has

lim F o K ^ O . J L C / O & ί f i i ) . 7 l ( 5 n ) ]

= flimf o^ίAO. . / ^ ( 0 [ / i 1 ) 7 i i , ( I 1

By Theorem 3.1, we may evaluate the limit on the Dyson expansion (see
Appendix). Taking into account Eq. (A. 10), it suffices to prove that

lim ί J (f;,fΌ*)dudv = 0 for all s < 0 < ί . (3.15)

Indeed, let v — u = \υ\ + \u\ = x, v + u = y: then \y\^x and the double integral in (3.15)
becomes

1 | s |+f x \s\+t \ \s\+t

- j f h%x)dydx= J hε(x)xdx=- J hε(x)\x\dx
2* x = 0 y=—x 0 ^ — js| — ί

by the assumed symmetry of hε, this vanishes in the limit as ε-»0, by (3.4), thus
proving (3.15). D

Remarks, (i) The construction works exactly in the same way also if the
antisymmetric Fock space is replaced by the symmetric Fock space (boson
reservoir); this leads to an inequίvalent stochastic dilation of Φt.

(ii) The boson construction should give the same process as the one obtained
by Hudson and Parthasarathy [17,11] by solving a noncommutative stochastic
differential equation. It seems conceivable that our fermion construction could
also be obtained with the use of the fermion stochastic integral of Streater et al.
[26,11].

(iii) An alternative approximation method ("multiplicative Itδ integral") has
been used by von Waldenfels [18, 11] in the construction of a quantum stochastic
process modelling atomic radiation. When specialized to that model, our
"Stratonovich-type" approximation method yields the same result as his "Itδ-
type" method, by the assumed symmetry of the function h%t).

(iv) To our knowledge, the first results of this kind were obtained by Davies in
[27]; there, however, only the "outgoing states" of the "system plus reservoir" were
constructed.

4. Stationarity, Detailed Balance, and Markov Property

In the present section we assume that the dynamical semigroup Φt has a faithful
normal stationary state, and investigate necessary and sufficient conditions for the
stationarity of its stochastic dilation, as constructed in the previous section.

Theorem 4.1. Let Φt = expLί be a dynamical semigroup of finite Lindblad type on &,
with a faithful normal stationary state ρ. If the stochastic dilation ( J / , {jt:
μ = ρ °JQ 1 O E{0}) is a stationary process, then Φt satisfies the detailed balance
condition with respect to ρ.
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Proof. We have Φt =JQ 1 O E{0} % t e R + . Let also Φt

+ be the map on Sί defined by

Φt

+=Jo^E{0]oj^ ί e I R + . (4.1)

By the assumed stationarity of the process, we have

ρ(AΦt(B)) = μ(Jo(A)jt(B)) = μ(jo(A)(xt(jo(B)))

= μ(a_t(j0(A))j0(B)) = μ(j_t(A)j0(B)) = ρ(ΦΪ(A)B) (4.2)

for all ,4, 5 in 8ft. The same construction as in Theorem 3.1 proves that
Φt

+ =expL+t, where

L+(B)=-ilH,B^+ Σ VfBVj-\[yfVj,B-]+9 (4.3)

for all B in J* (cf. [24, Sect. 8]). Then L and L+ satisfy (2.2) and (2.3), and detailed
balance holds. D

Theorem 4.1 has a partial converse. Let ρ be a faithful normal state on a W*-
algebra J*, and denote by {σt:te R} the associated modular automorphism group.
If & is the algebra of all nxn complex matrices for some integer n, then any
dynamical semigroup on & is of finite Lindblad type, and it satisfies the detailed
balance condition if and only if [20, 21] its infinitesimal generator L may be
expressed as

Σ W*BVk-KVk*Vk,B]+)

B ]+) (4.4)

for all Bin Si, where H = H*e0g, Vke0β, fc=l,...,JV, and where

σt{H) = H for all t in R , (4.5)

iβ ω f c e R , for all t in R , fc=l,...,iV. (4.6)

For an arbitrary W*-algebra ^ , we assume (4.4)-(4.6) as the form of L. Then we
have:

Theorem 4.2. Let Φ ^ e x p L ί be a dynamical semigroup on SI, with L of the form
(4.4), satisfying conditions (4.5) and (4.6). Then

(i) Φt satisfies the detailed balance condition with respect to ρ
(ii) the stochastic dilation (sf, {jt: teΈ.},μ = ρoj~x o£ { 0 } ) is a stationary

process;
(iii) μ is a faithful state on J / .

