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Abstract. It is shown that Yang-Mills instantons in four dimensions can
naturally be identified with the instantons of a two-dimensional theory with
values in the loop group.

1. Introduction

Because of the daunting difficulties involved in attempting to quantize realistic
physical gauge-theories in four-dimensional space-time considerable attention has
been given to certain two-dimensional (2D) models, which it is hoped share some
of the important qualitative features of the four-dimensional (4D) theories. In
particular pure Yang-Mills theory in 4D is compared with the CPπ-models in 2D.
Both theories are conformally invariant and possess instantons, and this provides
a basis for obvious analogies.

The purpose of this paper is to strengthen the analogy concerning the
instantons in these two theories. Essentially we shall show (at least for G a classical
group and probably for all G) that Yang-Mills instantons in 4D can be naturally
identified with (i.e. have the same parameter space as) the instantons in 2D for the
theory in which the complex projective rc-space CPn is replaced by the infinite-
dimensional manifold ΩG of loops on the structure group G. Such a theory is not as
bizarre as it appears because ΩG is well-known to share most of the important
properties of CPn and it arises naturally in many contexts.

A natural identification between the instantons of two different theories
suggests that there might be a close relation between the two field-theories
involved. Our result therefore indicates that it would be worth exploring the two-
dimensional theory for ΏG-valued fields, and that this might provide a bridge
between the CPn-models in 2D and Yang-Mills theory in 4D.

It is well-known that the CPn-instantons are given by holomorphic (or
rational) maps CPί^>CPn, where CP1=R2uco is the conformal compactification
of R2. This depends on the fact that CPn is a Kahler manifold. Now ΩG is an
infinite-dimensional Kahler manifold [15, 17] and so ΩG-instantons are also given
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by holomorphic maps

f.CP^ΩG. (1.1)

On the other hand Yang-Mills instantons on R4 can be constructed by twistor
methods and are described by suitable holomorphic data. It turns out that this
holomorphic data amounts essentially to a holomorphic map / as in (1.1).
Moreover a recent result of Donaldson [7], refining earlier work on Yang-Mills
instantons, implies that all maps / arise in this way. Actually Donaldson gives the
proof only for the classical groups but it seems likely that his result holds for all G.

In Sect. 2 we review the basic properties of ΩG and show that holomorphic
maps/as in (1.1) correspond essentially to holomorphic bundles over CPX x CPί

with group Gc (the complexification of G). In Sect. 3 we recall how Yang-Mills
instantons on R4 can be re-interpreted, by twistor methods, in terms of
holomorphic bundles on CP3 with a "real structure" or more simply, following
Donaldson, as holomorphic bundles on CP2 Since CP2 is closely related to
CP1 x CPX (both being compactifications of C2) this leads easily to our main result
(Theorem 1) identifying ΩG-instantons in 2D with Yang-Mills instantons in 4D.

In Sect. 4 we specialize Theorem 1 to axially symmetric instantons (with "axis"
R2QR4) and find (Theorem 2) that these correspond to holomorphic maps of CP1

into one of the (finite-dimensional) Kahler manifolds which occur as homogeneous
spaces of G. For example when G —SU(2) we get just holomorphic maps
CPι^CP1. These results are of interest in connection with the study of magnetic
monopoles and in Sect. 5 we discuss this aspect, and in particular the relation with
another recent result of Donaldson [8].

2. The Holomorphic Structure of ΩG

We shall begin by reviewing briefly the basic facts about ΩG. For fuller details we
refer to [17] - see also [15, 16].

For any compact Lie group G the loop space ΩG consists of all based maps of
the unit circle S1 (\z\ = 1) into G,/: S1 ->G with/(l) = 1. To be precise one should of
course specify the class of maps / to be used. For many purposes it is immaterial
which class is used provided sufficient differentiability is assumed. If/ is taken in
the Sobolev space H1 (having first derivatives square integrable) then ΩG becomes
a Hubert manifold, which is sometimes convenient. For our purposes it will be
sufficient to take / to be C00 or even real analytic.

The simplest case is of course when G=U(l). Then ΩG has components
indexed by the winding number and each component can (by taking logarithms) be
identified with the space of real-valued functions/: S 1 - ^ , /(l) = 0. The Fourier
series expansion of such a function is

oo

φ=Σanz", α_n = άn, Σan = O (2.1)
— oo

and so is entirely determined by the Fourier coefficients {an} ϊor n>0. In this way
each component of ΩG becomes an infinite-dimensional complex vector space.

