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Abstract. We define a frustrated spin-glass model for which the Migdal-
Kadanoff renormalization group is exact. Our model has random couplings,
and the renormalization group acts on these. We study the high and low
temperature phases of the model, exhibit a critical fixed point (in high
dimension), and show that the Edwards-Anderson parameter takes a non-zero
value in the low-temperature phase.

Introduction

In this paper, we analyze a model of spin-glasses which is similar to one studied
before in a joint paper with Glaser and Martin [CEGM]. While that paper was
concerned with what might be called the low-dimensional case, the present paper
deals with the high-dimensional limit. In order to make this paper readable
independently of [CEGM], we have chosen to repeat more or less verbally some of
the introductory parts of that paper. We want to view the spin-glass problem as a
problem of random variables describing random couplings. In particular, we are
interested in the behavior of the effective random coupling under a change of scale.
This will lead us naturally to a renormalization group (RG) approach.

This description will become exact in the hierarchical approximation described
below, see also [GK], and we shall describe and study some aspects of the
corresponding models which are random versions of a Migdal-Kadanoff type
recursion relation [K, M]. Alternately, our approach leads to a study of non-
independent (but not strongly coupled (mean-field) [SK]) random variables, and
our results can be viewed as an example of non-trivial behavior in this field of
mathematics.

The purpose of our paper is to describe and analyze a class of such models, and,
in particular, to study the "evolution" of the effective random coupling as a
function of the size of the lattice (Sects. 2-5).

* On leave from the University of Geneva
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Fig. 1. a Lattice for d — 2, iV = 3, e horizontal, b Lattice for d = 3, N = 3, e horizontal

In Sect. 7, we shall then arrive at the proof of existence of a spin-glass transition
in the following sense. For a class of random interactions, we show that at high
temperature, the expected value of the spin is E((s}) = 0 and E((s}2) = 0, where
< ) denotes the partition sum and E( ) denotes averaging the sample space of
random couplings. At low temperature, we have £ « s » = 0, but E«s>2) + 0, and

-^1 as /?φθ, indicating a transition of the Edwards-Anderson parameter.
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In Sect. 6, we prove the existence of a critical fixed point for the renormalization
group transformation. There is one relevant direction with eigenvalue ~ 2, and no
marginal directions. Using general results [CEL] it would also be possible to show
the existence of a critical surface.

II. The Models

The models we are considering have two equivalent formulations: One is based on
a construction of Migdal and Kadanoff [M, K], while the other is based on the
recursive diamond shaped lattices (see [GK]).

In the first case, we consider a Zd-lattice with an Ising spin at each site. In this
lattice, we single out a direction, for example the first coordinate e = (l,0, ...,0)
and we assume that the system has side 2N in the e-direction and 2N — 1 in the
others. The following description should be easier to understand by referring to
Fig. 1.

To each (horizontal) link of the form i, i + e, i e Έd there is a random coupling ξim

Below, we shall specify the nature, independence, ... of the random variables ξv

There are now two types of interaction between the Ising spins,
i) The interaction energy between s{ and s i + e is ξv.

ii) Every hyper"plane" with fixed first coordinate ί1>0 is partioned into
2(N + i~r)(d-i) hype r c ubes of dimension d— 1 and of side 2r — 1, where r is given by

iΐ=2r-\-2r2+ ... +2rk, r<r2<r3< ... <rk;

ί1=0 is handled as i1=2N. There is an infinite ferromagnetic coupling in each
hypercube, i.e. all spins in one such hypercube are equal.

For a fixed choice of the random variables ξ = {ξj, we denote by HN(s, ξ) the
energy of the spin configuration s. The Gibbs density at inverse temperature β is

given by _,*„,.«

We are interested in the properties of GN as a function of β in the thermodynamic
limit, JV->oo.

We now give a second description of the model, using a recursive buildup of a
(hierarchical) lattice. This formulation has a natural extension to non-integer
dimensions, as we shall see. One first chooses an integer n ̂  1 (one should think of
n = 2d~1

9 in the first formulation of the model). The lattice is then formed
recursively as follows. The first lattice is formed by two sites and one link.

Fig. 2. One bond s s

We call this Lo. If Lp, p^O has been constructed, then Lp+ί is obtained by
replacing each link by n sites and 2n links connecting each new site to the two
ends of original link (see Fig. 3).

We now consider LN. To each site i (numbered in some suitable fashion) we
associate an Ising spin, and to each link (ij) a random coupling constant ξt 7 .
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Fig. 3. Increasing the level by one

Again, for each fixed choice of the random variables, we can define

HN(s, ξ ) = Σ ζί sis-'

(nearest neighbors)

The Gibbs measure is defined as before.
So far, we have said nothing about the nature of the random variables, and the

model still leaves us some freedom of choice. In this paper, we choose each ξtj as an
independent copy of a fixed random variable η0. We assume that η0 has finite
variance, and, without loss of generality, that ηQ has variance 1 (this can be
obtained by a change of the temperature scale). We shall also assume that the
random variables have even distributions, and (for most of the results) that
they have bounded densities. (This excludes Ising-like interactions.)

The above models are parametrized by n and η0. They possess frustration, and,
by construction, the Migdal renormalization transformation [M] is exact. We also
would like to refer to [BB] for numerical studies for such models.

III. Renormalization Transformation

In this section, we establish MigdaΓs recursion relations, which are exact for the
models we have described. Consider LN. The renormalization consists in
integrating over all spins introduced in the step leading from LN^1 to LN. The

Fig. 4. Labelling one diamond
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resulting lattice LN_ 1 will have new effective (random) coupling constants. We now
derive the formula for getting the new couplings ξ as a function of the old ones. It is
clearly sufficient to consider the following situation.

