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Abstract. Existence and hyperbolicity of fixed points for the map .4/, : f(x)
—A71fP(Jx), with f? p-fold iteration and A=fP?(0) are given for p large. These
fixed points come close to being quadratic functions, and our proof consists in
controlling perturbation theory about quadratic functions.

1. Introduction

The main theme of this paper is another manifestation of the observation “highly
iterated maps are quadratic functions,” made by Jakobson [1], Milnor [2],
Guckenheimer [3], and Benedicks and Carleson [4]. We shall elaborate on this
idea and use it to give a simple proof of Feigenbaum universality for certain classes
of functions.

We consider maps in a class of function D, which we shall describe now
informally and in more detail below. We shall say that fe®, if f:[—1,1]
—[—1,17, f€%? (in fact, we shall work with analytic functions below), f(0)=1,
f7(0)<0, and, most importantly, f permutes cyclically p disjoint intervals
Jo,J 1, ..., J, with 0 € J,,. The intervals are supposed to be arranged as follows and

B J3 Jo-1 Jo %

HH'”I—-—(I——g———i H

Fig. 1 A !

the endpoints of J, are f?(0)<0< —f?(0). Under these circumstances, setting

A=f7(0), one can show, see Collet, Eckmann, and Lanford [5], that 4, f(x)
1 . . . .

== f7(Ax) is again a map of [ —1,1] to itself and (4, f)(0)=1. The contention

isnow: If feD,isnottoo far from being a quadratic function, then the same is true
for A,f. Following Guckenheimer, we measure this deviation from being

*  Supported in part by the Swiss National Science Foundation
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quadratic by the quantity

o1
fx) x

If f is an even quadratic function, then Gf=0. Given p and fe®, with |Gf(x)|
<47 P|x|, then, under mild additional conditions to be given in detail below, we
have |G(A,f)(x)| <4~ P|x|. Thus, for large p, ./, f remains almost quadratic if f is
almost quadratic.

The above observation (that .4, f is almost quadratic) is part of 2 more general
phenomenon (not restricted to quadratic functions) which we describe now.
Consider a function g with a quadratic critical point x, which is not a periodic
point of g. Assume

i) some iterate of x, falls onto a linearly unstable periodic orbit of g,

ii) a sequence of preimages of x, accumulates at this unstable periodic orbit.

Under these circumstances, there are neighborhoods U of g in 4> and V, of x,
in R (or €) such that the following holds: if g, € U satisfies g7(V,) € V, then g7},
deviates by y ~? from being a quadratic function. (In this paper, g =1 —2x2, x, =0,
the unstable periodic orbit is —1, y=4, V,={x||x|<const4", with a small
constant}.)

We are interested in a fixed point for .4, and the previous discussion shows
that the fixed point, if it exists, is to be sought among functions f with |Gf(x)| very
small. This observation can be put to work, and perturbation theory about
quadratic functions is straightforward (although long) to control.

In the space of even analytic functions, we show that .4}, has a fixed point f*,
for which D/ £,¥) is hyperbolic with one eigenvalue 6,> 1 and the remainder of
the spectrum inside the unit disk, and, hence, by the analysis of Collet, Eckmann,
and Lanford [5], Feigenbaum universality [6] will hold in this class.

In order to orient the reader, we list here the leading behaviour of the various p
dependent quantities. We shall find

Fx)=1—Q2—0(4"P)x*>+ 04 ")x*,!

Gf(x)=

2= (fFP0)~ — %42*% 03927427,

128
0,~ 3.2 1627 7~4.32038-167 2,
Furthermore, the eigendirection of 9, is approximately x?, while the contracting
subspace is given by functions vanishing at 0,1 (and — 1, since we consider even
functions, only).

Finally, let us remark that the case p=2 is the one originally considered by
Feigenbaum [6]. Our estimates are not good enough to yield existence of the fixed
point for p=2, but we hope that they shed some more light on the existing proofs
for that case, in particular, the one by Campanino, Epstein, and Ruelle [7]. A way
to explain the necessity of complicated proofs for the p =2 case can then be seen in
the observation that although G./5 f becomes small, the smallness obtained is not

1 Arelated observation was made by Geisel and Nierwetberg [9]
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sufficient, and higher order terms must be considered. This is manifest in [7] and
also in Lanford’s proof [8].

The remainder of this paper is organized as follows. In Sect. 2, we give precise
formulations of our results and discuss the functional-analytic parts of the proofs.
In Sect. 3, we study functions f which are close to the function 1 —2x?. In Sect. 4,
we construct an approximate fixed point f, for the operator .4, and we study a
small neighborhood of f, in function space. In Sect. 5, we study the linear
operator D4/,

2. Notations and Results

We denote H, the space of analytic functions on {y||y| < p}, which are bounded on
|yl £ p, and which are even, have real coefficients when expanded around zero, and
vanish at y=0.