For non-abelian G the situation is more complicated because ΩG is no longer
linear. However it is an infinite-dimensional manifold and infinitesimally one can
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again use a Fourier series decomposition to introduce complex coordinates. More
precisely the tangent space to ΩG at the base point [the constant loop/(z) = 1]
consists of Lie-algebra-valued functions on S1, and can be represented by a
Fourier series ^

Φ=Σanz\ a.n=-a*, Σ*» = 0, (2.2)
— oo

where an lies in the complexification of the Lie algebra of G. Thus, when G = U(m),
the coefficients an are complex mxm matrices and α* is the transposed conjugate
matrix. Thus the tangent space to ΩG, ait the base point, becomes a complex linear
space. Now using the obvious group structure on ΩG we can transport this
complex structure to all tangent spaces. It turns out that this infinitesimal (or
"almost") complex structure is actually integrable so that ΩG is an infinite-
dimensional complex manifold. An alternative and more useful description of the
complex structure will be explained shortly.

To define a hermitian metric on ΩG it is again enough to specify it at one point
and then to translate it by the group action. There are several natural metrics one
can introduce but the most natural is, in some ways, the one given relative to the
Fourier coefficients of (2.2) by

Σ n trace (α A *), (2.3)

where αn is here viewed as a matrix (or more intrinsically one views "trace" as the
Killing form). The reason why (2.3) is the natural metric lies in the fact that it is a
Kάhler metric. The associated symplectic form is given by

(Φ,ψ)=~)\φ',ψ}dθ, (2.4)
2π o

where <, > is given by the Killing form and φ'= -—.
dθ

If G is a simple and simply-connected Lie group then its first few homotopy
groups are:

π1(G) = π2(G) = 0, π 3 (G)^Z (the integers).

Since πi(G)^πi^ί(ΩG) it follows that

(ΩG is connected, simply connected and
\π2(ΩG)^Z. ( ' }

In particular it follows that the second homology H2(ΩG) is also isomorphic to the
integers. Moreover one can check that the Kahler 2-form integrated over a
generating 2-cycle is non-zero (and can be normalized to be 1).

We see therefore that ΩG does indeed share most of the important properties of
CPn, except of course finite-dimensionality.

To understand this analogy further it is helpful to recall that CPn can be
described either as a homogeneous space of U(ή) or of GL(n, C):

CPn = U(n)/U(\) x I7(n-1) = GL(n, C)/H,

where H consists of all matrices of the form htj with hn=0 for i> 1. The first
description shows that it is compact while the second exhibits the complex
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structure. The unitary description occurs naturally when we consider the orbit of
the matrix

αf real, α2 = α3 = . . . ̂ o^φoq (2.6)

under conjugation by U(n). More generally, for any compact Lie group G, the
orbit of any vector α in the Lie algebra of G under the adjoint representation is a
homogeneous space M of the form

M = G/G(α), (2.7)

where G(α) is the centralizer of α (elements of G commuting with α).
This also has a complex description as

M = GC/P, (2.8)

where P is a suitable complex subgroup of the complexification Gc of G. These
spaces all have natural Kahler metrics and the associated symplectic 2-forms are
given by a general procedure due to Kirillov [12]. Note however that the second
homology group H2(M), unlike the case of CPn, may have several generators, e.g.
for a general diagonal matrix (2.6) we get n—\ generators.

Let us now return to our loop space ΩG and explain how it also has two
different expressions. For this we shall introduce the group <& oϊfree loops on G, i.e.
all maps/: S 1 - ^ without restriction on base points. The constant loops give G as
a subgroup of ^ and clearly the coset space can be identified with ΩG:

ΩG = $/G. (2.9)

This is to be interpreted as the analogue of (2.7). The best justification for this
analogy is to consider & as the group of gauge transformations for a G-bundle over
S1. Then ^ naturally acts on the space <$/ of connections (gauge potentials) and ΩG
appears as the orbit of the trivial connection. Moreover this affine action of ^ on J /
can be interpreted in terms of the co-adjoint action of a central extension of ^ [18].
By the Kirillov procedure ΩG thus acquires a natural symplectic form and this can
be identified with (2.4).

The complexification Ψ of ^ consists of maps f:S1^>Gc, and this has a
subgroup & consisting of maps / which extend to holomorphίc maps of the closed
unit disc \z\ ^ 1 to G. The analogue of (2.8) is then true, namely

and this endows ΩG with the complex structure defined infinitesimally from (2.3).
The identification (2.10) amounts to the two group-theoretical statements:

(i)

(ϋ)



Instantons in Two and Four Dimensions 441

Essentially (i) asserts the existence of a solution for a certain non-linear boundary-
value problem while (ii) gives its uniqueness modulo constants.

Using (2.10) it follows that, for any (finite-dimensional) complex manifold X, a
holomorphic map / : X-+ΩG will, relative to some open covering {J7J of X, be
given by holomorphic maps/): V\-^^c, which agree modulo ̂ , i.e. for each pair ij,
fjf1:Utn Uj->έP. Moreover, to say that/) is holomorphic, simply means that the
corresponding map, Ft: Ut x S1 ->GC, given by Ft(x, z) =/(x) (z), is holomorphic
(in some neighbourhood in Ut x C).

