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Abstract. Using only the Boson canonical commutation relations and the
Riemann-Lebesgue integral we construct a simple theory of stochastic
integrals and differentials with respect to the basic field operator processes.
This leads to a noncommutative Ito product formula, a realisation of the
classical Poisson process in Fock space which gives a noncommutative central
limit theorem, the construction of solutions of certain noncommutative
stochastic differential equations, and finally to the integration of certain
irreversible equations of motion governed by semigroups of completely
positive maps. The classical Ito product formula for stochastic differentials
with respect to Brownian motion and the Poisson process is a special case.

1. Introduction

We construct a quantum mechanical generalisation of the Ito-Doob theory of
mean-square stochastic integration and an associated Ito product formula in
which Brownian motion is replaced by the pair of operator processes (Af(i): t ̂  0),
(,4j(ί):t^0), where Af(t) = a(fχ{OttΊ)9 and A\(t) = a\gχ[0^ are annihilation and
creation operators in the Boson Fock space Γ(£)) over ί) = L2[0, oo)(χ)ϊ, ϊ being a
Hubert space with inner product < , \ and the Poisson process is replaced by
what we call a gauge process (Aπ(t):t^O), where π is a locally bounded self
adjoint operator valued map from [0, oo) to B(ΐ) and Λπ(t) is the differential
second quantisation of I(g)Π(t). This leads to a stochastic calculus which is
in some respects simpler and more natural than the classical theory, which is
contained as a special case.

* Parts of this work were completed while the first author was a Royal Society-Indian National
Science Academy Exchange Visitor to the Indian Statistical Institute, New Delhi, and visiting the
University of Texas supported in part by NSF grant PHY81-07381, and part while the second
author was visiting the Mathematics Research Centre of the University of Warwick
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The germ of our method is the identity

00

),φ(Λ'»r(W = exp ί {h(s),h\S))tds

for the exponential vectors or coherent states corresponding to h, h' e ί), together
with the eigenrelation

Af(t)ψ(h) =

which has the differential form

This together with the adjoint relationship between a and a* and the field
commutation relations enables us to express the matrix elements between
exponential vectors of integrals against dΛπ, dAf, dAl as integrals against dt
(Theorem 4.1). For simple integrands the Ito product formula is then a conse-
quence of ordinary differential calculus and elementary formulae for matrix
elements between exponential vectors of products of the Af(t), Afo), and ΛΠ(t)
(Theorem 4.3). The same theorem then provides estimates permitting the exten-
sion of the integral to locally square integrable processes with a corresponding
extension of the product formula.

Specialising to the case ϊ=(C, f=g=Π=l and denoting the basic processes in
this case by A(t)9 A\t), and A(t)9 we are able to realise the Poisson process with
intensity / as a commuting self-adjoint operator valued process in the Fock space
admitting the differential representation

dPx = dΛ + γϊ(dA + dAf) + Idt.

The classical formula (dPι)
2 = dPh and a noncommutative central limit theorem

for the Poisson process are immediate corollaries. The gauge process A(t) may be
interpreted as the Poisson process of zero intensity.

We exploit the stochastic calculus developed here by constructing processes
(U(t):t^O) which may be regarded as stochastically autonomous quantum
evolutions in that they satisfy stochastic differential equations of the form

dU^UiL.dΛ + ̂ dA + L^A1 +L4dt), t/(0) = ί,

characterised by a quadruple of infinitesimal generators generalising the conven-
tional Hamiltonian. When these are bounded operators, we find necessary and
sufficient conditions on them for the process to be unitary (Theorem 7.1). Each
such unitary process generates in a natural way a uniformly continuous semigroup
of completely positive maps, indicating that the formalism developed here permits
the integration of irreversible equations of motion described by such semigroups,
as studied by Lindblad [10] and by Gorini et al. [4]. We emphasise that we do not
find a group dilation of such semigroups; the unitary operators U(ί) do not satisfy
the group law U(s)U(t) = U(s + ή.

Heuristic and partial accounts of the theory now presented rigorously were
given in [6,7]. The recent paper [3] provides what is, in effect, the Fermion analog
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of classical Brownian motion regarded as a subtheory of the Boson quantum
Brownian motion used here, insofar as the basic process used is the combination
A + A^ of the Fermion annihilation and creation processes A and A\ Much of the
theory developed here transforms to Fermions with A and A^ treated independ-
ently [2].

We use the following notations and conventions. Hubert space inner products
are linear on the right. D(Γ) denotes the domain of the operator T, which is said to
be on X)(T). The Hubert space adjoint of T is denoted T*. Operators T and T1" on
D(T) and £)(Tf) are mutually adjoint if for all ψ e X>(T) and φ e T)(Tf), (Tψ, φ)
= <φ, Tfy>. The algebraic tensor product of vector spaces it and § is denoted by
ft®§; if they are Hubert spaces, ft®§ denotes the Hubert space completion. If T
is an operator on D then the operator on D® § whose action on proudct vectors is
u®xp\->Tu(g)ψ is called the ampliation of T to X)®§. χs denotes the indicator

t

function of a set S taking value 1 on S and 0 on its complement, j / denotes the
s

Riemann-Lebesgue integral of/over the interval [s, ί]. B(§) denotes the *-algebra
of bounded operators on the Hubert space ί).