We shall use, for every p, a polynomial

E,(x)=E, x>+E, ,x*, E )=1, (2.1)

where E, ,—1=0(4"?), E, ,=0(4"P). This function will turn out to be an
approximate eigenvector of D4, for reasons which are explained towards the end
of Sect. 4, and which become clear in Sect. 5. We give below an implicit definition
of E,, cf. Eq.(2.12). Once, the function E, is given, the following construction
makes sense. Every function 4 in IH, can be uniquely expanded as

h(x) =hoE (x) +hy(x), (2.2)
where h(0)=h,(1) [=h,(—1)]=0. We set
o,=37, (2.3)
and we equip IH, with the norm
1B, =0tplhol + 14, 24
where
hyl,= sup hi(2)]. 2.5)

For convenience, we call this the decomposition H,=R®H,.
We denote by ¢ the set of functions f€%?, mapping the interval I=[—1,1]
into itself and satisfying
f0)=1,
f(0)<0, xf(x)<0 for xel\{0}.
The set D,C ¢ is the set of those functions which “exchange p disjoint intervals,”
JosJ1s..sJ,— 1, Where

(2.6)

Jo=L/%0), =f7(0)],  f?(0)<0,
and
f(Ji)ZJi+1’ i:0a1723"‘9p_2s f(Jp—l)gJO'
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The intervals are supposed to be arranged as in Fig. . For fe€D,, we define

=3 F70), @)

where A=fF(0). It is easy to see that fe€®D, implies .4, f€#, see e.g. Collet,
Eckmann, and Lanford [ 5]. Below, we shall formulate results which guarantee the
existence of .4, as a map in function space, (viz H,+1).

Conventions. (i) All theorems, propositions, and lemmas are to be implicitly
supplemented by the statement “There is a p, < oo such that for p> p, one has ... .”

(ii) All constants K, K, ..., Cy, C,, ... are independent of p, of integers k, j, ...,
and of the functions in relation to which they occur. The order symbol @ is also
independent of such quantities but (4 ?)x is a shorthand notation for x - u(x),
u(x)=0(4"").

(i) The constants K, ..., retain their meaning throughout the paper, while
C,,C,, ... keep their meaning only through a single proof.

We now list the theorems which are needed for the proof of the existence of a
fixed point for .4, and its hyperbolicity, as outlined in the introduction. These
theorems are chosen in such a way as to allow an application of the contraction
mapping principle (in a way similar to Lanford’s argument [8]). The final result
will be formulated in Theorem 2.4.

Theorem 2.1. For every sufficiently large p, there is a polynomial f,, of degree four,
such that f,e D, and

A fo =Tl , S K167 7p°. 28
The function f, will be constructed in Sect. 4. It is of the form
f(x)=1—p,x*+ KA Px*, 2.9)
where K, is a universal constant, and p, is implicitly chosen by the condition
F(D=A,1(D), (2.10)

ie. f,(1)- f2(0)=£27(0).
Definition. We denote B, the set of f€lH,+ 1, for which

I f=foll ,<1677p°. (2.11)
Definition. The function E (x) is given by
EP(X) _ fp(o) —fp(x) + Xf;(X) (212)

LO) =M +10)

(This is essentially the projection of the function 1 parallel to f,(x) — xf,(x) [ =the
eigenvector with eigenvalue one of f—fo...of (p times)], into IH,.)

Theorem 2.2. Assume f€B,. Then
D fle s,
ii) A, f, as given by Eq. (2.7), is defined and is in H,+1.
iii) A, f extends to an analytic and bounded function in |y|<2p.
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iv) A, is infinitely differentiable from B, to H,+1.
v) For any f in the ball B,, DAV ,(f) is a compact operator on IH,,

Theorem 2.1 will be proven as Theorem 4.3. Theorem 2.2i) is Remark 4.2".
Theorem 2.2ii), iii) is immediate from Corollary 4.4. Theorem 2.2iv), v) follows from
ii), iii), by Montel’s theorem, cf. Collet, Eckmann, and Lanford [5].

We next concentrate on the tangent map D.4/,(f), and we show it is hyperbolic
for fe B, Weidentify H, with R@®H), cf. (2.2)-(2.5), and we write D.#), as a matrix

(Aoo(f) Ao1(f)>
Ao(f) Au(N)’

where Ago€R, 4y, €eH}*, 4,,€H,,and 4,, € Z(H,,H,). Our main estimates are
summarized in

Theorem 2.3. If € B, then we have
0<Ago=Kool6? 2(1+0(377),
1410, <(@)P*°,
141 llu <127p*,
1A 1 gy, <3777
where K is a universal constant.

2 © . 12 .
In fact, Koo = 3? I1 cos?*(m277 Y= 3—7:2 ~4.323037. [This number should be
j=1

compared with Feigenbaum’s constant (case of p=2), 6=4.6692 ... .]

Proof. The theorem is a consequence of the results of Sect. 5 and the definition of
the || ||, norm. Ay, is estimated in Proposition 5.1. In Proposition 5.2, we show

(AE,)(2)—E(2)(AE) (D= O(G)p"?), if z=p.

Note that [|E,[,=au, so that [4,lm,<a, 'GPp*°=(E)"p?, as asserted. In
Proposition 5.3, we show that for he H}, |4h(1)| < |h|p4pp2. Therefore,
401 “n{;,*<°‘p4pl72 =127p>.

Finally, in Proposition 5.4, we bound A4,;.
We next prove the existence of a fixed point, proceeding as in Lanford [8]. We
consider the map

f_)(pp(f) :f_ Up(Jfo—f) >

where

U

p

 ((Kgol6?™2—1)" ! 0
a 0 1)

From Theorem 2.3 one deduces easily that

IDD ()t <@'p*" if feB,.
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Therefore, it will follow from the contraction mapping principle that @, has a
unique fixed point in B, provided
“ glsp(fp) —fp”p
-Gy
cf. (2.8). But this is immediate from Theorem 2.1 and the definition of U,. In
summary, the above Theorems 2.1 and 2.2 imply

<167 7p%,

Theorem 2.4. If p is sufficiently large, the operator N, has a fixed point f.* which is
inH,+1 (and with f*|;€D,). The operator DV, is uniformly hyperbolic on a ball
of radius 16~ 7p® around f}*. It has exactly one eigenvalue , not strictly in the unit
disk. This eigenvalue is simple and 6,=K,o- 167" *(1+0(377). Also, A(f¥)
= [37(0)= —K,4C (1 + 04 7p*).