Proof (i) Using the KMS condition in the form ρ(AB)^ρ(σi(B)A) for analytic
elements B of J>, A in J1, we find that

ρ[A[iH,B ])=-Q([iH9A-]B)9

[by (4.5)];
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and

[by (4.6)];
for all A, B in JL Then (2.2) holds, with L+ = L - 2 ί [ H , ].

(ii) It suffices to prove that the approximating processes (s$ε, {jε: t e R}, με) are
stationary for all ε. We need the antisymmetric Fock space over the direct sum of
2N copies of L2(R), which we label by indices k = ± 1,...,+ N. From (3.5), we have

t)*], (4.7)
fc=l

where we have defined the Bogoliubov transformation

6fc(/) = (l+e-^ f c)-1/2[fl f c(/) + e-^ 2fl_ f c(7)] (4.8)

for fe = 1,..., N, f in L2(R) (recall that fε is real-valued). It is well known [28] that
the vacuum vector Ω is both cyclic and separating for the W*-algebra 0t defined by

« = {fefc(/),6fc(/)*:fc=l,...,iV,/6L2(R)r, (4.9)

and that the associated modular automorphism group of 0t satisfies [29]

Φk{f)) = eiβw*bk(f), k=l,...9N9 / G L 2 ( R ) . (4.10)

Note that 0β®0ί is globally invariant under {α?: t e R}, and that Vε is in J*(χ)^, so
that {αε: t eR} maps J * ® ^ into itself, and j / ε is a W*-subalgebra of 0β®$. The
state μ = QoF0\3%®$ is a faithful normal state, and it is invariant under {α,0:
t G R } , by (4.5). The associated modular automorphism group {σt: t G R } of &®$
satisfies

σt(Fe) - F ε for all ί in R, (4.11)

by (4.6) and (4.10). Then we have, for all A in j / ε and t in R,

μ(pζ(A)) - μ(A) = μ{a%A) - a?(A))

by (3.6) and (4.11). Then ( j/ ε , {jε

t = oξjo: ί e R } , με) is stationary.

(iii) By (ii) above, σs commutes with αε for all s, t in R [30], hence
σJε

t(B) =jεσs(B) for all 5, ί in R and B in ^ . Taking the limit of multi-time
correlations as ε->0, we obtain

Aι)-'hMm)jUi (σXB,)).. JUn(σs(Bn)))f(s)ds

, MM J - i)ds
R

for all i4 l 9 ...,Am, J5 l5 ...,jBΛin J*, s,ί l 9 ...,ίm, wl9 . . .,w n inR, m, ̂ linN, and for all
functions / with Fourier transform in C^(R). It follows, as in [31], that the pair
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(si,μ) is equipped with a modular automorphism group {σs:seR}, satisfying

for all Bu ..., Bn in J*, s, uu ..., un in R, and n in N ; in particular, μ is a faithful state
on si. D

We may conclude that the following statements are "essentially equivalent" (up
to technicalities):

(I) Φt satisfies detailed balance with respect to ρ;
(II) the stochastic dilation (si, {jt'.te R}, μ) as constructed from Φt and ρ as in

Sect. 3 is a stationary process, and μ is a faithful state on si.
By using the modular automorphism group of si associated with μ, the

stationarity of the process, and Takesakί's theorem on conditional expectations
[25], we can extend the "Markov property at ί = 0" of Theorem 3.3 to the full
Markov property.