2. The Weyl Representation

Let ί) be a Hubert space and let Γ(ί)) be the boson Fock space over I). For each/e ί),
let ψ(f) be the corresponding exponential vector

so that φ(0) is the Fock vacuum ψ0.
Let °ll{\)) denote the group of unitary operators on ί) with the strong topology

and let ^ = ί) ® %(ί)) be the semidirect product of the "translation group" ί) with the
"rotation group" Φ(ί)), that is the Euclidean group of I). For each (/, 17) e ^ we
define the unitary operator W(f, U) by its action on exponential vectors

- a Ug})ψ(Ug+f) (2.1)

for gGI). Then for f9geί)9 17, FGφft),

^ ( / , t7)W(ff, F) = exp(-ilm</, I7flf»^(/+ C7flf, 17F). (2.2)

Thus W is a projective unitary representation of ^ with multiplier

σ((/, t7), (̂ , F)) = exp(- i Im</, Ug)),

which we call the W£);/ representation of ^.
We require the infinitesimal form of the Weyl representation. For/G I) and T

G J3(ί)), define operators «(/), ^(Z), and A(T) on the dense domain (£ of finite linear
combinations of exponential vectors in Γ(ίj) by

dε

dε "
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Since the exponential vectors are linearly independent these are well defined.
Moreover for arbitrary f9g,he}) and TeB{\)\

, a(h)ψ(g)} = <Λ,

, a\h)ψ(g)} = </, (2.3)

showing in particular that a(h) and α /̂z) are mutually adjoint on (£, as are λ(T) and
1(T*). Furthermore for arbitrary ej,g9heί) and S, TeBQj),

(2.4)

a\h)ψ(g)) = {</,

xp(g)},

(a\e)ψ{f\ a(h)ψ(g)> = <Λ, #> <

We also define mutually adjoint operators ea{f) and ea ( / ) on © by

Then as an operator on (£, VF(/, U) admits the factorisation

W(f9 U) = e~^f^if)W(09 U)ea{-Uf). (2.5)

3. Operator-valued Processes

Let ϊ be a Hubert space. We denote by I), f)ί? and ί)r the Hubert spaces L^[0, oo),
L^[0, ί], and Lf(ί, oo) of square-integrable measurable vector-valued functions
taking values in ϊ, and by §, § ί ? and $tf their respective Fock spaces. Corresponding
to the natural decomposition ί) = ί)f 0i)f

5 we make the identification § = §ί(x)§ί in
which for each exponential vector ψ(f),fe h, ψ(f) = ψ(fy®ψ(ft)τ where/f and/ r

are the components of/in ί)f and f)̂  respectively. We denote by C£f and ©r the dense
subspaces of § t and § f spanned by the exponential vectors.

The operator-valued processes which concern us live in the tensor product
§ = SK®9) of § with a Hubert space ft called the initial space. We write § f = ft® ̂
so that f^&φδ'.

The following proposition is a straightforward generalisation of the well
known fact that the exponential vectors are linearly independent.

Proposition 3.1. Let u9v,... be nonzero elements of ft, and let f9g,... be distinct
elements ofί). Then the vectors u®ψ(f), v®ψ(g)9... are linearly independent in |>.

Let -Sc ί) be a real linear manifold closed under all the projections f\-*ft9 t ̂ 0
and such that S + iS is dense. We call such S an admissible subspace and denote by
S and S, the dense subspaces of § and § t spanned by the exponential vectors ψ(f)
and φ(/t)5 respectively, with feS. Let X) be a linear manifold in ft, and let
α: (w5/)ι->α(M,/) be a map from X) x S to § which is linear in u for each fixed fe S.
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Then it follows from Proposition 3.1 that there is a unique operator in |> with
domain D® 6 (which is dense if D is dense in R) mapping each u®ψ(f), fe S to

Φ,/).
Definition 3.1. Let Scf) be an admissible subspace and D a linear manifold in R.
Let F = (F(ί): ί ̂  0) be a family of operators in f> such that for arbitrary ί > 0, F(t) is
the ampliation to D® S , ® ^ of an operator in ξ>t with domain X)® S f. Then F is
called an adapted process based on (£>, S).

A family F = (F(ί): f ̂  0) of bounded operators on f> determines an adapted
process based on (T), S) by restricting the domain of each F(ί) to D® S f® § f if and
only if each F(ί) belongs to the von Neumann algebra B(ξ>t)®I. Such a process will
be said to be bounded and to be unitary if each of the original operators is unitary.

The adapted processes based on (D, S) form a complex vector space which we
denote by 2Ϊ(D,S).

Definition 3.3. An element F e 9I(D, S) is said to be simple if there exists an
increasing sequence ίn,« = 0,1,... with ίo

 = 0 a n d £„—> oo such that
n

oo

^ — Σ ^ n Z [ ί n ί n + i ) >

where Fn = F(tn), to be continuous if for each ueX) and feS the map
t^F(t)u®xp(f) is strongly continuous from [0, oo) to f), and to be locally square
integrable if each such map is strongly measurable and satisfies

ί \\F(s)u®ψ(f)\\2ds<oo for all ί>0.
0 We denote by 2lo(D, S), 2IC(D, S), and L2(D, S) the subspaces of 2l(D, S) of
simple, continuous and locally square integrable processes. Clearly

We thank P. L. Muthuramalingam for assistance in the proof of the following
proposition.

Proposition 3.2. Let F e L2(D, S). T hen there exists a sequence F{n\ n = 1,2,... of
simple processes such for each t >0, weD, and feS,

lim ί ||(F(s) - F<">(s))u®ψ(/) || 2ds = 0.
n 0

Proof Denote by φn the probability density φn(t) = nχ[0Λ/n](t), and set

= n J F(s)u®ψ(f)ds,
0 ί - l / n

where we set ί"(s) = 0 for s<0. Then Fπ is a continuous process and

0
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where we use the fact that φn is a probability density and the Hubert space Jensen's
inequality. Hence for arbitrary Γ > 0 ,

]\\(Fn(t)-F(t))u®ψ(f)\\2dt£ sup ]\\(F(t-s)-F(t))u®ψ(f)\\2dt.