We reemphasize that we want to sum over s1,...,sn and replace ξί9...,ξn9

ξ'ί9...,ξ'nbya, new random variable ξ giving an effective coupling between s and s'.
It is useful to introduce the random variables xf = tanh (£,-), x = tanh(ξ )

Moreover, we shall assume that the inverse temperature β has been absorbed in the
definition of the ξt. We then have to compute

1= Σ Π (eξiSS*eξiSiS)
s i,..., sn 1=1

= ± 1
n

= Σ Π cosh^ cosh^ (1 +x issί)(l + X-S/) .
S ί , . . . , s n ί = l

= ± 1

The factors cosh^ coshξ will eventually disappear in the normalization of the
partition function. We shall omit them, henceforth. The quantity to study is thus

Π Σ ( l+w Xi+^V)
i=ί Sί=±l

1
2"Π

i= i cosh (tanh ί (xμ •))
n

Π (cosh (tanh ~1 (x^)) + sinh (tanh ~A (x^ssO

= 2«Π
i = i cosh (tanh (x/X •

n 1+tanh I Σ tanh ί(xix
/

i))ss/

= 2n cosh ί Σ tanh-Hx/xO) B
V ί = 1 y Π cosh ( tanh-^x

Ϊ = 1

We again omit the factors which do not depend on s, s' (and which disappear in the
normalization), and we get the transformation for the ξ:

<f= Σ t a n h - ^ t a n h ^ t a n h O . (3.1)

Note that n should be thought of as 2d~ *, where d is the dimension of the lattice.
For completeness, we also give the renormalization of a correlation function,

for one spin. The quantity is given by

1

•*• s i , . . . , s n ί = 1

(3.2)
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The identities (3.1) and (3.2) will allow us to compute explicitly the models LN by
JV-fold iteration, and we shall be able to take the thermodynamic limit, JV-»oo.

Note. We will, henceforth, write th instead of tanh.
Having described the general features of the model, we now describe in more

detail its temperature dependence and the renormalization transformation, that is,
the effect of summing over the spins at a given level. We also introduce at this stage
some notation.

We assume that the random coupling has a probability law of a random
variable ηQ, with variance 1. The coefficient in front of the spins at inverse
temperature β is then ξo = βηo. Given a random coupling ξ, the renormalization
group induces a new random coupling - at the next level - which we call ξ, in two
steps, as can be easily derived from (3.1). Namely, we construct
ξ = th~1(th(ξ)th(ξ% where ζf is an independent copy of ξ = ξ0 and

n

where the ξ{ί\ i = 1,..., n are independent copies of ξ. The number n is a constant of
each individual model (~ 2 d i m e n s i o n ~ 1 ) . We regard it as fixed, and sufficiently large
throughout, without stating this condition every time. Note that the conditions on
the largeness of n will depend on η0. We also denote Jίξ = <f, i.e. Jί is a map from
random variables to random variables (depending on n).

We shall adopt the following conventions: / , / , / denote, respectively the
densities of ξ9 ξ, ξ and similarly, for the variances σ, σ, σ.

We next describe heuristically the behavior of the random variables under
renormalization. Assume ξ has small variance, σ, and assume n is large. Since the
variance is small, ξ is small, and hence, ξ = th.~ι(th(ξ)th(ξ'))~ξξ/. Therefore,
σ2 = E(ξ2) ~ E(ξ2ξ'2) = σ4. Since ξ is the sum of n independent copies of <f, we have
the renormalization group relation for the variance:

σ~nll2σ2.

The fixed point of this relation is σ = n~1/2 (thus, σ is small consistently if n is large),
and the unstable eigenvalue at the fixed point is

dσ

This paper makes these heuristic observations precise.

IV. Low-Temperature Behavior

We want to show that given η0, the random coupling, of variance 1, there is a β0

such that for every β > β0, one has

th(|yFp(/fy0)|)->l, almost surely as p-κx).

Define Q = E(inϊ(ηl, ηo2))/8, where E means expectation and η'o is an independ-
ent copy of η0. Note that βφO, since η0 has non-zero variance.
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Theorem 4.1. There is a constant No = N0(Q) > 3202 such that for sufficiently large
β and for n>N0 the sequences ξp(β): = J^p(βη0) satisfy

1) σp: = vsiv(ξp(β))>(n^2/320γβQ^2 (i.e. σp diverges),
2) if the density of η0 is in L^ and n is even, then the density fp of ξp(β) satisfies

for some universal constant K,

f (x)
1

(2πσ2

py

χ2l2σl
Kσ p

Remarks. 1) With a little bit more work the condition "« even" can be dropped.
2) The divergence of the variance as shown in Theorem 4.1.1 does not imply

that the random variable is large (almost surely), since it could take with small
probability a very large value, while with large probability it could take the value
zero. The purpose of Theorem 4.1.2 is to exclude this possibility.

Proof Denote by ξ(β) the random variable, ξ(β) = th~ x (th(j8η0) th(jfrfo)), where η'o
is an independent copy oΐη0. We claim: For sufficiently large β, the variance σ(β) of
ξ(β) satisfies

, (4.1)

and

&<β): = EQξ(β)\*)/σ(β)3 £ l / β 3 / 2 (4-2)

Indeed, by Lemma A 1.2), we have

σ(β)2 ^ E((min(\βηol \βη'0\)-Iog2)2

χ|^o|>2log2ί ]βηb}>21og2)

β2

for sufficiently large β. Hence, (4.1) holds. To show (4.2), we apply Lemma A3,
yielding

mύβ3E(ηir2lσ(β)\ (4.3)

by Holder's inequality, and hence, (4.2) follows from (4.1). Thus, we conclude that
for large β, the variance σ(β) is large while the "skewness" α(/J) is bounded.

We shall now use in alternation the following two lemmas.

n

Lemma 4.2. Given a random variable ξ, and forming ξ = Σ ζ{ι\ the distribution
function F of ξ satisfies i = ι

\F(xnιl2σ)-Φ(x)\Sφ112,

where Φ is the normal distribution.

This is a reformulation of the Berry-Esseen inequality (see e.g. [P, pp. I l l ,
128, No. 8]).

Note that

rc1/2σ = var(<f). (4.4)



386 P. Collet and J.-P. Eckmann

In the next lemma, we control the variance of ξ relative to that of ξ, measuring
the "skewness" caused by th~1(th(ξ)th(ξ/))

Lemma 4.3. Assume that the distribution F of ξ satisfies \F(xσ) — Φ(x)\ ̂  1/40 and
σ>9. Then σ^σ/320 and α^320 3.

Proof. We use the normalized variables η = ξ/σ, η' = ξ'/σ. We bound σ2 by

We recall the inequality Lemma A 1.2). It implies

σ2ag 1 ̂  J (inf (σj/, σ/) - log 2)2dF(yσ)dF(y'σ)

^ ί (inf (σy, σ/) - Iog2)2dF{yσ)dF{y/σ)

£ σ2(l/3 - (log2)/σ)2 [f(σ)-F (jj

By assumption,

^0.2-1/20

^1/4.