The assertions on the eigenvalue 6, follow at once from Theorem 2.3. The
bound on f,*7(0) is a consequence of Lemma 4.2 and Lemma 4.5i). The constants
Ky and K, are

30 |
Koo="3 IT cos*(r2" 0" ") =128/(3n%)~ 4.323037,
I3
_1 5 1 o 2
Ki= 3 11 cosgma o7y =7/8~0.3926%9.

These constants are already rather good for p=2, cf. Feigenbaum [6] (6 =4.66920,
A=—0.395353).

Finally, /¥, € D, because f,* € #, by Theorem 2.2i), and since f,*(1) =4, f,*(1)
implies £,**7(0)=f;"(0)£,5(1), ie. | £ P ASNI< AL

3. Orbits of Perturbations of 1 —2x?

In this section, we first study the backward orbit of the function y,(x) = 1 —2x2. As
1, is the limit of the fixed points of .4, when p— o, as we show in this paper, it, of
course, plays a special role in our analysis. The fixed point f;* of .4/, will lie at a
distance ~4~ 7 from y,. Thus, we study here a neighborhood B, of 1,, defined as
follows:

Definition 3.1. We say fe B, if
i) feH,+1,
ii) Sup |f(2)—p2(2)| <Ky477,

i) f|;€D,.

The following observation may be helpful in understanding the strategy of our
proofs. If f'is in B, then it is not only very close to y,, but it shares in particular the
following properties with y,: It has a fixed point ¢, near — 1, and the qualitative
dynamics for the inverse f~! on [t,,0] is the same as that of y;* on [—1,0].

2 See Lemma A2
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We shall estimate A(f)= f?(0) and find 0 < — A(f) < K,4? (Lemma 3.3), then
we show H (—fi(A()z2)) =K, (1404 *p*)) (Lemma 3.4),and finally, in Lemma

3.5, we show -
Gf?(z)=—Kg-4°(1+ 04" ?p*)z,
for |z| £ O(4™ Pp). This crucial estimate will allow us in the next section to construct
an approximate fixed point for A4/,
Itis well-known that the function y, is conveniently reexpressed in the variable
y, related to x by x=sin(nv/2). One has

Wa(x) =sin(nP,(v)/2), and  P,(v)=1-2v].

We shall denote by y; ! the negative branch of the inverse function of y,, and we
write y, ¥ for y, 1o .. o, ! (k times). It is easy to see that

5 H0)=sinF(—1+2"%)= —cos(r2 ¥ 1)

752
-—-—1+§4"‘—@(16"‘), (3.1)

We shall use the same convention for f~* as for y;*.

Although the above construction is very special to the function y,, we insist
that only two things are really of importance:

1) The critical point is mapped to a linearly unstable periodic point (— 1, in the
case of y,).

il) Some preimages of the critical point accumulate at the unstable periodic
point.

We now compare the backward orbits of y, and of feB,.

Lemma 3.2. If fe B, then forj=1,2,...,
|f70) =y, (0)| =K, 477,

Proof. If fe B, then not only f(z) is close to y,, but we have, for |2|<3/2, f"(z)
= —440(4"F) (use contour integration), and hence, f'(z) = — (4 + O(47?))z. This
will be used throughout. We set xo=y,=0 and x;=/77(0), y;=v;%(0). It is
obvious that |x; —y;|<C;477. Now, if |x;—y,|<C,47?, then

S ) =ws(x;4 1)+ 0(A77) since |x;,]=3/2.
Thus,

Xio1 =Y 1= —3((;—y) +0(@47P).

It follows from [x;, ; + ;4[> |x; | that

1= Byl < g (i y O ).
2 (1 — —4-1'-1)
8
This clearly implies the assertion.
Our next estimate is a provisional bound on A(f)=/?(0). Whenever there is
no confusion possible, we shall write A instead of A(f).
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Lemma 3.3. If f€%B, then
0<—Mf)ZEK, 477,

Proof. The inequality A <0 is part of the definition of D,. Since f€B,, we must
have |fP(1)| = |A|. Every point in J,, k=2, is to the left of J, . ;, and the left endpoint
of J, . is f**1(0). Since fe B, fis concave (contour integration again), and thus,
f is increasing for x <0, and hence, we have

SO =fF () < [T R0), for k+1<p,

because fP(0)=A<0. Hence, by Lemma 3.2, f**1(0)<y%"* P(0)+ K47, for
k=2,...,p—2. Finally, since f'(z)= —(4+ (4" ?))z, as we noted in the proof of
Lemma 3.2, we see, by combining the above arguments, that

Wies 1] > @+ 0@ L H0)]

2
>(4+(9(4-P))<1—%4k+1—1’—1<14—v>|Jk|, k+1<p.

Finally, |J,|=(2+0(4?))A4*>. Combining these bounds, we see that |J,_,]|
>C,A*477 1, using

4+ 04" Py =4P(14+ 04 *p)). (3.2)

We next note that J,_, must lie to the left of —x,, where x,> 0 is defined by f(x,)
=X, [=0(1)], since otherwise J,NJ +0. Thus, we find |J |= C,4°4?, as before.