By Lebesgue's theorem for vector-valued functions we conclude that

limί \\(Fn(t)-F(t))u®ψ(f)\\2dt = 0. (3.2)
n o

Now define F{n) by Fw(t) = Fn(m2~n) if m2~n^t<(m + 1)2~", ro = 0,1,. . . . Then
F{n)e3I0(£, S). Fix ί in the interval [m2"w,(m+ 1)2""). Since φn(m2"π-5) = 0 for
s>ml~n we have

ί φn(m2^-s)(F(s)u®ψ(f))ds-\φn(t-s)(F(s)u®ψ(f))ds
0 0

ί (φB(m2-"-s)-φa(t-s)) (F(s)u®ψ(f))ds

ί \\F(s)u®ψ(f)\\2ds

for all t e [0, Γ]. Together with (3.2) this implies that

limj \\(F{nXt)-F(t))u®ιp(f)\\2dt = 0. D
n 0

4. Stochastic Integrals and Ito's Formula

Let / and g be elements of the space L™Λoc[0, oo) of locally bounded measurable
vector-valued functions from [0, oo) into ϊ, and let 77 be an element of the space
Lβ(tl°

c[0, oo) of locally bounded measurable functions from [0, oo) into the Banach
space B(ί). Then for each t ̂  0,/t =fχ[Ott] and gt = ̂ χ[Ojf] e t), and 77t = Πχ[Ott] may be
regarded as an element of jB(t)) acting pointwise on ί). We may thus construct the
operators

^4/(0 = a(Jt), 4(ί ) - ^fe), Λπ(t) = λ(Πt).

We identify these operators with their ampliations in § = Λ(x)§; they then form
adapted processes based on (ft, I)) called the annihilation, creation, and gauge
processes, of strengths /, g, and 77, respectively. They form the integrators with
respect to which we shall develop stochastic integrals.

Proposition 4.1. Aj , A^g, and Λπ are continuous, hence locally square integrable.
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Proof. Using the first three of relations (2.4) it is easily seen that

\\(Ar(ή-Af(s))u®ψ(h)\\2 =

\\(Al(t)-Al(s))u®ψ(h)\\2 = Ug(r),h(r))tdr

\\u®ψ(h)\\2,

+ S\\g(r)\\fdrl\\u®φ(h)\\

\\(Λπ(t)-Λπ(S))u®ψ(h)\\2 = U \\Π(r)h(r)\\2dr+ J (Π(r)h(r), h(r)\dr ;
Is \s

Λ\u®w{h)\\\

for arbitrary t > s ̂  0, ueR, and heΐ), from which the continuity is clear. D

Definition 4.1. Let E, F,G,H e Sloί^? S), so that we may write
00 00

E— Z^ ^nX[tn,tn+1) 5 Γ = XJ * nX[tn,tn+ί)>

(4.1)
00 00 V 7

^ J = Σ ^flZtίn.ίn+l)? - " ~ Σ -"«Z[tn,ίn+i)5

where 0 = ί0 < ίx < ί2 < ... < ίπ —> oo. The family of operators M = (M(t): t ̂  0),
with domain X)® S defined by

M(0) = 0;

M(ί) = M(ίJ + £π(/lπ(0 - Λπ(tn)) + F ^ / ί ) - ^ ( ί j )

+ Gn(Al(t) - A%)) + Hn(t - Q (4.2)

for tn<t^tn + 1, is called the stochastic integral of (£,F, G,H) with respect to
ydjj, Af, Ag and Lebesgue measure, and denoted by

M(ί) - J (Erfylπ + F ^ / + GdA\ + HdS). (4.3)
o

Clearly M e 2I(D, S) and depends linearly on (£, F, G, //).

Theorem 4.1. Lei E, F,G,He M0(T), S), and kί M foe their stochastic integral. Then
for arbitrary weft, eel), veΐ), heS, and t^0,

<ιι®ψ(e), M(t)v®ψ(h)) = ί <w(x)φ(e), {<φ), Π(s)h(s))tE(s)
0

+ <φ), flr(5)>,G(ί) + H(s)}v®ψ(h)}ds. (4.4)

Proo/. Assume that £, ί1, G, H are given by (4.1) and M(t) by (4.2). Noting first that
(4.4) holds when t = 0, we prove it for t e (tn, ί B + J by induction on n. By (4.2) we
have for such ί

(u®ψ(e), M(t)v®ψ(h)y = (u®ψ(e), M(tn)v®ψ{h)}

+ {u®ψ(e),En(Aπ(t)-Aπ(tn))v®ψ(h))

+ (u®ψ(e), Fn(Af(t) ~ Af(tn))υ®ψ(h)y

+ (,u®ψ(e), Gn{A\(t) - A\{tn))v®ψ(h)y

+ {u®ψ(e),Hn(t-tn)v®ψ(h)). (4.5)
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Using the decomposition f) = f)ίn®$yn, we note that, in the second term on the
right of (4.4) En is the ampliation of an operator in § ί n, whereas Λπ(t) — Λπ(tn) is the
ampliation of the operator λ(Πχ{tnt]), which we regard as an operator in § ί n.
Factorising the vectors u®xp(e) and υ®ψ{h) as u®ψ(etj®ψ(etn) and
v®ψ(htn)®ψ(htn), and applying the third identity of (2.3), we write this term as

ί (u®φ\ (e(slΠ(s)h(s)\Env<S)ψ(h)}ds

= J (u®ψ(e), <φ), Π(s)h(s)}tE(s)v®ψ(h))ds,
tn

since £(5) = E(tn) for tn^s<t. Similar arguments using the remaining identities of
(2.3) enable us to equate the third and fourth terms on the right of (4.4) to

ί <u®ψ(e), </(s), h(s))tF(s)v®ψ(h))ds,

f <«®φ(e), <e(s), g(s)}lG(s)v®W(h)yds,

t

respectively. Writing the final term as J ζu®ψ(e), H(s)v®ψ(h)}ds, and using the

inductive hypothesis to write (u®ψ(e), M(ΐn)v®ψ(h)y in the form (4.4) completes
the proof. D

Theorem 4.2. Let £, F,G,He 9I0(D, S), and let M be their stochastic integral. Let
0^s<£, φef)s, eeϊ), heS, and veΊ). Then

), (M(t)-M(s))υ®ψ(h)}

= ί <φ®ψ(es) «e(r), Π{r)h{r)\E{r)
s

r), ̂ (r))^^) + Jtf (r)}ϋ(8)φ(Λ)>dr. (4.6)

Proof. If φ is of form u®ψ(ds) with ueft, del) the theorem follows from
Theorem 4.1 in which we replace e by dχ[0fS] + eχ{SfO0), and subtract from (4.4) the
corresponding identity with t replaced by s. But vectors of this form are total in f)s.
Hence a limiting argument gives the general case. D

The next theorem is crucial. It is essentially Ito's formula for simple integrands.
We shall use it to derive estimates permitting the extension of stochastic
integration to locally square integrable processes. The theorem, together with its
two predecessors, remains true for such processes as we shall see.