Now holomorphic maps / : S1—>GC naturally define holomorphic Gc-bundles
over CP1. Explicitly we decompose CPX as the union of the two discs Do (|z|^ 1)
and D^ (\z\ ^ 1). Then we take trivial Gc-bundles over neighbourhoods of DQ.D^
and identify them over the intersection using/. If/also depends holomorphically
on a parameter space X then we will get a holomorphic bundle over X x CPγ. We
proceed to put this into more precise form. It will be convenient to introduce base-
points x0 £ X, oo e CPl9 x0 x oo e X x CP1 and 1 e ΩG [here 1 is the constant loop
/(z) = l]. Finally a based bundle will mean a bundle together with a trivialization
of the fibre over the base point (i.e. an identification of this fibre with the structure
group). The precise result we are after is then the following:

Proposition (2.11). Let X be a compact connected complex manifold with base point.
Then there is a natural equivalence between

(i) based holomorphic maps X->ΏG,
(ii) based holomorphic Gc-bundles onX x CPX which are trivial on x 0 x CPX and

XxD^.

Proof. Given a holomorphic bundle as in (ii) we can pick an open covering { ί/J of
X so that the bundle is trivial over each Ui x Do (and also by hypothesis on
XxDJ.

Choices of trivialization over XxD^ correspond to holomorphic maps
X xDOD^Gc, and since X is compact and connected these have to be constant on
the X-factor and depend only on D^. Moreover the trivialization over the base-
point x0 x oo extends to a unique trivialization over x0 x CP1 and this restricts to a
unique trivialization on x0 x D^. Thus we have a definite choice of trivialization on
all of X x D^. On each Ut x Do we pick any trivialization consistent with that on
x0 x CPί (if Xo e Ut). The holomorphic bundle is then given by based holomorphic
maps,/: U^Ψ, which agree modulo ̂ , and so define a based holomorphic map,
/ : X->@c/0* = ΩG. It is easy to see that this is independent of the choice of open
covering {Ut} and establishes a natural one-one correspondence between (i) and

We are interested in the special case of (2.11) when X = CPγ. Note that in this
case the topological classification of either (i) or (ii) (for a simple group G) is by a
single integer. In (i) this is the "degree" of the map / defined as the multiple of the
generator of H2(ΩG) represented by /or equivalently by the integral over CPγ of
/*ω where ω is the (normalized) Kahler form on ΩG. In (ii) the integer appears as
the 4-dimensional characteristic class of the bundle on CPλ x CPι. For example if
G = U(n) this is the second Chern class.

Continuing with the case X = CPU we want next to weaken the assumption in
(2.11) (ii) that the bundle is trivial on X x D^, replacing it by assuming triviality
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only on X x oo. Now, for bundles on CPU triviality is an open condition and so
any bundle on CPλ x D ^ which is trivial on CPγ x oo is automatically trivial on
CPγ x D' for some disc U with ooeD'cD. This follows easily from the "Birkhoff
stratification" of ΩG described in [16, 17], since the unique open stratum
corresponds to trivial bundles.

Since a rescaling will take D' into D^we can get back to the situation of (2.11).
To formalize this we introduce the following notation:

Jtfk(CP1,ΩG) = based holomorphic maps CPX^ΩG of degree k,
Jίk{CPγ x CP1, CPί v CP1; G ) = based isomorphism classes of holomorphic

Gc-bundles over CPX x CPU trivial over CP1 v CP1 (the union of the axes) and
with characteristic class k.

Both J ^ and Jίk are naturally complex manifolds. In fact general results of
algebraic geometry [13] imply that Jtk is actually a (non-compact) algebraic
variety (see Sect. 3) and Proposition (2.11) identifies J*ffc with an open set of Jίk.
Moreover the complex structure on fflk induced by this identification is its natural
one as a space of holomorphic maps, CP1 x S1->GC. Now, as pointed out above,
any holomorphic bundle represented by a point ξ of Jik is trivial on CPγ x £>' for
some disc Df given by \z\ ^ ρ. The infimum of such Q is in fact continuous in ξ and so
defines a continuous non-negative function, φ\Jik^R. Let us put Ji% = φ~1 [0, μ),
then M% is an open set in Jίk and (2.11) gives a homeomorphism

Jίk=Mίk. (2.12)

On the other hand the rescaling z->μz (with μ real and positive) induces an action
of the multiplicative group on Jίk which we also denote by ξ^μξ. From its
definition we see that φ is equivariant for this action, i.e. φ(μξ) = μφ(ξ). This
implies that μ induces a homeomorphism, Jίk ^ Jί^. We can now "stretch" Jίk

into Jik by using the map ξ^(ί—φ(ξ))~1ξ9 whose inverse is η^>(l + φ(η))~ίη.
Together with (2.12) this establishes the homeomorphism

J(k^fflk. (2.13)

Remark. The equivalence (2.12) is naturally complex analytic but the stretching
which yields (2.13) is not. We could make (2.13) a diffeomorphism by smoothing
the continuous function φ but the holomorphic structures on J(k and J"fk are
essentially different, in the same way as the complex plane differs from the unit disc.