Since we must have J,CJ,=[4, —A4], the assertion follows.

We have now shown that = A(f) is very small. Hence, if [z| £ 2p, then Az is very
close to zero. Our next lemma shows that the whole orbit of 1z stays close to the

preimages 5 %(0) for p iterations.
Lemma 34. If fe®B, then, for k=2,
TT (SO =K+ 0@ 7). for =2,
where
K.— fﬁl cos(m/2/ ) =2/

Proof. We shall prove below the bound, valid for |z|]<2p, j=2,...,p—1,
1)z =y P(0)| =C477p? .2 (3.3)

We have already seen that ) ?(0)=cos(n/2” /*1), and hence, the assertion
follows from (3.3), using again (3.2), and from

k
[T cos(n/2 " )=K (1+0(4%).
=1
The identity K,=2/n is derived in Lemma A.1.

3 For j<p, pi ? should be viewed as yp; ?~7
J
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We now proceed to prove (3.3). We first bound | f%(0) —f7~#(0)|. Since f €D,
we have |f?(0)—0]<K,47?, by Lemma 3.3. Hence, by the bound f"({)
=—(@+0@ ), for |{|<3/2, we deduce, using Lemma 3.2, |f9(0)—f/~?(0)|
<C4777, and thus, [f9(0)—yi P(0)|<C,477 for j=2,3,...,p—1. Next, we
observe that f(A(f)z)—f(0)=0(16 p?), since f(A([f)z)= —(4+OE P)(f)z.
Since f, at {, |{|£ 1+ 0(4™*), expands by no more than 4+ (4~ %), we see that

|/7()2) = f7(0)| < C, 416 Pp?. (3.4)

Combining the above estimates, we obtain (3.3), and hence, the lemma is proved.
We next show that Gf? is essentially a linear function, with coefficient
independent of fe B,

Lemma 3.5. Assume fe®B, and |z| S 2|A(f)lp. Then
Gf"(z)= —KeA"z(1+ 04 "p?)),
Kg=4/n%.

Proof. The assumptions imply (Gf)(z)=0(4"")z, as is easily checked from the
definition. We rewrite Gf*(z) — Gf(z), using the chain rule, and induction on p, as

(@)

Z Uz ))(f’)(Z) zZf"(O)(1+ 04" ")Z,,
where
P (@),
Z,(z)= Z TG ))(f ) (f(2)).

Using Lemma 3.2, we see that Z (z)=Z - (1 +0(4™?p*)), where

T (ke
2="Y ¥ L0
[we use f(z)=—@+ 0@ ?)z and (f"/f)(z2)=(1+ 04" P))/z], and we estimate
F(f(@) =49 20), [(fY2)~ —4y*2(0), if k> 1. If we define

S TE "kn( V)

Z
2P S =l H(0)

then we see that
Z,=Zy K A" 1+047Pp))=Ked? (1 + 04 7p3)).

The quantities Z; , and K, are estimated in Lemma A.1, A.1". We have Z;=2/x,
K,.=2/n, where Zy= lim Z; ,. The lemma is proved.
P

4. The Approximate Fixed Point and Its Neighborhood

In this section, we first construct an approximate fixed point f, for .4,; this fixed
point will lie in B, provided the constant K, in its definition is chosen sufficiently
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large (but, of course, independent of p). We will then collect some bounds for
functions in a small neighborhood of f,. The approximate fixed point will be
constructed along the following lines. By Lemma 3.5, if f,(x)=1—pux?+ K, 4~ ?x*,
u=2+04""), K,=0(1), then

Gff(x)= — Ks4x .
We shall impose
Lo (D)= (A1), (4.1)
and this will imply, through Lemma 3.4, that
Mf)=—-K,4*7", K,=1/4K,.
Therefore,
G(AN 1) () = A(f)(Gf)) (A(S,)x)
~ —KoK34%4 Px
On the other hand, it is easy to sce that
(Gf)(x)= —2K 4" Px.
Thus, if we choose 2K, =4*K K%, then
|G(AN 1)(x) = (Gf,) ()| = 0167 7p). (4.2)
It will be easy to see that (4.1) and (4.2) imply
[N o) = ()= 016 7p),

so that f, is an approximate fixed point, as asserted.
We now fill in the details of this argument. We fix

K,=2"K K2 4.3)

(wehave K,=8 by Lemma A.1, A.1"). We next consider the one parameter family of
maps

gu(x)=1—pux*+ K4 "x*. 4.4)

For u®=2+K,47?, wehaveg,(1)= — 1, while for 'V =1+ K,47?, g,(1)=0. This

implies that g, and g, are notin D, but, by kneading theory (see e.g. [10]), there

is at least one interval M of i’s, M C[u™, u{®'7], so that p e M implies g, € D,. At the
boundary ', u” of at least one such interval, we must have

97(0)=0
and
g:#(0)= —g2(0),
see the discussion in [5]. It is also shown in [5] (Proposition 3.1) that
li =1
lim (#,9,)()=1,

neM



Fixed Points of Feigenbaum’s Type 505

while it is obvious from the definition of .4, that (.#},g,-)(1) = — 1. By continuity,
there exists a u, between u” and u” for which

(N39,,)(1)=g,,(1) (4.5)
(since p/, " < u'®). We shall denote henceforth p, the largest such value, and we set
o=,
Lemma 4.1. With the above definitions, we have |u,—2|<0(4"7) and f,€ B,

Remark. The size of K, and of u,—2 determine the choice of K.