Theorem 4.3. Let

M(t) = } (EdΛπ + FdAf + GdΛl 4- HdS),
0

M'{t) = ί (E'dΛπ, + F'dAr+ G'dA\,+ H'ds),
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where E, F,G,He 2I0(D, S), E\ F\ G', W e SU0{Z', S'). Then for allueT),u'e $', h
eS, fc'eS', and ί^O,

(M(t)u®\p(h\ M'(ί)w'

= { {{M{s)u®xp{h\
o

, g'(s))tG'(s) + H'(s)-]u'

'(s), i7(s)/ι(s)>(£(S) + </(s), /i(s)>,F(S)

) + H(s)lu®y>(h), M\s)u'

s,}ds. (4.7)

Proo/. Assume £, i7, G, // and similarly E', F', G', W given by (4.1). Equation (4.7)
holds for ί = 0; we prove inductively that it holds for t e (tn, tn+ J . For such ί from
(4.2)

(M(t)u®ψQi), M'(t)u'®ψ(h')}

= <M(ίn) + £B(Λπ(f) - Λπ(tn)) + Fn(Af(t) - ^/(ίJ)

+ Gn(4(t) - A\{tn)) + Hn(t - tn)u®ψh),

M'(tn) + E'n(Λπ,(t) - ΛΠ.(Q) + F'n(Λr(t) - Ar(Q)

+ G'n(A\,{t) - A\,(tn)) + H'n(t- tn)u'®ψ{h')y .

Set ξ> = f>tB<g>§'". M(tn), M'(tn), En, Fn, Gn, Hn, E'n, F'n, G'n, and H'n are ampliations of
operators in §tn, on the other hand Aπ(t) — Λπ(tn), Af(t) — Af(tn), A\(t) — A\(t^,
ΛΠ'(t)-Λπ.(tn)" Ar(t)-Ar(tn), and A\.{t)-A\.{tn) are the ampliations of
λ(πX(tnJ, a(fX(tn,t]), a\gX(tn,t]l λ(Π'χ(tmt]), a(f%nJ, and a\g%tmtJ, respectively
regarded as operators in the space ξ>tn. Factorising the vectors u®ψ(h) and
u'®ψ(h') as u®ψ(htn)®ψ(ht") and u/®ψ(h'tn)®ψ(h"")! and using the identities (2.3)
and (2.4), we obtain

<M(ί)u®ψ(Λ), M'(t)w'<g>ψ(Ό>

= (\M(tn) + En J <ft'(s), ΠisMsfrφ + Fn \

ί

+ G\

+G; ί

+ J <77(s)/ί(s), Π\s)h'{s)\dS{Enu®ψ{h), E'nu'®ψ{hr)}

+ UΠ(s)h(s),g'(s)ytds(Enu®ψ(h), G'nu'®ψ(h'))
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+ J (g(s), Π'(s)h'(s)\ds(.Gnu®ψ(h), E'y®ψ(hr)}
tn

+ J <0(s), g'(s))ιds(Gnu®ψ(h), G'nu'®ψ(h')y . (4.8)

We now differentiate with respect to t. The derivative of the first term on the right
of (4.8) is the sum of two terms obtained by differentiating separately the two sides
of the inner product. These differentiations result in vectors of form φf®φ{htn),
φf®ψ(h/tn), φ, φ' e$$tn. On the opposite side of the inner product we bring the
coefficients £„, Fn9 Gn or E'w F'w G'n inside the integrals as £(5), F(s), G(s) or E'(s),

t t

F'(s), G'(s), and replace Hn or H'n by J H(s)ds or j" H'(s)ds. We may now use
tn tn

Theorem 4.2, in which s is taken to be ίπ5 to equate the derivative of the first term on
the right of (4.8) to the sum of the first two terms of the integrand on the right of
(4.7). A similar argument shows that the derivative of the remaining terms on the
right of (4.8) is equal to the remaining term in the integrand of (4.7). By the
inductive hypothesis we may assume that (4.7) holds when t = tn, and so the
theorem follows from the fundamental theorem of calculus. D

Corollary 1. Suppose that S consists of locally bounded functions, so that

α(Γ)= sup max{Kh(slΠ(s)h(s)yt,Kf(s

KKs),g(s)>ι\,\\π(s)h(s)\\ϊ,\\g(s)\\ϊ}

is finite for each T>0. Then for T>0 and O^ί^T,

+ \\G(s)u®ψ(h)\\2+ \\H(s)u®ψ(h)\\2}ds. (4.9)

Proof. Setting (£', ¥', G', W) = (E,F,G,H),u' = u, and h'=h in the theorem gives

\\M(t)u®ψ(h)\\2 = \ {2Re(M(s)u®ψ(h), [<Λ(s),Π(s)h(s))tE(s)
0

), g(s))tG(s) + H(s)-]u®ψ(h))

+ \\Π(s)h(s)®E(s)u®ψ(h) + g(s)®G(s)u®ψ(h)\\2}ds. (4.10)

Using the inequalities for H u b e r t space vectors ξ,η,ξι,ξ2, •• ,ζn,

2Kξ,η}\S\\ξ\\2+\\η\\2, U1 + ξ2+ - + ξ j | 2 ^ » ( | | ^ | | 2 + ... + I I U 2 ) ,

we find that the integrand in (4.10) is bounded above by

||M(s)M®φ(ft)||2 + 6α(T)2{||£(s)u®φ(Λ)||2+||F(s)M®φ(Λ)||2

+ \\G(s)u®ψ(h)\\2 + \\H(s)u®ψ(h)\\2},

and hence, differentiating, that

-\\M(s)u®ψ(h)\\2S\\M(s)u®ψ(h)\\2 + 6a(T)z{\\E(s)u®ψ(h)\\2 + \\F(s
ds

+ \\G(s)u®ψ(h)\\2 + \\H(s)u®ψ(h)\\2} •
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Multiplying by the integrating factor e's and integrating over the interval [0, t] we
obtain (4.9). D

Corollary 2. Under the hypothesis of Corollary 7, for 0^s^

dr. (4.11)

In particular M is continuous and thus M e L2(£>, S).