The first assertion follows. By the proof of (4.3), E(\ξ\3)^σ3. Since α-£(|(f|3)/σ3,
the second assertion follows from the first.

Proof of Theorem 4.1 A. Choose JV0 = max(1600/ρ3,(40 3203)2). By (4.1), (4.2)
we find for n>No: σ2^β2Q, α ^ l/β 3 / 2 . By Lemma 4.2 and Eq. (4.4), we have for
ξ1: = ξ(β) = t>V(βηΌ): σ1=vaτ{ξ1) = nll2σ>9 for large β, and for its distribution
function F l 5 IF^xσ^ — Φ(x)\ < 1/40. We apply Lemma 4.3 to ξ1 and obtain for <fx:
a1 =var((f1)>σ1/320 and α 1 ^320 3 . We reapply Lemma 4.2 and we find for

and

|F2(xσ2) - Φ(x)| ̂  3203/π1/2 < 1/40.

We have completed an induction step and 1) follows.

Proof of Theorem 4.1.2. If the density g0 of η0 is in L^, then the density go(β) oϊβη0

is β~1g0(x/β)9 and hence, Hδf0(i8)||co = j8~1ll̂ olloo W e aPPly L e m n l a A 2 w i t h

/ = g = gfθ5 noting that || /1| ^ < 2 if /? is large. Hence, the density / of ξ(β) satisfies

From this, we conclude that

l l/V/l l^l and
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Note that / = (/*/)*" / 2, since / * / is nothing else than the density of ξ + <f, with <f'
an independent copy of ξ. It is easy to see that E(\ξ + ξf) ^ 8£(|<f|3) and E((ξ+ ξ')2)
= 2σ\β). Therefore,

E(\ξ+ξ?)

Thus, by our previous results, ξ + ζ' is a random variable with variance 2σ2(β) and
skewness less than l/β 3 / 2. We apply to this random variable Sahaidarova's result
[P, p. 214, No. 5], which states that for some universal A,

Given our previous bounds, this implies the assertion of the theorem for p = 1.
Clearly, Eq. (4.5) implies, for large σ, that | |/ | | «> < 2, and hence, we can start a new
induction step, applying Lemma A2 to / = g = / = r/i and repeating the arguments
given above. The proof is complete.

V. High-Temperature Behavior

We now want to show that given η0 of variance 1, at sufficiently high temperature
the variance of J/rp(βη0) tends to zero as p tends to infinity.

Theorem 5.1. Given η0 of variance 1 and n, then for every β< l/(50n)1/2, we have
2

Proof. We have var{βηo) = β. Set β1 = l/(50rc)ι/2. If β<βu then E((βηo)
2)=β2

^ l/(50n). Hence, Corollary A4 applies, and the assertion follows.

VI. Existence of a Critical Fixed Point

In all of the following discussion, n is supposed to be a fixed, large integer, and Jί
will denote the operator Jf for that value of n.

If ξ is a Gaussian random variable with (small) variance σ, then we expect
i=jVξ to be an "almost" Gaussian random variable with variance ~n 1 / 2σ 2 .
Namely, in Proposition 6.6, we shall see that the variance σ of ζ is ~σ2, and the
variance of ξ equals n1/2σ. Thus, the fixed point of Jί, if it exists, is an almost
Gaussian random variable, with variance ~n~1/2. Furthermore, as we shall see
below, the only unstable eigendirection of DJί is, essentially, the variance, and it
will be seen to have eigenvalue close to 2. We choose our function space in a way to
account for these facts.

Our basic space, Jf, is decomposed as the square of the variance, and a
component (infinite dimensional) describing the deviation from being Gaussian.

Definition.

\\ U l L + ||x4φ||2< oo,
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Here, and in the sequel, || ||p denotes the Lp norm, and \\xkφ\\p is a shorthand
notation for (§\xkφ(x)\pdx)1/p. We denote by | \#, the norm on if, and we write

To every pair (s, φ) e ffl with s > 0 we associate a function / by the identity

f(x) = in/s)1/2ihixin/s)112) + φ(?21/2x)), (6.1)

where we adopt the convention /i(z): = (2π)~ 1 / 2e~ z 2 / 2, throughout. Thus, if s= 1
and φ = 0, then / is a Gaussian with variance n~1/2.

We define ^ = {/| | | / | | o o n" 1 / 2 + M7/4 | |x4/||2<oo}, and we denote by | | ^ the
corresponding norm. The operator ^fx\^-^M>

γ is defined by the relation
^ ( s , φ)=/, as defined in (6.1). Note that / is not necessarily the density of a
probability law, but, for every is9φ)eJf, s>0, one has J/(x)dx = l and
\x2fix)dx = s. Thus, we have obtained our parametrization of "almost" Gaussian
functions.

We next define the map SP by

| t h j c | ^ | y | ^ l \y\

y2

y

We shall see that it is useful to consider £f as a map J^-^Jf, where

This operator £f does not commute with the change of scale depending on n, but
we shall show that / still "scales" reasonably when n is changed.

We next consider the operation ^ J f ^ J ^ , where j(x) = ^'Jt(x)=f*n(x)
(here, /* p is the p-fold convolution product).

Finally, we define ^ : ^ ^Jtf by

s = n\x2f(x)dx,

Thus, Jί^&ΊgΓSfy^ is (supposedly) a map from part of Jf7 to jf. We shall show
that Ji has a fixed point (s%, φ#). Note also that ^ = ̂ ~ 1 , and in particular, that
Jί = ?Πf and /^ = &Ί(s^ φ%) is a fixed point for Jί. Furthermore, the spectrum of
DJί equals the spectrum of DJi.

Thus, it is sufficient to study Jί, and we intend to show it has a fixed point near
(1,0). More specifically, we consider the ball

^ ^ ( s , φ) I |(s-1, φ ) | ^

Then we have

Theorem 6.1. The map Jί maps 3 to ffl and has a unique fixed point in &. The map
DJi has a simple eigenvalue at 2 + O(n~1/2) and the remainder of the spectrum
strictly inside the unit disk.
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From the definition of 3d it is clear that the fixed point is close to Gaussian,
when n is large.