3. Yang-Mills Instantons

In this section we shall review the known results about Yang-Mills instantons,
including the important recent result of Donaldson [7]. Combined with the results
of Sect. 2 this will then lead to our main conclusion, Theorem 1.

A Yang-Mills instanton over K4, with group G, is a G-connection (or potential)
whose associated curvature F (or field) satisfies

(3.1)
'<00 .
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Here we have chosen the minus sign (giving anti-self dual solutions) to fit the usual
orientation conventions of complex structure. The normalized action

1 ί\F\2 (3.1)
8π

is then a non-negative integer k, called the instanton number.
If we introduce complex coordinates (z1,z2) so that we identify R4 with C2 then

F can be decomposed into types:

,ljrp2,0^ p2,0_ _/pO,2λ* ^

The anti-self-dual condition *F= — F then breaks up into two parts:

f(a) F° 2 = 0,
l(b) F1-

2

where ω = Σ dzj A dzj is the standard 2-form. Condition (a) is just the integrability
7 = 1

condition for a holomorphic structure on the Gc-bundle, while (b) amounts to a
supplementary unitary condition involving essentially the choice of a suitable
metric in the fibres.

Locally there are many independent solutions of (3.2) but globally, under
suitable conditions, there is a unique solution of (b) for each solution of (a). This has
been proved by Donaldson [6], when C2 is replaced by a compact Kahler surface,
by direct analytical methods. For the case of C 2, in which we are now interested,
Donaldson [7] has given a more algebraic argument which relies on the explicit
ADHM construction [1, 3], and applies to any classical group G. To describe
Donaldson's result precisely let us first define the following parameter spaces:

Mk(R4, G) = space of/c-instantons over R4, with group G, modulo based gauge
equivalence,

Jik{CP2, CPί; Gc) = space of based isomorphism classes of holomorphic
Gc-bundle on CP2 which are trivial on CPV

Based gauge equivalence means that we only allow gauge transformations
which ->1 at oo. Equivalently if we compactify R4 conformally to S4, then we use
oo e S4 as base point. Similarly CP2 is regarded as a compactification of C 2, with
CPι as the "line at oo" and we take any point on CP1 as base point. Donaldson's
result is then:

Proposition (3.3) [Donaldson]. For any classical group G, there is a natural
diffeomorphism

Remarks. (1) What is noteworthy about this result is that the space Jίk is a purely
holomorphic (even algebraic) object not involving any real or unitary structure.

(2) The usual twistor approach to instantons, as explained in [1], uses all the
complex identifications R4 = C2 and ends up with a description of instantons in
terms of holomorphic bundles on CP3, with extra reality constraints.

(3) The map Mk-^Jik is easy to define explicitly, and it is not hard to see that it
is injecίive. The force of Donaldson's result is that it is surjective. On the other hand
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this is purely an existence theorem and the inverse map Jik->Mk is not constructed
explicitly. This means there is no elementary procedure to assign to each point of
the parameter space Jίk an explicit instanton.

(4) Mk is naturally just a differentiable manifold, but Jίk is a complex manifold.
Thus (3.3) endows Mk with a complex structure. In fact, since this depended on a
choice of identification R4 = C2, we have a whole 2-parameter family
(parameterized by S2) of such complex structures on Mk.

(5) If we use all gauge transformations on S4, instead of based transformations,
we get a smaller parameter space which is Mk/G. For example if G = SU(2),
dimMk = 8k, while dimMfc/G = 8/c —3. Moreover, for general G, Mk is a manifold
but Mk/G has singularities arising from reducible instantons.

(6) In algebraic geometry good parameter (or moduli) spaces of algebraic
bundles exist only if one restricts to stable bundles. However, over CP2 the
condition that bundles are trivialized over CPί essentially ensures stability.