Theorem 4.3. Let (si, {jt:teR},μ) be the stochastic dilation, as in Sect. 3, of a
dynamical semigroup Φt on 3$. If it is a stationary process and μ is a faithful state,
then it is a stationary Markov dilation of Φt.

Proof It remains to prove that j t is a faithful normal map for all t in R, E{0} is a
normal conditional expectation, and the Markov property (2.7) holds. We give the
proofs separately:

(i) Since j t = atj0 and at is an automorphism leaving the normal state μ
invariant, it suffices to prove that j 0 is normal (jΌ is faithful by Theorem 3.2). Since μ
is faithful, the set of the positive linear functionals on si that are dominated by a
scalar multiple of μ generates a dense subset of si^ Let v be such a positive
functional. Then v oj0 is dominated by a scalar multiple of μ °jo = ρ, hence it is a
normal functional on <%. By taking linear combinations and norm limits, it follows
that β maps si^ into J ^ , so that j 0 is normal.

(ii) E{0} satisfies μ ° E{0} = ρ oj~1 o E{0} = μ; and since E{0] is completely positive
and μ is a faithful normal state, it follows that E{0] is normal.

(iii) The modular automorphism group {σs: s e R} of si associated with μ
commutes with { α t : ί e R } [30], hence all the W*-subalgebras siι= V{αjo(J*):
tel}, are globally invariant under σs. By [25], there exist conditional expectations
Eι of si onto sij which are compatible with μ; they are uniquely defined, faithful
and normal. In particular, £(-00,01 exists. In order to prove that (2.7) holds for t = 0,
it suffices to show that, for each A+ in si[Ot + ^ there exists Ao in J / { 0 } such that

μ(A_A+) = μ(A_A0) for all A_ in J2/(_OOf0]. (4.13)

By Theorem 3.3, (4.13) holds, with A0 = E{0](A+). Then £(-oo,o](^[o, + oo)) = ^{θ}
By the stationarity of the process, we have α ί £ ( _ 0 0 j 0 ] = E (_ 0 0 > f ] αί5 and (2.7)
follows. D

Remarks: (i) The connection between stationarity of the dilation and the detailed
balance condition for the semigroup should be compared with the "derivation of
detailed balance from microscopic reversibility." As remarked in [24, 32], such a
derivation is reliable only when the stationary state of the semigroup is the
restriction of a stationary (or, at least, approximately stationary) state for the
global evolution of the larger system.
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(ii) The processes we have described are called "quantum diffusions" by
Hudson and Parthasarathy [17], in that they can be constructed with the aid of a
"quantum Wiener process." It is worth mentioning, in this regard, that a classical
diffusion with a stationary state does indeed satisfy the detailed balance condition
in the sense of [21], as remarked in [32].

Appendix

A published proof of Theorem 3.1 exists only for the case of pyramidal time
ordering [10]. Though the convergence of all multi-time correlations is an
explicitly stated result in Dϋmcke's paper in [11], we think it convenient to provide
an explicit proof here.

We introduce some notation. For m in N and t in R, let

smϊt} for r*0,

ί a s m £ 0 } for ^ 0 . {AΛ)

We shall also understand that
00 00

Σ ί /m(ί;s1,...,sJds1...dsOT = /0(ί)+ Σ ί fm(t;sl9...,sjds1...dsm.
m = 0Λw(0,ί) m=lAm(0,t)

(A.2)

For A in .s/and t in R, let A(t) = otf(A). It is convenient to rewrite Vε as
2N

(A3)

j=^(VjtII-Vj-f,),φj = i(af.ιl-aJ.ί,) for j = N+ 1, ...,2N.