We shall prove Theorem 6.1 by using a variant of Newton's method. The input
to this method is given by

Theorem 6.2. 1)
2) Jί is defined as a map from 3d to ^f and DJί{s^φ) is a 2 x 2 "matrix" whose

elements

Lc
satisfy:

|B(0, ψ)\x g n ~ ̂ ( l o g π Γ 1 • n^KO, y

\C(t, 0)1*.^ (log«)4/n1/2 n 1 / 4 logn|(t,

These bounds hold uniformly for (s, φ) in 33.

Proof of Theorem 6.1. Theorem 6.2 implies that for all (s,

where Jίf has norm less than (logrc)"2. Therefore, if we define Φ = ί^ — Jί*~γ

- (Jί — tjp), we find that DΦ(S φ) has norm less than 1/2 for (s, φ)e3d. Combining
Theorem 6.2.1 and 2, we see that Φ is a contraction from 3d into itself, and hence, it
has a fixed point. Thus, Jί and in turn Jί have a fixed point as asserted. It also
follows from Theorem 6.2 that Jί has a simple eigenvalue 2 + Θ(n~112), and the
remainder of the spectrum strictly inside the unit disk.

Remark. The bounds on C, D in Theorem 6.2 are immediate consequences of
Propositions 6.6 and 6.10.2). We bound A in Lemma 6.11 and B in Lemma 6.12.

Remark. The fixed point found above is a positive function. We only sketch the
argument. There is a neighborhood U of the fixed point of radius Θ(n~1/2), where
the tangent map is uniformly hyperbolic (easy from Theorem 6.2). Moreover, in U,
the unstable direction stays inside a cone of aperture Θ(n~1/4) with axis the second
Hermite function. Moreover, since the stable part of the spectrum is inside a ball of
radius Θ(n~1/4), we deduce that the stable manifold extends to a distance Θ(n~1/2)
of the fixed point, and the tangent directions stay outside a cone of axis as above
and aperture π/4. This implies that the one parameter family s-^s1/2h(s112) crosses

transversally the stable manifold at a distance Θ by Theorem 6.1 . Let
L \ n J J

s0 be the square of the variance of the intersection. Since Jί transforms positive
functions into positive functions and Jίp{sy2h{sy2)) converges to the fixed point,
we deduce that it is a positive function.
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The proof of Theorems 6.2.1) and 6.2.2) is based on a careful study of the
operators Sf and 2Γ. (The considerations concerning 5^ and ^ are of a simpler
nature and will be done in a more ad hoc fashion.) Furthermore, we shall need
some control over the variance.

The Operator 9. This is the net effect of summing over one spin, and it induces a
highly non-linear (and non-Gaussian) effect on the density. The object of interest is

(l-th2x) J f- 1

 2 )

f
Note that rf(f,g) = J*(gJ) and that /=5^(/) = «*/(/,/), and hence, ΏSffg
= 2s/(f,g).

Lemma 6.3. Assume that the functions f,g are even, that f,geL1nL00, and
1! = 1, ll/ll«, = 2. Tftβn

and

This is part of Lemma A2.
We need some information about the variance of Sf(f) when f=Sf1(s,φ),

. If (s, φ) 6 ^ , we can form

V2

The variance of ^ ( / ) is then

with T(x,j;) = |th~1(th(x)th(y))|. We change variables and get

By Lemma A3, σ2 ^25(Jx2\f(x)\dx)2. But

n ' \sj

s 2

n ns

by Lemma A5. Hence, we have shown

Lemma 6.4. // (5, φ)e&, then the variance σ of 5^5^(s, φ) is bounded as follows:

We will also need a lower bound on σ, see Lemma A6.
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Lemma 6.5. There is a constant K>0 such that for every (s,φ)e& one has

Proposition 6.6. The operator 5^ is defined and analytic on &, and £f is defined on
Sf^βti. For every (s, φ)e J* the tangent map {p£^^{s^φ) is a bounded linear operator
from ffl to Jf*, with norm uniformly bounded in n. Furthermore, the variance σ of

φ) satisfies 2 / n ^ σ ^

Proof. The last statement is an easy consequence of going through the proofs of the
two preceding lemmas. From the definition of £fl9 Jtif, and Jfx it is obvious that

Notice that

n\112

X

2s 2s

' n \ 1 / 2 , , „ ,

a n d hence,

J Ψ(nίl2x), (6.2)

as is easily checked.
We next analyze y . If fe j ^ l 9 then

1I/L^^1/2I/U and ||x4/||2^n-7/4 |/k.

It is easy to see from the definition of Sfγ that for (s,φ)e08,
= Θ(n1/2)^2. We conclude from Lemma 6.3 that

for fe&ΊM by Lemma A5

and

log 11/11 oJ.

By Lemma A7, Wx^fW^O^fWl). Hence, for {s9φ)eΛ9 SfSTfaφ) is defined
and \Sf$f^φ)\xiLG{y). Note that D9?

fg = 2^/(f,g). Therefore, for
and gs3^u we find from Lemma 6.3 and Lemma A5

Finally, by Lemma A7 (using polarization), we have

If we consider the definition of | |^, we see that the above estimates imply the
assertion. Proposition 6.6 is proved.
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The Operator 2Γ. The operator SΓ corresponds to taking the sum of n independent
copies of the random variable ζ whose density is /. Basically, our approach
consists in controlling the error terms in the central limit theorem. There is, of
course, a vast literature associated with this problem, and our methods below are
heavily inspired by it. But we are forced to redo the estimates again, for two
reasons. First, our "density" / need not be positive, when s, φ vary in ^ , and
second, as a function of n our bounds on various moments of / are not totally
uniform. Also, we need L 2 estimates which are not very common in the literature.

In the sequel, we find it more convenient to study directly the operator 2Γγ2Γ.
(The operator 2Γ is anyway only needed in the definition of Jί) Note that 3ΓX is
linear, and thus, it is easy to verify the asserted properties of SΓ from those o!ί2Γγ2Γ.
We leave these details to the reader.

Our bounds on S'^ are strongly influenced by those of Petrov [P]. The idea is
to give bounds on the Fourier transform of fe Jf. These bounds are given for a
"central" region (Lemma 6.7 below, cf. [P, p. 140]) and for an "external" region, cf.
[S] (Lemma 6.8, below).