Comparing (3.3) with the results of Sect. 2 we see that here we have been
considering holomorphic bundles over CP2 (trivial on CPX), while in Sect. 2 we
considered holomorphic bundles on CP1 x CP1 (trivial on CPγ v CP^). Now CP2

and CP1 x CPX are birationally equivalent (given by the usual stereographic
projection of the quadric surface CP1 x CPX onto CP2). More precisely there is a
diagram

I

/ \ .
(3.4)

CP, x CP,

where Γis a third algebraic surface. The map α collapses two disjoint copies of CP1

in 7 to distinct points A, B on CP1C CP2. The map β collapses a third CPγ in 7to a
point C. On 7 these three copies of CPX form a configuration as indicated

_J c \

(3.5)

the lines being indicated by the points into which they collapse under α and β. In
such a situation quite general algebraic geometric arguments ensure that a
holomorphic bundle on 7, with a trivialization on the configuration of lines (3.5),
can be pushed down by α to give a bundle on CP2 trivialized at A and B. Equally it
can be pushed down by β to give a bundle on CP1 x CPX trivialized at C. Set-
theoretically the pushing down process is clear, the only non-trivial point is that
one gets a locally trivial holomorphic bundle and this is equivalent to constructing
holomorphic trivializations on Y in the neighbourhood of the curve to be
collapsed. The proof that this is possible is in two stages. First one constructs, step
by step, a formal Taylor series (in the normal coordinates), and then one appeals to
a general theorem of Grothendieck (Elements de Geometrie Algebrique III, Publ.
Math. Inst. des Hautes Etudes Sci. No. 11) asserting that such Taylor series are
generated by algebraic functions.
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Thus the birational correspondence (3.4) leads to a natural identification of
parameter spaces:

J(k(CP29 CP1\Gc)^Jίk(CP1 x CPU CPί v CPι;G
c). (3.6)

Remark. More generally the same argument shows that we can replace CP2 by any
algebraic compactification of C2. Thus the space Jίk in (3.6) can properly be
thought of as the parameter space of algebraic Gc bundles over C2 with a
trivialization at oo.

Combining (2.13), (3.3), and (3.6) we end up finally with our main result:

Theorem 1. For any classical group G and positive integer k, the following two spaces
are diffeomorphίc :

(1) the parameter space of Yang-Mills k-instantons over R* with group G,
modulo based gauge transformations,

(2) the parameter space of all based holomorphic maps

of degree k.

One possible application of Theorem 1 would be to prove the conjecture made
in [4] concerning the topology of the instanton parameter spaces Mk as fc-»oo.
More precisely it was conjectured in [4] that the natural inclusions Mk^Ω3G
induced isomorphisms in all homotopy groups up to dimension q provided
k>ko(q). Here Ω3 stands for the space of based maps S3->G. On the other hand it
is a theorem of G. B. Segal [19] that the space of based holomorphic maps
CP1^CPn of degree k approximates the space Ω2(CPn), in the same sense, as
/c->oo. Moreover, this result of Segal's can be generalized to other homogeneous
spaces besides CPn, and it seems likely that the same methods will extend to the
case of ΩG. Together with Theorem 1 this would then prove the conjecture of [4],
at least for the classical groups.

It is generally believed, though no-one has yet proved, that for G = SU(2) the
full Yang-Mills equations on S4 have no solutions except instantons (and anti-
instantons). Theorem 1 then suggests that one might expect the same to be true for
harmonic maps

CPX -+Ω(SU(2)). (3.7)

The corresponding result for maps CP1-*CPί is easy and well-known, but for (3.7)
the problem looks interestingly non-trivial.

4. The Axially-Symmetric Case

In this section we shall specialize Theorem 1 to the case of axially symmetric
instantons. This leads to an especially simple answer (Theorem 2) and, as we shall
explain in Sect. 5, it has an interpretation in terms of magnetic monopoles.

We begin with a few further remarks on the geometry of the loop group ΩG. In
the first place there is an action of the circle group S1 on ΩG obtained by rotating
loops. Since ΩG consists of based loops this action is defined by

(λf)(μ)=f(λμ)f(λy\ for λeS1 and feΩG.
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In particular / is a fixed point of this action if and only if /(μ) =f(λμ)f(λ) ~x or
f(μ)f(λ) =f(μλ), i.e. /is a homomorphism S1 ->G. If α is any such homomorphism
then so are all its conjugates, and these are naturally parametrized by the
homogenous space Γa = G/G(α)5 where G(α) is the centralizer of the one-parameter
group α. Thus the fixed point set Γ of the action of S1 on ΏG is the disjoint union
Γ = U ̂  where α runs over the set Λl of conjugacy classes of homomorphisms of S1

αeΛ

into G. This indexing set A can naturally be identified with the integer lattice in the
Lie algebra of G (kernel of the exponential map) modulo the action of the Weyl
group. For example when G = SU(2), the set A becomes the non-negative integers
and Γo = point, Γn = CPί for n ̂  1.

As we have pointed out before the homogeneous spaces G/G(α) are all Kahler
manifolds. In fact they appear naturally as the Kahler submanifolds Γa oϊΩG. Note
that, simply as a complex manifold, each of the homogeneous spaces appears many
times in ΩG. The different α corresponds to different choices of the Kahler metric.
For example when G = SU(2) the Kahler metric on Γn is just n times the Kahler
metric on Γv However for larger groups the lattice has several generators and the
Kahler metrics are not all proportional.