We define also

F+j(A) = FjA,φ+j(A) = φjA,

for all A in «J/,; = 1,..., 2N. For all Bu ...,Bn in J1, tu ..., tn in R and n in N, the
iterative solution of (3.6) yields

= Σ Σ Π (ίsgnίfc)"1" J...J Σ
ι = O m i + . . . + m n = f U = l J Δ m ( O , ί i ) x . . . * Amn(O,tn) jι,.. .,jr=±l,...,±2N

Π
~ j m i + χsmι + i) . . .F J m ι + m j ( s m i + m 2 ) B 2 ( ί 2 ) ]

(A.6)
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To each ordered r-uple (α l 5 ...,α r) = (sgni/1, ...,sgn;r) in { — 1 , + l} r, there corre-
sponds a permutation π = π(α1, ...,ar) of {1, ...,r} such that (Ω, ...,£2) in (A.6)
becomes

This vanishes for r odd, and for r even, r = 2/, it becomes

n ί^φ^^
l

( A 7 )

where 0?(t) is the set of those permutations of {1,..., 21} such that p(2q — 1) < p(2q),
p(2q—l)<p(2q+\) for all g, and sgnp is the parity of the permutation p. Taking
into account (A.4), and defining

1 for j = k,

i for j=k—N,

-ί for j =

0 otherwise,

(A.8)

we find that (A.7) becomes

q=l

X(\jnop(2q-l)l \Jπ°p(2q)\W(Sπop{2q)-Sπop
(A.9)

Combining (A.6) with (A.9), we find

== Σ Σ ί ί Σ
W l ( O , ί i ) X . . . XAmJOjn) jι,...,jr= ± 1 , . . . , ± 2 N

Π
Lfc=i

β - ( A 1 0 )

where π = π(sgn/ l5 ...,sgn72i). The term-by-term limit as ε->0 of the expansion
(A. 10) is evaluated by recalling that h%t) is a symmetric approximation to δ(t). In
order to prove that the expansion converges uniformly in ε, we perform some
majorizations. Since |χ(/>ΌI = 1 a n d ^ε is a positive symmetric function, we have

Σ ...
1

= 2'/! Σ Π^(v,
σeS(2l) q=ί

where S(2l) is the set of all permutations of {1,..., 21}. This is actually independent
of π, and it may be rewritten as

(20| i

2ιl\
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where Ps denotes the projection onto the totally symmetric functions of su ..., s2i.
Let also | |F| | -max \\Fm\\, \\B\\ -max ||^-||. Then we find

00

||r.h.s.of(A.10)||^ Σ Σ ί ί

(A.11)

Since the i n t e g r a n d is total ly symmetr ic in sl9..., s2 /, it is also symmetr ic in all the
g r o u p s of variables (su . . . , s W l ) , (smi + ί,...9smί + m 2 ) , . . . ( s m i + ...+Wn_1 + 1,..., s 2 i ) .
H e n c e we m a y replace

ί [ . . .^. . .d^ by i-j. . j[. . .]d 5 l . . .dsm,
J m (0,ί ) Wl! 0 0

and obtain a further majorization by extending each integration from
ί_ =min(£fc,0) to ί+ =max(ίΛ,O). Then we obtain

oo 1

||r.h.s. of (A.lO)ll^ll^r Σ (8AΓ2||^p)?

ι = o

Σ
ί + ...+mn=2iin1\...mn\

T
•ϊ - ϊ ^S | Π h%s2qs2q.1)ldSl...d52!. (A.12)

t- t- Lq=l J

The integral is majorized by (\\hε\\ ί(t+ — ί_))z, independent of ε, as in [1]. It remains
to control the behaviour of

Using C(l5r)= 1 for all r, and the easily derived recursion formula

we find that C(w,r)^(r+ l ) 1 1 " ^ ^ " 1 ^ which is eventually dominated by 2nr for
fixed n and r->oo. We conclude that the expansion (A. 10) is dominated by

(constants ||fl|r Σ ~[8JV2 | |F| |24"||ft| |1(ί+"ί-)]z, (A.13)

which is a convergent series, independent of ε. Then we are allowed to take the limit
term by term in (A. 10). Note that (A. 13) proves also the uniformness of the
convergence as stated in Theorem 3.1.
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