We introduce some notation. Given / e y y ^ C JΓ, we define v = ̂ f as its
Fourier transform and fn(i) = v(t/(σon

1/2))n, where σo= l/n. We also define

Finally, in order to study D^Ί^, we consider for fixed fejf a geJΓ with
$g(x)dx = 0. We set

t V-1, V t
1/2 / V^ * " \ 1/2

Note that 5, as defined above, is, for fe SfSf^SH^ a number in [1/2,2] and that, by
Proposition 6.6,

Lemma 6.7. For sufficiently large n one has uniformly in n and in \t\ <(ft/ρ4s)1/2 the
following inequalities

2)
2σ2

0n

forj = 0,1,2,3,4.

Proof. We first prove 1) for j = 4 and leave the cases 1) j = 0,1,2, 3 to the reader. A
little algebra shows that

t(\)(2)(3)Xy 6(n-\)(n-2^^

+ 3(n - \)v(τ)2v"(τ)2 + 4(n - l)ι;(τ) V(τ)ι/"(τ) + v(τ)3v"//(τ)~] ,
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where τ = t/σ0n
1/2. From

X IX
eιx=\ + ix h x r(x), where

2 6

we have

st2 t4

/ 2 ) -

π

st t3

n n2

s t2

n n2

(σ0n 1

\σon
lιzj n

Using ρ 4 ^ l and t ρ 4

/ 2 π ~ 1 / 2 ^ 2 , it is easy to deduce

Next, we want to pass to logu. We have

si 2 s 2 ί 4

st2

with |r(ί) | ^ 1/24 and hence, |α| ̂  1/12. Since

st2 st2

Using now log(l — x) = — x — J , we get
o 1 — t

st2

I < 1/2, we find 1 > υ (τ) > — .
24

tdt

st2 s2f

with
This implies

logι;(τ) = log 1 - — ( 1 + « ) = - +
χ in in n

(n-4)

In n

We now use the bound \ex— l |g |x |^' x |, so that

1st2 (n~4)s2t4

393

, VxeR,



394 P. Collet and J.-P. Eckmann

This implies

at

The assertion 1) follows now from 34<
We now prove 2). A calculation similar to the preceding one shows that for

\t\S(n/ρ4s)1/2 one has

dUv ,1/2

n - 1

— e
-st2/2

for j = 0,1,2,3,4. We now observe [using &rg{Q>) = 0~\ that with w = άFg and
τ = ί/σ0rc1/2, one has

Similarly, for the derivatives :

t

lapx

— W
i!/2

r/«3/2)

for j = 1,2,3,4. The assertion follows now from the chain rule and the bound (cf.
Lemma A5):

1

σ2

0n

In the following lemma, we assume that / h a s a decomposition f=f0 + ώ, with f0

positive and ώ small. More precisely, we assume

~

with se[ l/2,2], | | / 0 | | 2 ^
assume ||c3|| ± ̂  fi?(n~3

Remark 6.8. Let

o^O, ί / 0 ( x ) d x = l , σ2

0:=$x2f(x)

/ 2logπ), and ρ 4 : = | |Λ;4/| |1/σ ί 4^Φ(n1 / 2). Finally, we

γ^i. Then f has a decomposition as above, with

Proof. Iϊ(s0, φ) e 3$, then ^ ( S Q , φ) is a Gaussian plus a remainder, whose integral is
zero. Applying the operator ^ (which we view as the bilinear expression si of
Lemma 6.3), we see that ?o = <Sf&Ί(so, 0) is a function of integral 1, satisfying all of
the above assumptions (use Lemma 6.3, Proposition 6.6, Lemma A7, and the
definition of | \%). Also, Lemma 6.3 implies the bound on ||d>|| l e

Lemma 6.9. Under the above assumptions on f0 and ώ, one has

^l2 for m \l/2
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Proof. We shall first give a bound on (^f)2 = ̂ (f*f). We decompose / * /
=fo * /o + % * ώ + ώ * ώ. The second and third term are, respectively, bounded as

and

Consider now / 0 * / 0 This function is nonnegative and has integral 1. By
assumption

We apply to A = έF(f0 * f0) the corollary of Lemma 1 of Statulyavichus [S], which
states that

96C2(2σ0\t\ + πy

where σ^=\dxx2{f0 *fo)(x) By Lemma A6 and its proof we find σ% =2§dxx2f0(x)
^ 3 σ 2 . Therefore,

Θ(n2(\ogn)4)(4σ\t\

Assuming |ί |>(rc/ρ4s)1 / 2, we obtain

Recall that ρ 4 ^ 1 and note, for later use, that by the assumption on s, we have

mew.
We now show that for t in the required domain,

We use the inequality, valid for α,β>0, e~a + β = e~\\ +eaβ)Se~a+e*β. We take

n

α = {} and /^(lld^GI/olU + HώllJ), we find 0(1)^{ }^0 _ _ and
l 4

from which the assertion follows.
In our next proposition, we still make the assumptions on f0, given above, and

we formulate the bounds on βΓγ2Γ and D?ΓX3~'.

Proposition 6.10. Define f(x) = n1/2σ0f*
n(nί/2σ0x), where σo = l/n. Then, for n

sufficiently large, one has

1) f(x)= -i\i/2 e~sχ2ί2jrφ(χ), with S = G2OQ2 and \φ\π,i^Θ(n~112).

2) If geJΓ and 5g(x)dx = 0, then g(x) = nll2σ0(f*{n-1) *g)(nll2σ0x) satisfies

'2.)

and \g(x)dx = §.
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Proof. From Lemma 6.7, we have, for | ί |^(n

For |ί|^0ί/ρ4s)1/2, we have

if j ^

Using Lemma 6.9 and Eq. (6.3) we also have

σnn
1/2

l +

This implies, since ρ4^

From the choice of s, we have immediately J^/fΌ) = (#/)"(0) = 0 and hence, 1) is
proven.

We now prove 2). If \t\^(n/ρ4s)112, then we deduce from Lemma 6.7,

X(t) =
2nσc

-sί2/2

2nσ2

0

If \t\^(n/ρ4s)1/2, then by Lemma 6.9 we conclude that

f i*/2 \§\x-

This implies the assertion.

Lemma 6.11. The matrix element A of the "matrix" DJί is equal to 2 + Θ ( —— .
\Π1 / 2/

Proof. A straightforward calculation shows that the matrix element A equals

A = n21 x 2 [ D c S ^ f (s> φ)( 1,0)] (x)dx = 2π2 J Γ(x, y) 2f(x)g(y)dxdy,

with

Note also that s=
logn

)-n 1 / 2/z(xπ 1 / 2).