Proof. By construction, we have u, <2+ K, 4~ ?. We now derive a lower bound for
t,- Define v, by 1—v, =y, = 2(0), where =2+ K,4 7 and y,(x)=1—1x>. For
u=2+K,477, we have g,(x)>vy.(x) when x € I\{0}. Therefore, defining ¥ to be
that (maximal) value of u for which g, €D, and g%(0) =0, we see that

1— i+ K AP =g2(0)= g7 2(0) <y, ?~2(0).

Since |t—2|=0(4"7), Lemma 3.2 and Eq. (3.1) imply y, *~2(0)< —1+0(4"7),
and hence, iy 22— @(4 7). By the general theory of kneading, we have u, > 1, and
thus, the first assertion of the lemma follows. The second assertion is now an
immediate consequence of the definition of B,

Lemma 4.2. With f, as defined by (4.1) and (4.3), we have
dp=Mfp)=—KA272(1+0(47"p%),
where K, =1/4K,=m/8.

Proof. By construction, we have f, € 8, (and, a fortiori, f,€ D,). By Lemma 3.3, we
have |4,|<K,47?, and hence, Lemma 3.5 implies, for |z| <2p,

(CAp1)(2) = 2,(Gf ) (A,2) = O(4™ )z . (4.6)
By construction, we also have
(Gf)(2)=0(4"7)z. 4.7)

We next apply Lemma A .2, with u= .4, f,, v=f,. Itis easy to see from f, e D, that
N, [, satisfies the general assumptions of Lemma A.2, and (4.6) and (4.7) imply
(Gu)(x)—(Gv)(x)=0(4"P)x, for |x| <p. Hence, we conclude

(M) (0)=—(4+ 04" "p*). (4.8)
By the chain rule, we have
p—1 X
(N Sp)"(0)=1,(0)- ,»1;11 S (130) - 4,. (4.9)

Since f,(0)=—4+0(4"7), we conclude from Lemma 3.4, and from f(x)
=(—4+ 04 P)x, for [x|£2, that

—(4+ 0@ PP =(—4+0@d ") (+4+ 04 )P 2K,
(1+0(4*""p))A,,
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ie.
Ap=—(1+ 0@ pH)/(K 47" 1).
This proves the lemma.

Remark 4.2". Lemma 4.2 implies f,(1)> —1+577. Indeed, assume the contrary.
Then we will have f7(0) < — 1+ @(4°5~ ), which contradicts |fP(0)| < O(4 7). We
now come to our first main estimate:

Theorem 4.3. With f, as defined by (4.1) and (4.3), we have

'/fop_fp||p§KN164pp8
Proof. By Lemma 4.2, we find, using Lemma 3.5,
(G, [)(x) = A f)GfF (A(f,)x)
= —K24* 2PK ;4Px(1 4+ O(4~Pp*)).

By construction,
2u,+ 12K, x> 11

(Gfp)(x)z—:m';—-;.

Now Lemma 4.1 and Eq. (4.3) imply

(Gfp) ()= —2K x(1+ 04" "p*)
= — K344 2K o4Px(1 4+ 0(4~7p?).

Hence,

GN, fo(x)— Gf,(x) =xO(16~ 7p*). (4.10)
We reapply Lemma A.2 and obtain, after integrating ii),

Sup | fo(3) = £, ()| = 016 7p®) . (4.11)

Since A, f,(1)—f,(1)=0, this implies the assertion.
Corollary 4.4. One has

sup |4, f,(x) = f,(x)| =016 7p®),

Ix|=2p
and N, f, is analytic in |x| <2p.

Proof. This is obtained as (4.11), by an obvious modification of Lemma A.2.

Now, that we have got hold of an approximate fixed point for .4, namely f,,
we are in a position to define two objects: the neighborhood of f, in which the fixed
point is to be found and the approximate unstable eigendirection of D/}, Had we
considered instead of ./, the operator N, =20 o fPo A, with A, fixed, then this
eigendirection would be approximately the function 1, however, our choice A(f)
= f?(0) preserves the normalization ./, f(0) =1, and projects 1 approximately to
1 —f,(x)+xf,(x). We, therefore, define

1—£,(%) + x/,(x)

£, 1) (*.12)

E,(x)=
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and from the definition of f,, Eq. (4.1), we get
E, (x)=x*-(1—x*3K,47?/u,)/(1=3K,47/p,). (4.13)

Note that E,(0)=0, E,(1)=1, and that E (x) is close [by 0(4~?x*+ x?4~?)J to x?.
We next consider the neighborhood B, defined by feB, if

feH,+1 and | f—f,|,<16 7p°.

We shall state and prove now a certain number of lemmas which will be useful in
estimating the operator D.//, in the next section.

Lemma 4.5. If feB, then
i) AN)=Af)A+03 "),
i) |/7N)2) =[O S 16774t 2] <2p.

Note. We do not know that f'e B, implies /€D, and hence, the estimates have to
be done in a way which differs slightly from the method of Sect. 3.