Proof Replace E, F, G, H in Corollary 1 by £χ[s> ^ Fχ[s, ^ Gχ[s> ̂  Hχ[s, ^ D

We are now ready to extend the stochastic integral to integrands in L2(D, S),
under the assumption that S consists of locally bounded functions. Let E, F, G, H
e L 2 (£, S). By Proposition 3.2 there exist E{n\ F{n\ G(n), H{n\ n = 1,2,... in 2I0(D, 5)
such that for all w e ΐ , heS, and ί > 0 ,

2 + \\(F(s)-F{n\s))u®xp(h)\\2

n o

+ \\G(s)-G(n\s))u®ψ(h)\\2+ \\(H(s)-H{n)(s))u®ψ(h)\\2}ds = 0.

Now let M(M), n= 1,2,... be the stochastic integrals

M(M)(ί) = J (E(n)dΛπ + F{n)dΛf + G{n)dA\ + H(M)ds).
o

Applying Corollary 1 to the differences M{n) — M{m\ we see that the sequence
M{n)(t)u®\p(h) converges in f) for each ί^O, u e ϊ ) , and heS, and that the limit
does not depend on the choice of (E(n\ F(n\ G(n\ H(n)). The limit is clearly linear in u,
and thus defines an operator with domain D ® S, which can be extended uniquely
as the ampliation to X ) ® ^ ® ^ of an operator in ξ)t with domain D® ® r We
denote the extended operator by M(ί) Then M = ( M ( ί ) : ί ^ 0 ) is an adapted
process we define to be the stochastic integral,

M(ί) = J (EdΛπ + FdAf + GdA\ + Eds).
o

It is clear that M depends linearly on (E, F, G, H).

Theorem 4.4. Provided that S,S' consist of locally bounded functions,
Theorems 4.1-4.3 and Corollaries 1 and 2 remain true for locally square integrable
integrands.

Proof. The inequalities (4.9) and (4.11) follow from the definition of M and from
continuity of the norm. From (4.11) it follows that for each ueΊ) and heS,
t\-+M(t)u®ψ(h) is strongly continuous and hence bounded on finite intervals. We
may thus pass to the limit of simple approximations in (4.7), as well as (4.4) and
(4.6). D

We use the differential notation

l (4.12)
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to describe the situation that M is a process in L2(£), S) (where S consists of locally
bounded functions) such that for all ί^O,

M(ή - M(0) = j (EdΛπ + FdAf + GdA\ + Hds),
o

where E, F, G, H eL2(X),S).
To avoid difficulties with existence of adjoints and products we now consider

bounded processes. For a fixed admissible subspace S consisting of locally
bounded functions, we denote by (£(5) the set of all processes Me2I(ft, S)
satisfying (4.10) for some E, F, G, H E 9 I C ( Λ , S ) , and some/,0eLf°' l o c[O, oo) and
jΓΓeL£('{j

oc[0, OO) such that for all ί > 0 ,

sup max{||M(s)||, | |£(s)||, \\F(s)\

Theorem (7.1) below shows that G(S) is by no means empty. We denote by SDΪ(S)
the linear span of (£(S). We can now state Ito's formula.

Theorem 4.5. 30ΐ(S) is an algebra, in which multiplication is given by

d(MM') = MdW + (dM)Mf + dMdW, (4.13)

for M,M'efί(S), where for M satisfying (4.12), {dM)Mf is given by

{dM)M = EM'dΛπ + FM'dAf + GM'dA\ + HM'dt,

that is, the basic differentials dAπ, dAf, dA^ and dt commute with the adapted
process M\ and dMdM' is evaluated by combining this with extension by bilinearity
of the multiplication rules

(4.14)

Proof We may assume without loss of generality that M(0) = M'(0) = 0, since
multiplication by constant processes follows the rules stated. We note in view of

dΛπ

dAf

dAl
dt

dΛπ,

dAππ,

dAl,

0

0

dAr

0

0

0

0

dA\,

AA\9.

<f(i),g'(φdt
0

0

dt

0

0

0

0

Replacing M by M1" in (4.7) we find that, for u,uf eft, h,h'eS and t>0,

(u®ψ(h), M(t)M'(t)u'®ψ(h')> =

= } {(M\s)u®ψ(h),
o

), ΠHs)h(s)}tE\s) + (g(s), h(s))tG\s)

, f(s)>ιF\s) + H\s)\u®φ{h\ M'(s)u'®ψ(h')}

(Π\s)h(s)®E\s)u®ψ(h) +f(s)®E\s)u®ψ(h),
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= \<u®ψ(h)9
0

/(s) + M(s)H'(s)

Comparing this expression with (4.4) we obtain the theorem. D

5. Reduction to the Ito-Integral for Brownian Motion

In this section we take ϊ = ft = (C, and write A(t) = Af(t), A\t) = A]-(t), where
f(t) = 1. The Fock space f) = § = Γ(L2[0, oo)) is identified by means of the duality
transformation with L2(Ω,w), where w is Wiener measure on the canonical
Brownian path space. We identify each random variable ξ on Ω with the operator
of multiplication by ξ; then

A(t) + A\t) = ω(t), (5.1)

where ω(t) is the evaluation of the Brownian path ω at time t. We take as
admissible subspace S the set of bounded purely imaginary functions in L2[0, oo),
and write 2l0 = 9I0(C, S), L2 = L2(C,S). As an element of L2(Ω,w),

ψ(h) (ω) = exp ( j Mω - \ j /z2ds ), (5.2)
\o o /

00

where J ftdω denotes the Wiener integral.
o

It is well known [11] that if α is a nonanticipating Brownian functional for
which, for every t ^ 0,

jE|>0, )2]ds<oo, (5.3)
o

then there exists a sequence of simple nonanticipating Brownian functionals
α(n), w=l ,2 , . . . such that for all ί^O

lim J E[(α(s, ) - α(n)(s, ) ) 2 ] ώ = 0 (5.4)
n 0

Proposition 5.1. Let a be a nonanticipating Brownian functional satisfying (5.2).
Then the multiplication operator valued process a = (α(ί, • ) : ί ^ 0 ) e L 2 .