. We consider first the case 5 = 1 , φ = 0. Then

3 j Γ(x, y)2h(xnll2)h(yn1/2)dxdy

h(x)h{y)dxdy.
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We split the above integral as J and its complement. The first term is
M,|y|£»1 / 4

expanded, using the Taylor expansion of T as

2 j x2y2h 5

\χ\Λy\ < «1/4

The remainder is Θ{n~5), and the terms coming from φ or from changing s are at

once bounded by Lemma A2.

Lemma 6.12. Given geJf, the first component of D9~γ?Γjg is bounded by Θ(nίl4)\g\k

uniformly in fe SeSf^β.

Proof. We have, by definition

(DJ'ί^fg)nrstcomp^n2ίx2g(x)dx.

By the Schwarz inequality, this is bounded by

from which the assertion follows.

Proof of Theorem 6.2.1. This is really a variant of earlier estimates. Consider (s,0).
The function f=£fί(s,0) is Gaussian, and hence, by a variant of Lemma A6,

\\x2kf\\aCkn-2k for fc = 0,l,2,..., i.e.

e.g. ρ 4 ^ Θ(l) and not only Θ(n1/2) as in the case of a general function in &. Hence,
by combining [P, Lemma 4, p. 140 of Petrov, for s= 10], and Lemma 6.9, we see

that f(x) is a Gaussian of variance 1 + ΘI - I plus a function φ which is & I — I in

L WJ \nj
2tf' [and not only Θ(n~l!1) as in Proposition 6.10].

VII. Spin Observables

In this section, we investigate the behavior of the expectation of the spin when the
"volume" of the lattice tends to infinity. We fix the values of the spin at the two
extreme points of the lattice, thereby choosing the boundary conditions. If s is a
spin which is not one of the above two, we shall denote by <s> its expectation for
fixed boundary condition and fixed values of the random couplings. We show that
the expectation E((s}2) (i.e. average over couplings) of <s>2 satisfies

0 at high temperature

^ Φ 0 at low temperature

and

E((s)>) = 0 at all temperatures.

Note that the above argument shows a transition for the Edwards-Anderson
[T, EG] parameter. We shall also see that the value of the Edwards-Anderson
parameter is independent of the boundary conditions.
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Fig. 5. Labelling of the spins

Consider the lattice LN and a fixed spin variable s 0 which has been "created" at
level N. The variable s 0 has two neighboring sites, exactly one of which has been
created at level N— 1. We call it sx and we call the other neighbor s\. Considering
now s1 as a fixed spin in LN_ l 5 we find its neighbors s2 and s2 in the same fashion as
before, and continuing inductively, we find two chains so,su...9sN and
s0, s'l5 s2,..., s'N of spins. Note that all st are distinct, but some of the s may coincide.
See Fig. 5.

Note also that either s m + 1 =s'm or s'm+1 = s'm.
To these chains of spins, we associate functions of the form Fj(s/? s•) = α ^ + &fs-5

where the ai9 bi are real jfunctions depending on the couplings x0. We are interested
in (Ffai, s ) ) [i.e. the canonical expectation of the observable F^, s ) ] . We have
the following important identity: ^Asm-\-Bsf

my = (κA
/sm+1

JrB/s/

m+1}, where

I _ X

2

X

/ 2

™ " if s m + 1 = 4 , (7.1)

and

l - x 2 x / 2

m m if s' — s' (12\

B' = Γ Λ

Here, xm and xf

m are two identical, independent random couplings obtained from
x0 through m-fold application of the RG transformation, xm — U\{Jίmξ). The above
identities are immediately obtained by induction when summing over all spins at
level N — m.

Namely,

(1 + xmsmsm + 0 (1 + xmsmsm) = (1 + xmxmsm +! sm + 0 ( 1 +
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and, summing over sm (and taking the mean), we get

v-> / 1 , XmSm + 1 + XmSm + 1 \ / Λ , r > / \ Λ / -^m^m + 1 ~f~ ^ m S m + 1 \ D ,

ΣU + 77 sm\-(Asm + Bs'J = A[— ; ; I + J f t s m .
sm \ * i~XmXmSm+ ίSm+l / \ * ' XmXmSm+ ίSm+1/

The equations follow from s^ = sm + 1 (respectively = s ^ + 1 ) .

Given s0 and ^o + O? w e therefore find, when Bo = 0,

^>, (7.3)

where the 4 ί 5 Bt are recursively obtained by the above relations and are random
variables in all xj9Xj = th(ξj), t h ( ^ ) created above level i. We are interested in
£ « s o > 2 ) , and this is equal to E(Al + B^) + 2E(ANBN)sNs/

N. We shall show below
that at large β, E(A2

N + B2

N) > 1/2 for all N and that 2E(ANBN) - 0. We further will
show E(AN) = E(BN) = 0. This clearly implies

Theorem 7.1. For large β, we have E((s)) = 0, £ « s > 2 ) > l / 2 , and E((s)2)->1 as
/?->oo, for any site inside the lattice and any lattice size.

Remark 7.2. It is easy to see that for small β, E((s}2)-^0 as the lattice size goes to
infinity.

Remark 7.3. Morally, Theorem 7.1 should hold for any temperature β>βCΐiv We
have, however, not worked out the crossover behavior, connecting Theorems 6.1
and 7.1. We believe this could be done in the style of [CE].

Remark 7.4. We comment on the meaning of AN and BN. By the Eq. (7.3), <so>
= ANsN + BNs'N, with A0 = l. Here, s0 is a spin "inside" the lattice, and sN and s'N are
the two extremal "outside" points of the lattice. Given a sample point in the
probability space of couplings, AN and BN become numbers which tell us how the
thermodynamic expectation of <so> is correlated to that of the "boundary
conditions" sN and s'N. Note that by the definition of the model, every coupling is
with equal probability positive or negative. Thus the averages over the sample
space of these couplings, i.e. E(AN) and E(BN\ are zero. But the fluctuations stay
large for large β, i.e. E(A^ + Bl) > 1/2, and they are small at high temperature. So a
typical spin at low temperature "sees" long chains of strongly correlated neighbors,
while at high temperature it does not. In this sense, our model represents a spin
glass.

As a preparation for the study of E(Aχ + Bχ) we need a few preliminary
estimates. We shall use the following notation. We fix a n m ^ O and denote A = Am,
B = Bm, A' = Am+1, B' = Bm+l9 x = xm, y = xm, ^ t h " 1 ^ ) , σ = σw. Note that by
Theorem 4.1.1), σ->oo exponentially fast with m. For definiteness, we assume that
A\B' have been obtained from A,B through relation (7.1). The other case is
handled in total analogy.