Proof. If fe B, then we have, by the definition of || ||,
If(D)—f(DI=e, 1167 7p° =487 7p°, (4.14)
and
Sup 1/(@) = f(&) = Ey(:)(f (1) =)= 1677p°,
which implies by (4.13),
sup |f(2)—f,(2)|=2-1677p°. (4.15)

|z|sp

We relegate to Lemma A.3 the estimate of the orbits of f7and f;. Applying Lemma
A.3 with z=0, we see that

[f7(0)— £ (0)| < O(48™747p?) + O(16~*p*°) = O(12 " 7p*?).
Hence, i) follows from Lemma 4.2. Write now
|fIN)2) = G S LAS)2) = O]+ 0 = £ f)2)]
and apply Lemma A.3 to both of these terms to obtain ii).
Lemma 4.6. If f€B,, then

Gf(2) = G(N, ) (2)=0(127"p' %)z, |z|<2p. (4.16)
Proof. By going through the proof of Lemma 3.5, we find
GfP(x)=—Ke4"x(1+ 04 "p)),  IXI=2plA(f)l. (4.17)

The assertion follows from (4.17) combined with Lemma 4.5 and the definition of f,
[cf. also (4.10)].
We now consider four quantities whose role will only become apparent in the
next section, but whose estimates are a natural sequel to Lemmas 4.5 and 4.6.
The first two quantities are

A7) = (N ) (O) = (N, () +x(N, ) (x) (4.18)
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and
Af(x)_Ep(x)Af(l) ’
cf. Eq. (4.12) for the definition of E,,.

Lemma 4.7. If feB, then, for |z| <p, we have
i) 4/z)=—22*(1+03"?p'7)),
i) 4,(z)—E(2)4,(1)=0(12"7p'")z>.

Proof. Denote A(z)=1—f,(2)+zf,(z). By construction, 4(z)/4(1)=E,(z). By
Lemma 4.6, we have

GN o f(2)—Gf(2)=0(1277p')z. (4.19)
Denote, momentarily, u= .4, f, v=f,. By the definition of G, (4.19) implies

(logu)'(z) —(logv) (z)=¢z - h(z), (4.20)
with |h| <1, e=C,1277p'°. Integrating and exponentiéting we deduce from (4.20):

u(z)=C, v'(z)e"®, (4.21)

with |H(z)|<z%, C, ,+0. Integrating again, we get

u(z)=C, w(z)+C, ,K(z)e+D, ,, 4.22)
where

K(z)=—— j v(x)(1—eH)dx,  K(0)=0.

Since v=f,, it is easy to see that |[K(z)| <2C,p°. Using (4.21) and (4.22), we see
that
? Az)  w(0)—u(z)+zu'(z)
A u(0)—u(l) +u(1)
_ C, (v(0)—v(z) +20'(z) + R(2))
G (0)—v(D)+v'(1)+R(1))
where R(z) = — K(2)e+ z(e®@ —1)v'(z). Note now that
v(0)—v(z) + 20'(z) = — p,z> + 3K 47 Pz*,
by the definition of f,=v. Hence, v(0) —v(1)+0v'(1)= =2+ 0(4"?), so that
A,z2) _ 4,2)
4,1)  4,(1)

Note that 4,(x)/x*—(A4,[)"(0)/2 as x—0. Combining (4.22) with Lemma A.2
provides a bound on (4,1)"(0)/2, from which i) follows at once.
Using E(z) =4,(2)/4,(1), we get ii). The proof of Lemma 4.7 is complete.
We next define, for feB,

+0O(1277p1722) (4.23)

up=(v;- Ey)o flo Mf), (4.25)

and
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and finally, for heIH,, h(0)=h(1)=0,
ﬁ],: (Uj . h) ofj o l(f) . (426)
We shall need in Sect. 5 the following bounds.

Lemma 4.8. If f€B,, then, with the above definitions, for |z|<p,
i) uy(z) —u;(0) = E,(2) (u(1) —u(0)) = O(4 " 'p°),
) i,(2) —1140) — E,(2) (i1,(1) — 1,(0) = O(4 " "p®)|h,,

Proof. Recall that E (z) =z* 4 0(4 ~?z*p?). Denote by g one of the functions u; or
ii;. We shall first estimate

X =g(2)—9(0) - 2*(g(1) — 9(0)) . (4.27)
In order to exhibit best the cancellations, we rewrite (4.27) as
X =g(w)—g(0)—w(g(1)—g(0)),

where w=2z2, §(w) = g(w'/?) (since g is even, the determination of w
Obviously, we must have | X|<2p* sup |§7(¢)]. Observe now that
IEl<p

12 isirrelevant).
gw)=gw'?)2w!?
and
g'(w)y=g"w2)/dw—g'(w'?) /4w

Therefore, we find

g' (&) (Gg)(©)

48 ¢
We claim |X| < O(p®4~/) when g =u;and O(p®4~7), when g =i,. This claim follows
by a tedious, but straightforward application of the rules of calculus of which we

only indicate the steps and their leading behaviour.
We rewrite g'(£) - (Gg)(£) as follows: set ©=u;E, (respectively v;h). Then

g -Gg=("ofTed)-(f7o 1)
A(GD) e flo2) - (fTo A) + G(f7 o 2)}

=<T”—%)o(ffo,l)o(ffol)’2+(r”ofj°/1)-(fjoi)’G(fj°/1)-

IX|<p* sup
él=p

From Lemma A.3 and Lemma 4.5, we derive, in the case t=0;E,, the bounds

(fTo ) (@) ~42%z, if [2|<p,

1 S
r’(x)~;42(’”‘1’, if [x|=<3/2,

r"(x)~%43<ﬁ>, it =32,

G(fle)()~422z,  if |z|<p.
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This last bound follows as in Lemma 3.5. Combining these bounds, we get
IX|<O(p*Y)- {%43(1:—1')421/14_'_ %42(17—1')41';»241',12} ;

from which the assertion follows for g=u;.
When g=ii;, then, since h(+1)=0, we have with t=v;-h,

o fI(AX) =i fIx)Dh(f1(2x)) + v, (fIAXDR(f(Ax))
=vi(fIUx)h(£ 1)
+ (X)) {R(f1(Ax)) — h( £ 1)}
+ (/X)) (f1(2x))

| R i | R
~0+z42(p J)|h,p41 pp2+z4p J'hlp’

since, by Lemma A.3 and Eq. (3.3), f/(Ax) +1~4/"Pp2,
1 . .
Hence, g'(x) ~ 14_”|h|pp2, in the case g =i}, so that the bound on X follows in

all cases. Finally, we have to bound
Y=(E,(x)—x*)(g(1)—g(0)).
This is achieved by writing
YI=0(4 #(x* +x%) Sup lg'(I,

and we obtain

1 .