The group G acts naturally by conjugation on ΩG, the loop f(λ) getting
conjugated by g e G into gf(λ)g ~x. In particular for any homomorphism α: S1 -> G,
we get an induced action of S1 on ΩG, the loop f(λ) being transformed by μ e S1

into the loop a(μ)f(λ)a(μ)~1. Consider now the set ΓacΩG of loops for which this
action of S1 coincides with the inverse of the other action of S1 given by loop
rotation, so that

feΠ o a(μ)-if(λ)u(μ)=f(μλ)f(μyι. (4.1)

Putting h(μ) = oc(μ)f(μ) and recalling that α is a homomorphism, so that oc(λμ)
= a{λ)a(μ\ (4.1) becomes

feΓ o h(λ)h(μ) = h(λμ) . (4.2)

Thus h:Sί^G is also a homomorphism, i.e. heΓ, and so (4.2) implies that

Γa = a-χΓ. (4.3)

In particular the component (Γa)ί of Γa containing the base point 1 e ΩG is just a
left translate of the homogeneous space Γα:

( Π ^ o Γ 1 / ; . (4.4)

After this digression we return to the consideration of Yang-Mills instantons
on R4. We fix an orthogonal decomposition

R4 = R2®R2, (4.5)

and consider rotation about the origin in the second R2, extended trivially to the
first factor. Thus the first R2 becomes the "axis" of the rotation.

An iS1-invariant connection over R4, relative to this action of S1 on R4, will
mean a principal G-bundle P with connection A together with a lifting of the action
of S1 to an action on P preserving A. Isomorphisms of two such S1 -invariant
connections will always be required to commute with the S1-actions on the
bundles. Since two different liftings of the Sι -action differ by bundle
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automorphisms preserving A a lifting is determined by its value over any base
point on the axis (including oo). At such a base point the S1 -action determines a
homomorphism a: S1 ->G. If we work with based bundles then α is an invariant,
otherwise only its conjugacy class is an invariant. For brevity we shall refer to α as
the type of the invariant instanton.

We now want to apply Theorem 1 to S1 -invariant instantons. The only points
that require special note are the following.

1. We choose our complex coordinates compatible with the decomposition
(4.5)

2. A holomorphic bundle on CP1 x CPί which is trivial on CPX x oo and
which is invariant under the S1 -action on the second factor is necessarily trivial on
the whole of CP1 x (CPί—0). This follows because S1 -invariance complexifies to
give C*-invariance, and triviality near CPX x oo then transports by C* to give
triviality on CP1x(CP1— 0). This means we can work directly with
Proposition (2.11), and that we do not need to use the "stretching" employed for
Theorem 1.

3. Since the S1-action α does not preserve the trivialization over the base point,
S1 -invariant instantons correspond not to maps of CPί into Γ but into Γa. Note
that we used the inverse of loop rotation in the definition of Γα because our base
point was oo rather than 0. In view of (4.3), translating the base point of ΩG from 1
to α replaces (the 1-component of) Γa by Γa.

Bearing these points in mind the arguments of Sect. 3 lead to the identification
of the parameter space of S1-invariant instantons:

Theorem 2. For any classical group G and any homomorphism α S1—>G the

parameter space of based S1 -invariant k-instantons of type α is naturally isomorphic

to the parameter space of based holomorphic maps f: CPί->G/G(oc) of degree k.

Remark. We have deduced Theorem 2 from Theorem 1. It is also possible [2] to
give a direct proof of Theorem 2 without using ΩG, but still using Donaldson's
result (3.3).

The degree of a map/: CPί->G/G(<x) is defined relative to the Kahler form on
G/G(α), which depends on α as pointed out earlier. For example, when G = SU(2)
and a is the homomorphism

the degree of / : CP1-+G/G(a) = CP1 is 2n times the usual degree (say p). This
means k must be divisible by In

k = 2np. (4.6)

In general the second homology group of G/G(α) has more than one generator,
so that the homology class of / is not determined by k. This means that the
parameter spaces in Theorem 2, for given α and fe, have several components. These
can be characterized by restricting the instanton to the axis of symmetry of R4.
Using the complex description in Sect. 3 this gives a holomorphic bundle ξ on CP1

(the compactification of the JR2-axis). Since the S^-action given by a preserves the
holomorphic structure, the bundle has its structure group reduced from Gc to



448 M. F. Atiyah

G(α)c. For example, if α is a generic homomorphism, G(α) is a maximal torus Tof G
and so ξ is a sum of line-bundles. As such it has / integer invariants, where
I = dim T= rank G, which more invariantly can be regarded as an element λeH^Ύ)
^H2(G/T). This corresponds to the homology class of the m a p / : CPi->G/T
associated to the instanton in Theorem 2.