Proof. Let α(n), n = 1,2,... be simple nonanticipating Brownian functionals
satisfying (5.4). Then as operator valued processes the α ( n ) e2I 0 . Moreover for
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arbitrary h e I) and t > 0, using (5.2) we have

\\\lΦ, )-cPKs, )Mh)\\2ds

(α(s,ω)-α (" }(s,ω))exp( j hdω-\\h2

o o
w(dω)ds

00 \ ί

-exp\-ϊ^ j ^ (α(s, ) - α s, ) s-^> ,

since J Mω is purely imaginary and exp( — \ j h2 ) is sure. Hence α e l A •
o \ o /

Now let α and β be nonanticipating Brownian functionals satisfying the
condition (5.3), and let

ί t

m(t, ω) = j α(s, ω)dω(s) + J /}(s, ω)^5,
o o

where the first term is the usual Ito-Doob mean-square integral of α. Then we can
write

m(ί, ) = j (α(s, )d4 + α(s, ) d ^ t + β(s9 )ds).
o

For simple α this follows from (5.1); for general α it follows from Proposition 5.5.
Suppose that α and /? are bounded. By Corollary 2 to Theorem 4.3, meL2, and
since α and j8 are bounded, am and jSm e L2 also. We derive the classical Ito formula
dm2 = 2mdm + oc2dt as follows:

Theorem 5.1. Let oc and β be bounded real-valued nonanticipating Brownian
functionals, and let

t t

m(t, ω) = I adω + f βds. (5.6)
o o

Then

t t

m(t, ω)2 = J Imoίdω + J (2mβ + a2)ds.
o o

Proof. In Theorem 4.3, with S' = S, D' = D = <C, J7 = i7/ = 0, f' = g'=f=g = l,
u = u'=l, t a k e E = E' = Q, F(t) = G(t) = F'(t) = G'(t) = aL(t9 ) , H(t) = H'(t) = β(t,').

Then, since /z, /z' are imaginary valued, the left side of (4.7) is

E m ( ί , ω ) 2 e x p | j (-Λ + ΛOdω-iJ (Λ2 + Λ/2)i , (5.7)

while the right side is seen to be

Γ
E J {2α(s, ω)m(s, ω)dω(s) + (2β(s, ώ)m(s, ω) + oc2(s, ω))ds}

Lo

(5.8)
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ί °° }
Equating (5.7) to (5.8) and cancelling the sure factor exp< — \ \ (/Z2 + /Z / 2)Λ

t o J

Γ ί x

E \ m(t, ω)2 — J [2α(s, ω)m(s, ω)dω(s) + (2β(s, ω)m(s, ω)

LI o
Ί

+ α2(s, ω))ds] exp J /î dω = 0,
o J

ω

where /Γ= —h + h'. Since the functional exp j h'dω are total, (5.6) holds. Do

6. The Poisson Process in Fock Space

In this section we take K = (C so that ξ> = ξ). Let Π be a self adjoint valued element
^lO, oo), let feL?Λoc[0, oo) and consider the unitary process

where W(f, U) is defined by (2.1). In view of (2.5) WLΠis the product VγV2V^V^ of
the processes defined by

V3(t)ψ(h) = W(0, eiΠt)ψ{h) = ψ(eiΠth)

V4(t)ψ(h) = e~ ̂ e x p ( - wVψQi) = e ~<exp( ~ iΠ)f)*

We consider Wft π and Vpj = 1,2, 3,4 as processes based on ((C, S), where iS consists
of all locally bounded elements of I). From Theorem 4.1 we have

Since W/sπ(0 ^s the product of these processes on S, from use of (4.14),

dWfίΠ=Wf,π(dΛielΠ-I)-dΆe-ίΠf+d4-Mfmϊdt). (6.1)

In particular FPy π is the solution of a "stochastic differential equation" and Wf π

£ ( )

Now let ϊ = <C, J7(ί) = α(ί), /(ί) = |/T(eία(ί) — 1) and

7β(ί) = exp( ί ί hinφ)ds) Wf π ( ί ) , (6.2)
\ o /

where α is a locally bounded function and / ̂  0 is a constant. Then

Va(t)ψ(h) = exp(\ {l(e^- 1) + | / / ( β ί α - 1)Λ} j φ(e ι H + |/7(e£ α t-1)). (6.3)
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Proposition 6.2. Let a, β be real-valued locally bounded Lebesgue measurable
functions on [0, oo) and let h,hϊeL2[0, oo). Then

a) Va(t) is unitary for all ί^O,
b) K(t)vβ(t)=va+β(t),

c) <φ(A), Va{t)ψ{h')) =exp | | | |

(6.4)
in particular

= exp {/} ( e / α - 1 ) | , (6.5)

d) {F α (0φ(0),α6L^' l o c [0, oo)} is ίoία/ m §>t for all ί^O.