|Y|~4_pp414_1, when g=u;, (4.28)
1

|Y|~4_"p41—4_"lh|p, when g=ii;. (4.29)

The lemma is proved.

Corollary 4.9. If fe B, then, with the definitions (4.24)—(4.26), we have, for |x|<p,
i) u(x) —1(0)= O(p*47 )
i) i,(0)— i) = O(p)Ih] .
iii) i;(x)=O(4%)|h],.

Proof.1) and ii) are an immediate consequence of the derivation of (4.28) and (4.29).
iii) follows at once from

11500) = v,(f1(Ax)) (h(f1(2x)) — h(£ 1))

(I
~ A
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5. The Operator A

In this section, we consider the operator A=A ,=D.(f), when feB,. In the
decomposition H,=R +1H,, i.e

h(x)=hoE,(x)+h,(x),  h(0)=0,

the operator A4 is “almost diagonal”, with E, “almost equal” to the unstable
direction, and IH/, “almost equal” to the stable subspace.

We shall consider the four “matrix elements” A;;, i,j=0, 1, as described in
Sect. 2. The explicit expression for A is given in Eq. (5.1) below, and a quick
calculation shows that Ay~ 167. In A,, we shall find a division of the leading
terms by ~47, because A4, is applied to a function & which vanishes at 1. Hence,
we will find |(4h),| ~47. (This bound will use part of the compensations of Lemma
4.8.) The bounds of Lemma 4.7 will induce a cancellation of all terms ~ 167 and 47
in A;o=sup|(AE,)(x)|, so that A,,~($)"p*°, while in 4,,, both of the above
mechanisms superpose and yield |4, ] < O3 ?p?).

The estimates of this section are not expressed in the norm | |, but rather in
the sup (on R) and the norm | |,. This makes the natural orders of magnitude of the
matrix elements more transparent. But in Sect.2, we have defined
| All,=1ho|37 +]h,y|,, and the factor 37 “balances” the matrix and makes the
neighborhood B, shorter in the E, direction (which is very expanding) relative to
the (contracting) direction H,

A straightforward calculation shows that A4 ,=D./(f), for f€ B, mapsH, to
H, and is given, for helH,, by

(A h(x)= Z W) =wi(O) (N, (x) =x(AN, ) (X)), (51)

i(f ) j=

where
wi(x) =" (T Ax)Dh(f1(x)) - (5.2)
Proposition 5.1. If fe B, then
Ago=(4,E,)(1)=K,16"7>(1+0(377)),

where K o=

;ﬁ cos?(n2 U+ D),
=i
Proof. Using (5.1),

(5.2), (4.24), and (4.25), we see that
Aoo="3, (D= 10)- (D =N, (1)

- ’:go (1)~ 1,(0)) + u,(0)4 (1), (5.3)

with 4 ; as defined in (4.18). Note that uy(0) =0. We analyze now in detail u;(0), for
j=1,2,..,p—1. From Lemma A.3 and the standard bound f(x)
= —(4+ 04" P)x, we derive, using the chain rule and E (1) =1,

ufz)= 477114+ 0(3 7). (5.4

421’
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(To be honest, it has to be said that we have used quite a number of other lemmas
here, namely 3.4, 4.2, and 4.5.) Summing, we get

p—1 K p—1 . .
3 u0)= — =242 4y 4G (1037 7))
j=0 K; j=1

K
S SRR R RUER)

=—Kz4%7% 3(1+0(377).
Finally, by Lemma 4.7, we have 4 (1)= —2(1+¢(477)), so that

p—1
A1) j; u(0)=K2 2167 *(1+0(377)). (5.5)
It is clear that the proposition follows if we manage to show that
p—1
> ”j(l) _uj(o)
j=0

is negligible with respect to (5.5), cf. (5.3). However, this is immediate from
Corollary 4.9. Thus, the proof of Proposition 5.1 is complete.
We next estimate the quantity

A0V =(A,E) () —E(y)(4,E,)(1).
Proposition 5.2. If fe B, then
Sup |41 0WMI= O(3)Pp*).

Proof. We write 4, as
p—1
Ao(y)= 'ZoXj’
i=

where

Xj=ui(y)—E,(y)u,1)
—ui(0) - {AN S () = (N Y )y — E,(0) (N [ (D) = (N /Y (1))}
=uj(y) —u0)— E,(y) (u(1) —ux0))
+ui(0)- {4,()—E,(n4,(1)}.

These terms are bounded, respectively, in Lemmas 4.8 and 4.7, and we get
Xj=(9(4_fp6)+(9<%4p‘f> -0(1277p'?9)
=0(4776)yp").,
from which the assertion follows.