The homomorphism a [still in this generic case when G(α) = T] maps S1 into T
and so can also be viewed as an element oϊH^T). The degree k of the map/is then
given by

fc = CU>, (4.7)

where <,> is the inner product on flΊ(T) induced by the Killing form on G
(suitably normalized). Formula (4.7) is the generalization of the SU(2)-case (4.6).
Moreover essentially similar results hold even when α is not generic, the only
difference being that Tmust be replaced by the connected component of the centre
of G(α).

5. Magnetic Monopoles

It is well-known (see for example [10, 11]) that solutions of the self-dual Yang-
Mills equations in R4 which are independent of x 4 reduce to solutions of the
Bogomolny equations in R3:

Vφ = *F. (5.1)

Here the Higgs field φ lies in the adjoint representation, V φ denotes its covariant
derivative (with respect to a connection A), F is the curvature of A and * is the
duality operator in JR3. Solutions of (5.1) satisfying suitable boundary conditions at
oo are called (Prasad-Sommerfield) magnetic monopoles. As x-^oo it is assumed
that φ tends to lie in a fixed G-orbit in the Lie algebra. If α is a point on this orbit
then, for x on a sphere S2 of large radius, the homology class λ of the asymptotic
map φ^'.S2^ G/G(α) is well-defined and called the magnetic charge. For G = SU(2)
this is given by a single integer, but in general it is specified by several integers. For
fixed α and λ one can then study the parameter space of all magnetic monopoles of
type a and charge λ. Much work has been done in this direction, especially for the
case of SU(2) [10, 14].

We can carry out a similar re-interpretation when we replace translational
invariance by rotational invariance. First however we have to replace the
Euclidean decomposition

R* = R1xR3 (5.2)

by the conformal equivalence

R4-R2~S1xH\ (5.3)

where H3 is the hyperbolic 3-space (of constant curvature —1). If in the
decomposition R4 = R2®R2, we use (x, y) coordinates in the first plane and polar
(r, θ) coordinates in the second plane, the Euclidean metric of R4 takes the form

ds2 = dx2 + dy2 + dr2 + r2dθ2 = r2 \dθ2 + dχ + dy + d Λ . ( 5 . 4 )
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Since the hyperbolic 3-sρace H3 can be represented as the upper half space z > 0 in
(x, y, z) coordinates with metric

(5.4) establishes the conformal equivalence (5.3) with the conformal factor being r2.
Since the self-dual Yang-Mills equations are conformally invariant it follows

from (5.3) that solutions of these equations on R4 — R2 which are independent oΐθ
reduce to solutions of the Bogomolny equations (5.1) on the hyperbolic 3-space
H3. Note that the metric of the base manifold enters (5.1) through the ^-operator.

Since S1 is compact (unlike R1) any finite energy solution of (5.1) on H3

corresponds to a finite action solution of the self-duality equations on R4 — R2. In
particular therefore the ^-invariant instantons on the whole of R4 (or S4) which
we studied in Sect. 4 can be re-interpreted as magnetic monopoles on H3.
Moreover we have chosen our notation with this in mind so that the type α and
homological invariant λ of an ^-invariant instanton do in fact correspond to the
type α (limit of Higgs field) and magnetic charge λ of a magnetic monopole on H3

(these are defined as in the Euclidean case).

The monopoles on H3 which arise from S1-invariant instantons on R4 have the
special property that α is integral This is because the solution extends to the
#2-axis in R4. Examples of solutions with non-integral α, having singularities on
the #2-axis, have been constructed previously [for SU(2)] in [9].

It seems highly likely that all magnetic monopoles on H3, with integral type α
and appropriate asymptotic behaviour, arise from S1 -invariant instantons. If this
is so then Theorem 2 implies that the corresponding parameter space for
monopoles on H3 can be identified with the relevant space of holomorphic maps
/ : CP1->G/G(α). In particular for G = SU(2) we get just rational maps
/ : CPγ^CPγ, i.e. rational functions of one complex variable.

Since G(α) is unchanged if we replace α by any integer multiple, Theorem 2
would also imply that the parameter space of monopoles on H3 of type poc(p an
integer) and charge λ is the same as the parameter space for type α and charge λ.
Now in Euclidean space one can always rescale the Higgs field by using a
dilatation of R3. In hyperbolic space this is not possible: the curvature gives an
absolute scale. However a monopole of type pa on H3 can be reinterpreted as a
monopole of type a on H3(p~ι), where H3(c) denotes the hyperbolic space of
constant curvature — c (i.e. H3 with metric rescaled by c). This follows by returning
to R4 and noting that (5.3) can be replaced by a conformal equivalence

R*-R2~S\c)xH3(c), (5.5)

where Sι(c) is now the circle of radius c~γ.
Thus the monopoles of type α and charge λ will have the same parameter space

for all the hyperbolic spaces l ί 3 ^ " 1 ) wi thp= 1,2,3,.... Asp-^oo the hyperbolic
space H3{p~ι) tends to the flat space R3. This suggests that perhaps the same
parameter space also applies to monopoles on R3. This conjecture has now been
proved by Donaldson [8] for G = SU(2), though his argument is direct and does
not use the hyperbolic space.