Proo/. a) and b) follow from (6.2) and (2.2) and c) follows from (6.3). To prove d) note
that for arbitrary real numbers θ, α l 5 α 2 , . . . , αN, and disjoint Borel sets S l 5 S 2, .-.,SN,
the linear span of the F(ί)^^v(0) contains the vector

N

obtained by taking α = 0 Σ a./Zs Hence, for n = 0,1,2,..., the closure of the linear
7 = 1 '

span contains the vector

θ=0

whose expansion in n-particle components is of form

where / = Σ αjZs n[o,ί] Since such vectors are total in 5χ = Γ(L2[0, ί]), the result
7 = 1 J

follows.
We recognise the vacuum expectation functional (6.5) as the characteristic

functional

0

Eexp ίJαdJSrJ =exp
V

of the classical stochastic integral of α against the Poisson process of intensity / [9].
We compare this with the identity

<φ(0), exp(4(0 ~ 4/(0)V>(Q)> =

where X is standard Brownian motion. Using Proposition 6.Id) and the unique-
ness of the GNS construction we obtain the following analog of the duality
transformation for Brownian motion.
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Theorem 6.1. There exists a unique Hubert space isomorphism Dt from the Fock
space Γ(L2[0, oo)) to L2(μj), where μx is the probability measure for the Poisson
process Xι of intensity Z, satisfying the conditions

a) DιΨφ)=l , f ,

b) D^JfjDf1 is multiplication by exp( i$adXι I /or eαc/i real-valued locally

bounded measurable function α 0« [0, oo). °
Furthermore for arbitrary ί^O f/ze image of Γ(L2[0, ί)) under Dι is the subspace

of L2(μz) 0/ elements measurable with respect to the σ-algebra generated by Xι(s),

We may thus construct an operator-valued realisation of the Poisson process
of intensity Z, corresponding to the realisation A(t) + A\t) of Brownian motion, by
defining

Πι(t)=-ί—Vε(t) , (6.6)
dε ε = 0

where the suffix ε denotes the constant function of value ε. The family of self adjoint
operators (17j(t): ί^O) is clearly commutative in the sense that the one parameter
groups of which they are the infinitesimal generators commute; equivalently their
spectral projectors commute. Under conjugation by the isomorphism Dι the Π^t)
are simultaneously diagonalised, transforming into the operators of multiplication
by the

Theorem 6.2. Πι satisfies

17,(0) = 0, dJIz = did + ]/Ί(dΛ + drf) + Idt,

where A = Aπ, A = Af, A* = A] , with Π = / = 1.

Proof The theorem is a consequence of Theorem 4.1, together with the identity,
which follows from (6.6) and (6.4),

<ψ(h), iIz(ί)v(Λ0> = ί <ψ(h), {h(sW(s) + ]/l(h(s) + h'(s)) + l}ψ(h'))ds. D
o

As immediate corollaries we obtain, using (4.14), the well-known formula for
the Poisson process (dΠ^2 = dΠh and, rearranging the integrated form of the
Theorem as

/" 1/2(17z(ί) - It) = A(t) + A\i) + /" 1I2A, (6.7)

a form of the well known central limit theorem for Poisson processes of increasing
intensities that Z~ 1/2(Z7z(ί) — Zί) approaches Brownian motion, in which the gauge
process A measures the error in the Brownian approximation. Note that no two of
the processes in (6.7) commute.

Using (4.14) it is easily seen that

d[Πh J7 J = (]// - Ϋm) (dA -

so that
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In particular the Poisson processes of different intensities do not commute with
each other and may not be simultaneously diagonalised; for ίΦm, D / φ D m .

We end this section by noting that, by generalising these methods, a Fock space
realisation of an arbitrary classical stochastic process with independent incre-
ments can be obtained whose differential is expressible in terms of appropriate
creation, annihilation and gauge processes using (4.12). Details will be published
elsewhere.

7. Stochastic Evolutions

In this section, for simplicity, ΐ = (C, but it is arbitrary. For the three basic processes
A, A, Λ^ defined by

Λ(t) = Aπ{t), A(t) = Af(t), A\t) = 4 ( 0

with i7( ί )=/( ί )= 1, (4.14) becomes

(7.1)

Let Lp j= 1,2, 3,4 be operators in the initial space SK with common invariant
domain X); we regard them also as operators in § with domain X)(g)§. Our aim is to
construct an operator-valued process U satisfying

17(0) = /, dU= U{LxdA + L2dA + L3dAf + LAdt) (7.2)

and to find conditions on Lp j = 1,2,3,4 ensuring unitarity of U.
We construct such stochastic evolutions by iteration. We take the admissible

subspace S to consist of all locally bounded functions in L2[0, oo).

Proposition 7.1. There exist processes Un, n = 0,1,2,..., satisfying

U0(t) = I, Όn(t) = I+\un_1(LίdA + L2dA + L3dA* + L4ds). (7.3)

dA

dA

d£
dt

dA

dA

dA

0

0

dA

0

0

0

0

dA*

dAx

dt

0

0

dt

0

0

0

0

0

Furthermore for arbitrary weT), heS, T>0 and O ^ ί ^ T ,

\\(Un(t)-Un_1{t))u(g)ψ(h)\\2^eτ+ιlhlι\n\y1β(T)n max WLJ^LJUW2 ,

(7.4)

where β(T) = 24Tmax(l, sup |/z(5)|4Y(

Proof Uo is clearly in L2(D, S). Suppose that [/„_ ί e L2(X), 5), so that for all w e D
and h e S,
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Since D is invariant under the L7

ί Σ ||t/π_1(s)L>(8)V(Λ)||2ds = ί Σ \\Un-1(s)(Lju)®ψ(h)\\2ds<ao,
Oj=l Oj=l

hence Un is well defined and by Corollary 2 to Theorem 4.3 Un e L2(£), S).
To prove (7.4) we write

o

and apply Corollary 1 to Theorem 4.3 to obtain

\\(Un(ή-Un^(t))u®ψ(h)\\2

0 j = l

for all ί e [0, T], where α(T)= sup max(|ft(s)|2, \h(s)\, 1). From this,

\\(Un(t)-Un-1(t))u®ψ(h)\\2

t\e~s max
0 1^J^4

from which (7.4) follows by induction. •

For n = 0,1,2,..., and weD, let

and
r oo I

Σ ρn(n\y1/2Mn(u)<oo for allρ>0>.
= 0 )

T)o is easily seen to be invariant under each Lp 1 gj ̂  4. Using (7.5), for u e T)o, and
arbitrary heS and T > 0 ,

CO 00

sup ||(C/n(i)-t/^i(f))«®^)||^e2(^ll*ll2)X (nirll2β(Tγ~2Mn(u)<ω,

showing that Un(ήu®ψ(h) converges in f> uniformly in each finite interval [0, Γ] .
The limit is clearly linear in u and so defines an operator in f> with domain D o ® ©.
Being the strong limit on this domain of ampliations of operators in ξ)t with
domains T>® S ί 5 C/(ί) extends to the ampliation of an operator in ξ>t with domain
T>o®&t to D Q ^ S , ® ^ . Thus extended, the ί/(ί) form an adapted process [7.
Using the uniformity of the convergence together with the estimate (7.4), we may
take strong limits on D o ® 6 on both sides of (7.3) to conclude that U satisfies
(7.2) and belongs to 9ίc(T)0, S). In particular U e L2(£>0, S\

Suppose VeL2(Ί)0,S) is another process satisfying (7.2). Then
U(0) — V(0) = 0 and by the argument employed in proving (7.4), we have
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for all te [0, T]. Letting n-^ooon the right side we conclude that U(t) and V(t)
agree on D 0 ® S . Thus the solution of (7.2) is unique as a process in L2(D0,5).