Lemma 7.5. For JV>0, E(AN) = E(BN) = E(ANBN) = 0.

Proof. This proof is inspired by [ARS] and [SYG], who show the use of gauge
symmetry. Denote by <so)S i V s^(ξ) the expectation of s0 with boundary conditions
sN, s'N and couplings ξ. Since for N > 0 none of the couplings connects sN to s'N, we
have

f (7.4)
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where T+ _ changes the sign of those interactions "connected" to s'N and f those
connected to s0. Since the ξ's have distributions, (7.4) implies

and hence, E(AN) = E(BN) - 0. But (7.4) also implies E((s0 > \ t +) = £ « s 0 > \ f _) from
which £(,4^5^) = 0 follows.

Lemma 7.6. | ^ Ί + \B'\ ^ μ | + |J5|.

Proof. Note that |x|, M ^ 1. Hence,

Lemma 7.7. // ̂ 0 = 1, Bo = 0, then \Am\ + |Bm | S 1 /or α// m.

Proof. Obvious from Lemma 7.6.

Lemma 7.8. For sufficiently large σ, we have

Proof. We have

\2

(l-x2y2)2

since the crossed terms drop by Lemma 7.5. We define a set Ω (depending on m) as
the subset in our sample space for which

or I^Ί^logσ or |£ + C'|Slogσ or \ζ-ζr\^

We shall show
(i) Pr{Ω)\

(ii) On the complement Ωc of Ώ,

i . - ^—— ^ l - σ . (/.$)

This implies the assertion of the lemma as follows:

E(A'2 + B'2) = E(B2) + E(A2 TχΩC) + E(A2 TχΩ)

by Lemma 7.7 and (i).
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We next prove (i). By Theorem 4.1.2),

logσ

Pr(\ξ\<\ogσ)%2 J dx
ψ2{2πσ

Similarly, with / denoting the density of ξ, we have

ξ'\<\ogσ)= J f(x)f(y)dxdy

=\f{x)dx T '
-x-logσ

logσλ
, again by Theorem 4.1.

The case oΐ\ξ — ξ'\ is analogous, and thus, (i) follows. To prove (ii), we first note that
on Ωc one has |ξ|^logσ, and since x = th(ξ), this implies

l - x 2 ^ l / ( j . (7.6)

Of course, we also have on Ωc,

l-j ^l/σ. (7.7)

We further observe that on Ω\

1 v 2 1 1 v 2

\=^ύ~ or i ^ σ . (7.8)\—y σ

This is seen as follows: \ξ + ξ'\ ^logσ and \ξ — ξ'\ ̂  logσ imply that ||ξ| — \ξ'\\ ̂
This in turn implies

log
-\y\

>log2σ. (7.9)

Combining now (7.6) with (7.7) and (7.9) implies the inequality (7.8).
Recall now the definition (7.5) of T. Since x2,y2^l, we have

^2,,2\

(1-xV)2 (l-x2y2)2

= :C/-2F.

On Ω\ we have, by (7.6) and (7.7), 0 ^ F^2/σ, and

l-x:

\-y2

 2
1 + -Λ 2 - 0 ~ X

i+((i-y2)/(i-^2))2
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Now (7.8) implies (1 — x2)/(l — y2) rg l/σ (or the opposite case, which is similar), and
hence, \U- l l ^ ^ σ " 1 ) . Thus, (ii) follows.

Proof of Theorem 7.1. The first assertion is obvious from Lemma 7.5. Define
Σm = E(A2

n

JrB2

n). By assumption Σ0 = l. Applying Lemma 7.8 repeatedly, we see
that

and hence,

m— 1 m— 1

y > τ~τ π ~ i/2\ v 1 ~~ ^/2

7 = 0 ^ = 0

By Theorem 4.1.1), σ^βQxl2{nγi2β20)j and hence, the assertion follows, and, in
fact, Σm->\ as β-^oo.

Appendix

In the following lemma, we summarize the estimates on the function
which will be needed throughout.

Lemma Al. Denote T(x,);) = |th'"1(th(x)th();))|. Then

M \y\

2) Γ(
3) // |x | , | y |<l/2, then
4) T(

Proof. 1), 4) Note that |th(x)| ̂  min(|x|, 1), for all x e 1R, and that |th " 1 (z)\ S 2\z\, for
all |z|<0.95. Thus, if |x|, |y|<0.95, we have T(x,y)<>2\xy\. If |x |^0.95 and
|y|<0.95, we use the general bound T(x, 3;) ̂  th~ 1 (|th(y)|) = |y|. Finally, if
|x | ,M^0.95, then we use the bound T(x,y)S\th~ι{th(x))l | th~ 1 (th(^))|, i.e.
Γ(x,y)^\xy\1 / 2. Combining these bounds implies 1) and 4).

2) We have | t h x | ^ l - 2 e x p ( - 2 | x | ) , and hence,

Finally,

and combining these bounds yield 2).
3) For |x |<l/2, |th(x)|^0.9|x|. Hence,

Define

1 —
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Note that s/(J,g) = s/(g,f).

Lemma A2. Assume f,g are even, f,geL1nLOD, and | | / | | i = l Then \\s#(f,g)\\ι

iogll/IIco if
2 + \\g\\m if

Proof. By the change of variables u = th 1 y, i; = th M , we see that

V y J

I K(/, g)\(χ)dx ^ J |/(tt)|duj |0(u)|<fo,

which is the first inequality.

To prove the second inequality, we set α = thx and decompose
1-a2 l+a ί 1 1

(l-y2)(y2-a2) (l+y)(y + a) (l-y ' y-a)

Set S(z) = |/(th"1(z))|, T(z) = \g(th-1(z))l Then

1 1
\sd{f, g)\(x) ^ J = (1 + a)2 \ tΛ _ yJ , s S(y)T(a/y)

{\-y y-a

= ( l+α)2(J 1 + J 2 ) .

By the change of variables z = a/y in J2, we obtain

Thus, we are led to bound expressions of the form

i dy
JoW = ί ^ - ^ ( j ) F ( ^ ) ,

with either U = S, V= T or U = T, 7=5. We set ε = min(l/2, | |/ | | i 1 ) . Assume for
the moment (7 = 5, F= T. For α > ε, we have

>=-ll0lUI/Hi.