We now consider functions helH,, ie. even functions vanishing at 0,1
(and —1). We now have the following bounds, with |h|,= sup |h(x)|:
IxI=p
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Proposition 5.3. If fe€®B, and he H,, then
|4,h(D)I < |hl,0(47p) .
Proof. Recall the definition of i, Eq. (4.26). We have

p—1 p—1
By Corollary 4.9ii), iii), and Lemma 4.7i), we get

1) ~ (O(p°) + 0@l

from which the assertion follows at once.
Finally, we estimate the “matrix element” (4;,h)(x)=(4h)(x)

—E(x)(Ah)(1).

Proposition 5.4. If f€B, and he H,, then
sup |41,1h()|= 0@ "p*)lhl, .
x|=p

Proof. We again write a decomposition
p—1
(Auh))= T X;.
=
where
X (x)=1(x)— Ep(x)ig1) =i 0) - {1 - E,(x)}

+,(0)- {4,(x)— E,(x)4 (1)} .

The first line is bounded by Lemma 4.8 and the second by Lemmas 4.7 and 4.9, and
we get

X (x)=0@4" "p®)lhl,+O@M)|hl,- 0(1277p'?)
=0@3"p'?)lhl,.

The assertion follows.

Appendix. Some Estimates
Lemma A.1. 1°—°[1 cos(t7/2/) =sin(m)(x7).
j=
Proof (F. Leyvraz). The product
Py= Jf[l cos(tm/2%)
is equal to

N
— > exp(im > aj2‘f>.
+1 j=1
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As N goes to infinity, Py tends to

Jl' imxd 11 (eirn - im)
e X= = —e
21 2 tmi

NS

1
= —sin(tn).
T

Lemma A.1". Y 1/{cos(n/23+1)4s I cos(n/zj“)} =2/m.
s=1 j=1

Proof. We rewrite the left-hand side as

. [T cos(n/2i*")
Z —sj=st1
s+1 °e) )
s=1 cos(m/27") [T cos(m/2/*1)
j=1
which, using Lemma A.1 twice, is seen to be equal to
§ 1 _ sin(n/28 71
s=1 cos(m/25* 1) 2 =
T 2s+ As+1

= Y tan(m/2°*1).2°°
s=1

© 1
= —0.log [T cos(tm/2%) - —|
s=1

t=1/2
1 .
= — 0, log(sin(er) (1)), -1, =2/

In the next lemma, we assume that u'(x)x <0, v'(x)x <0, when x 0, u(0) =v(0) =1,
u(l), v(1y<—1/2, u'(0)=0v(0)=0, and sup [v'(x)|=<O(1). The more relevant
assumptions are added below. Ixl=1

Lemma A.2. In addition to the above, assume, for |x|<p, Gu(x)— Gv(x)=¢(x) - x,
e= sup le(x)| <277, and u(1)=v(1). Then "

1) u”(O) =v"(0)(1 +¢),
i) w(x)=v(x)(1+¢), [x|=p, l¢= Oep?).
Proof. Recall the definition of G,
Gu(x)=u"(x)/u'(x)—1/x.
Since u'(x)x <0 for x=+0,
% =exp i (Gu)(z)dz .

Hence,

w(x)  u’(0)
v(x)  v(0)

—Zexp0(ex?), (A.1)
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where ¢=suple(x)|. Integrating and since u(0) =v(0)=1, we get, for |x| <1,

(0) '(0)
70 P~ D+

Since u(1)=uv(l)< —1/2, we find that

u”(0)
v(0)

u(x) —1= sup ['(y)l(e’—1).

v"(0) 1yi=1

=1/(1+0()e/ju(1)—1))=1+Cys.

This is i), and ii) follows now from (A.1).
Lemma A.3. Assume feH,+1 and
S(D)=f(D=e<4877p°, (A2)
and
sup fO)—fI=se'=2-1677p°. (A3)
yvl=sp
Define x,=f¥0), y,=/*(2), |2 <4~ ?p*. Then
X, — Vil < Credc + Cre'kd P 4 C,lz)?4%,  k<p.
Proof. To simplify notation, set g=f,. We first estimate f*(0)—g*(0). Note that
£(0)=g(0) and, by assumption, | f*(0) —g*(0)|<e. We shall recursively show
|f50)|<1+377 (A.4),
and
R

10— O < Cas

+Cse'(k—2)(4" )P, (A.5),

where 4 =4(1+3-377). These statements are obvious for k=1. By the bound
Eq. (3.3), we deduce (A.4),,, from (A.5),. To deduce (A.5), from (A.4),, we write

SEHO)—g" " O) =1 (40 —f(g “(0)
(=9 @ O+ ([~ (=D}
+(f=9(=D.

We get, using contour integration and (A.4), to bound (f—g) and Eq.(3.3) to
bound |g"(0)|—1,

ISEF10) = g* T H0) = 4(1+377)| 4(0) —g*(0)|
+Ct () g,

This proves (A.5); . ;-
Next we compare f**1(z) to f**1(0). We have

/@) —fO)=|z2+0(4 "), (A.6)

since contour integration and (A.3) imply |f"(z) —g"(z)| £ O(¢"), and we already
know ¢g”(0)= —4+ 0(4™7), by construction. We shall show recursively that

e @) <1+2-37? (A7),
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and
L @) =10 =47 M(2) - 0)]. (A.8),

The case (A.8), is obvious from (A.6). Also (A.8), implies (A.7), , ; as before. Finally,
(A7) 4, implies (A.8), 4, by estimating the difference as

1@ =0 = P WIS —H0)].

The lemma is proved.
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