450 M. F. Atiyah

The conjecture we have just put forward would imply that every monopole on
R3 is, in a natural way, a limit of /c-instantons (invariant under S1) as fc->oo. The
explicit formulae for instantons are all rational while monopole formulae tend to
involve exponential functions. The limiting procedure involves therefore
expressing an exponential as a limit of rational functions of increasing degree.
Chakrabarti [5] has been deriving such formulae for monopoles as limits of
instantons, and it would be interesting to relate his computational approach to our
more theoretical one. It seems likely that both use the same basic mechanism.

A more detailed investigation of monopoles on hyperbolic space paralleling
Hitchin's approach will be given in [2].

Finally it may be worth making some general comments on the relation
between monopoles and rational maps. Already in Sect. 3 we mentioned the
theorem of Segal [19] about the topology of spaces of rational maps, namely that
in the limit when the degree tends to GO this space has the homotopy type of the
relevant space of continuous maps ([19] deals with maps CJ*γ^>CPw but the
methods have been generalized to cover other cases than CPn). It follows that the
parameter space of monopoles has (conjecturely) similar properties. Now this is a
result which might be susceptible to direct analytical proof by Morse theory. In
fact Taubes [20] has already taken steps in this direction by showing that [for
SU(2)] there are non-minimal solutions of the Yang-Mills-Higgs equations. By
contrast it is known that there are no non-minimal harmonic maps CP1^CP1:
Morse theory just fails to work here (the equations are of "critical-exponent" type).
It seems therefore that the Yang-Mills-Higgs equations in R3 can be viewed as
some sort of "regularization" of the harmonic map equation on S2. This could
eventually provide an analytical explanation of Segal's theorem. Moreover,
because of the analogy between instantons in 2D and 4D which has been the main
point of this paper, it is tempting to speculate on possible equations in R5 which
might similarly "regularize" the Yang-Mills equations on S4.

Acknowledgement. I am indebted to S. K. Donaldson and N. J. Hitchin for many helpful
discussions. The idea that ΩG should be considered in connection with instantons I owe essentially
to H. Garland.

References

1. Atiyah, M.F.: Geometry of Yang-Mills fields. Lezioni Fermiane, Scuola Normale Superiore,
Pisa, 1979

2. Atiyah, M.F.: Magnetic monopoles on hyperbolic space. Proc. International Colloquium on
vector bundles, Tata Institute, Bombay 1984 (to appear)

3. Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Yu.L: Construction of instantons. Phys.
Lett. 65A, 185-187 (1978)

4. Atiyah, M.F., Jones, J.D.J.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.
61,97-118 (1978)

5. Chakrabarti, A.: Instanton chains with multimonopole limits: Lax pairs for non-axially-
symmetric cases. Phys. Rev. D28, 989 (1983)

6. Donaldson, S.K.: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and
stable vector bundles. Proc. Lond. Math. Soc. (to appear)

7. Donaldson, S.K.: Instantons and geometric invariant theory. Commun. Math. Phys. (to
appear)



Instantons in Two and Four Dimensions 451

8. Donaldson, S.K.: Nahm's equations and the classification of monopoles (to appear)
9. Forgacs, P., Horvath, Z., Palla, L.: An exact fractionally charged self-dual solution,

Hungarian Academy of Sciences. Preprint KFKI 60 (1980)
10. Hitchin, N.J.: Monopoles and geodesies. Commun. Math. Phys. 83, 579-602 (1982)
11. Jaffe, A., Taubes, C.H.: Vortices and monopoles. Boston: Birkhauser 1980
12. Kirillov, A.A.: Elements of the theory of representations. Berlin, Heidelberg, New York:

Springer 1978
13. Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J. 58, 25-68

(1975)
14. Nahm, W.: All self-dual multimonopoles for arbitrary gauge groups (preprint), TH. 3172 -

CERN (1981)
15. Pressley, A.N.: The energy flow on the loop space of a compact Lie group. J. London Math.

Soc. (to appear)
16. Pressley, A.N.: Decompositions of the space of loops on a Lie group. Topology 19, 65-79

(1980)
17. Pressley, A.N., Segal, G.B.: Loop groups. Oxford: Oxford University Press 1984
18. Segal, G.B.: Unitary representations of some infmite-dimensional groups. Commun. Math.

Phys. 80, 301-342 (1981)
19. Segal, G.B.: The topology of spaces of rational functions. Acta Math. 143, 39-72 (1979)
20. Taubes, C.H.: The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs

equations in R3. Commun. Math. Phys. 86, 257-298, 299-320 (1982)

Communicated by A. Jaffe

Received January 30, 1984