Thus,
oo on 1

ί dx|J0(x)|2^^(l) t

1
^β?( l)-

ε

In summary, if t/ = S, F= T, we get
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1 ε 1

Next consider α<ε. We split the integral J as J + J. The second integral is
a a ε

bounded as before, and we consider the contribution of the first to the L2 norm.
Consider first the case U = S, V= T. We have to bound

1= J
0 a U \UJ a W

This is bounded by

thV(ε) *du*du' ί a\
II/O0IL ί dxί —ί — Γ - .

O a U a U \UJ

Setting z— -thx, ύ = u/ε, ύ/ = εz/u\ and integrating by parts, we get

0

ε 1

We split this latter integral into § + §, and we get
0 ε

Similarly, if U=T, V— S we obtain a bound with /, g interchanged. Having
ε 1

bounded the L2 norms of J and of j , the bound on the L2 norm of Jo follows readily
a ε

from the Schwarz inequality.
Assume first that H/11^^2. Then ε = | | / | | ~ 1 , and we get

lilog 11/11 „ +llff l l i[ l+2log ll/ll „]}

+ llίll co llellr 11/11 co log 11/1100 +Ilfflli

If 11/II oo < 2, then ε = 1/2, and we get

Lemma A3. One has the inequality

\T(x,y)2\f(x)f(y)\dxdyS25(lx2\f{x)\dx)2,

and, when /(x)2;0, f/(x)dx = l, then one has

i T(x, y)3f(x)f(y)dxdy £ tf x2f(x)dx)3'2,

where T(x,y) = \th-χ(th(x)th(y))\.
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Proof. By Lemma Al.l) we find T(x,y)2^25x2y2, so that the first inequality
follows. But Lemma A 1.4) tells us T(x, y)3 ̂  |x|3 / 2 |y|3 / 2, so that the left-hand side of
the second inequality is bounded by (J |x|3 / 2/(x)dx)2, which is in turn bounded by
(Jx2/(x)dx)3 by the Holder inequality.

Corollary A4. Set y= l/(50n). Then E(ξ2)^y implies E((JTξ)2)^E(ξ2)/2.

Proof. Since E((J^ξ)2)ί/2 = nί/2E(ξ)ί/2, the assertion is obvious from Lemma A3.

Lemma A5. For every α > 0, one has the inequalities

1) | |φ |
2) | |x2

Proof. 1) We have

I | φ ( x ) i ^ 2 α | | φ | | 0 0 + J x > ( x ) | χ - 4 d x ^ 2 α | | < p | L + 2 | | x > | | 2 o Γ 7 / 2 .
\x\ >α

2) We have

φ | | 0 0 + J x > ( x ) | χ

Lemma A6. // (s,φ)e0S, then §x2&?#?

1((s,φ))(x)dx'^K/n2, for some universal
constant K>0.

Proof. For φ = 0, the left-hand side above is equal to

5l/2 vsl/2\2

^/~ι^j h(x)h(y) = I.

We bound I from below by restricting the integration to |x|, \y\ < n 1 / 5 . For n large
we may apply Lemma A 1.3 and get

sl/2 ysl/2\2

Thus,

If φ φ 0 we bound the variance in the case s = 1 by

(The case s φ 1 is left to the reader.) By Lemma Al.l),

n 1 / 2

Thus, the bounds on the integrals factorize. We have \x1h(x)dx = Θ(\) and, by
Lemma A5.2),
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Hence, 2I1 + l2^ΞΘ(n~2~ll% and the assertion follows.

Lemma A7. I/, for some k*§: 1, one has \\x2kf\\2^y, then

Proof. We use Lemma Al.l). This yields a bound

\\x2kf\\1=ΪT(x9y)2k\f(x)f(y)\dxdy
2k

d+\χ\rjκj

and the assertion follows.

Acknowledgements. We wish to thank H. Epstein and O. Lanford for helpful discussions. J.-P. E.
wishes to thank the IHES for the warm hospitality, and P. C. acknowledges partial support from
the Fonds National Suisse.

References

[ARS] Avron, J.E., Roepstorff, G., Schulman, L.S.: Ground state degeneracy and ferromagne-
tism in a spin glass. J. Stat. Phys. 26, 25 (1981)

[BB] Benyoussef, A., Boccara, N.: Real space renormalization group investigation of three-
dimensional Ising spin glasses. Phys. Lett. 93 A, 351-353 (1983); Existence of spin-glass
phases for three and four dimensional Ising and Heisenberg model (to appear)

[CE] Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model
in statistical mechanics. In: Lecture Notes in Physics, Vol. 74. Berlin, Heidelberg, New
York: Springer 1978

[CEGM] Collet, P., Eckmann, J.-P., Glaser, V., Martin, A.: J. Stat. Phys. (submitted)
[CEL] Collet, P., Eckmann, J.-P., Lanford, O.E., III: Universal properties of maps on an

interval. Commun. Math. Phys. 76, 211-254 (1980)
[ET] Van Enter, A.C., Griffiths, R.B.: The order parameter in a spin glass. Commun. Math.

Phys. 90, 319 (1983)
[GK] Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Phys. Rev. B 26,

5022-5032 (1982)
[K] Kadanoff, L.P.: Notes on Migdal's recursion formulas. Ann. Phys. 100,359-394 (1976)
[M] Migdal, A.D.: Phase transitions in gauge and spin lattice systems. Zh. Eksp. Teor. Fiz.

69, 1457-1465 (1975)
[P] Petrov, V.V.: Sums of independent random variables. Berlin, Heidelberg, New York:

Springer 1975
[S] Statulyavichus, V.A.: Limit theorems for densities and asymptotic expansions for

distributions of sums of independent random variables. Theor. Prob. Appl. 10,582-595
(1965)

[SK] Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35,
1792 (1975)

[S YG] Sϋtδ, A., Yalcin, T., Gruber, C.: A probabilistic approach to the models of spin glasses.
J. Stat. Phys. 31, 639 (1983)

[T] Toulouse, G.: Frustrations et desordres: problemes nouveaux en mecanique statisti-
que. Histoire des verres de spin. Congres de la Societe Francaise de Physique,
Clermont-Ferrand 1981 (Les Editions de Physique 1982)

Communicated by T. Spencer

Received November 3, 1983