We now assume that the operators Lj are bounded with domain Si so that
D o = R also. We investigate when the process U is unitary. If this is the case then,
using (7.1) and

dU = UiLtdΛ + L2dA + L3dA* + L4dή,

together with the unitary condition U^U = I9 we have

O = d(UiU) = (dUt)U + UfdU + dUfdU

= {L\dΛ + L\dA + L\dA* + L\dt) + (L,dA + L2dA + L3dA^ + L4dt)

+ (jXLyάΛ + L\L3dA* + L^LidA + Ll

= (L\ + Lγ + L\Lγ)dA + (L2 + L\ + LlL

In view of Theorem 4.1 we may equate coefficients of the differentials to zero,

° b t a ί n i n g
O, (7.5)

L 2 + ^ + ^ ^ = 0 , (7.6)

l \ 0, (7.7)

0. (7.8)

Similarly, from Utf = 1 we obtain

0 = d(t/l/t) = l/(L1+L t

1+L1L
t

1)t7 tdyl + terms in dA, d^1, and dt,

and hence, multiplying on the left by Uf and on the right by U,

l l 0 . (7.9)

Setting W= I + Lu (7.5) and (7.9) imply that Wis unitary. We set L = L2, then (7.7)
implies that L3 = — l^L1, and (7.8) that L4 = ίH —\LL\ where H is a bounded self
adjoint operator. Thus for unitarity of U it is necessary that

(Ll9L29L39L4) = (W-I9L9 -WL\iH^LU)9 (7.10)

where W,L,He β(ft), Wis unitary and H is self adjoint. Remarkably this condition
is also sufficient.

Theorem 7.1. // the condition (7.10) holds, then the unique solution of (7.2) in
9ίc(Λ, S) is a unitary process. In particular U e(ί(S).

Proof. From (7.4), for ueft, heS, T>0, and O^t^T,

|| E/(ί)κ<g>v(Λ)|| ^ \\u®ψ(h)\\ + Σ

(7.11)
where
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It follows from (7.11) that for fixed h, h' e S, there exist operators K(i), t ̂  0 in
for which, for arbitrary u,ve$t,

<iι, K(t)υ) =

Moreover the map t\->K(t) is locally bounded. From Theorem 4.3 we find that
K( ) satisfies the differential equation

at

+ (ίlK, ff] -\KLL + LWKWL-\LLK),

which is of form — = J£(t)K, where if(ί): £(&)-• 2?(5\) is a bounded linear map.
at

Since X(ί) = <φ(Λ), ψ(Ό> ί satisfies this equation with the correct initial value, we
conclude that K(t) is indeed of this form. But then it follows from (7.12) that U(t) is
isometric, and in particular bounded. Hence we can use (7.1) as in the proof of the
necessity of (7.10) to conclude that d(UUt) = 0. Hence UU* = U(0)U\0) = I and
the proof is complete. D

8. Stochastic Dilations of Completely Positive Semigroups
and Non-Commutative Feynman-Kac Formulae

Let U be the unitary process generated by bounded operators W,L,He B(5V) with
Wunitary and H self adjoint in accordance with Theorem 7.1. We define families of
operators (Tt: ί^O) on 51 and (£Γt: ί^O) on B{9) by

(8.1)

where the vacuum conditional expectation map E o : B(ξ>)-+B($i) is defined by

<u,E0(J)ί;>-

Theorem8.1. a) (T t:ί^0) is a uniformly continuous contraction semigroup on
with infinitesimal generator

d

ί = 0

b) (βΓt :tέtθ)is a uniformly continuous semigroup of completely positive maps on
B(S\) whose infinitesimal generator j£? is given by

&(X) = i[iί, X] -\{LϋX - 2LXU + XLV), X e B(R). (8.2)

Proof, a) Tt is clearly a contraction. By Theorem 4.1 with h = h/ = O, M=U — I,

<M,(i;-/)M/> = ί <w®φ(0), U(s)(iH-±LU)
o

for arbitrary M, M'GΛ, from which it follows that Tt = Qxpt(iH—\LU).
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b) For XeB(R) write X(t)=U(t)XU(ty1, ί^O, so that Ft(X) = Έ0

Then by (7.1),

dX = (WXW^ - XJάA + [ I , X~\dA - W\L\ X~]dA]

+ {/[#, X] - ^ L / Ή f - 2LXΏ + XLD)}dt.

Using Theorem 4.1 with h = h/ = O we obtain, for u, i/eft,

<M, (^(x) - x y >=ί <M, ^s(j?(x))u'}ds
0

from which ^ = etΆ\ £Γt is completely positive being the composition of a unitary
conjugation with a conditional expectation. D

We compare the generator (8.2) with the general form [10]

&{X l ] \ Σ (LjL)X - 2LjXLlj + XLJL)),

j L j L ] < a > (8.3)
7

of infinitesimal generator of a uniformly continuous completely positive semi-
group on B(R). Provided that there are only finitely many Lj a stochastic dilation
the semigroup generated by (8.3) can be constructed as follows; take fft) = βp βj
being t h e / h element of the natural basis of ϊ = <Cn, Aj(t) = Afj(t)9 A](ή = Aήf

fj(t).
Then the equation

17(0) = /, dU=U fΣ{LjdA-L]dAt}+ ίίH-^

has a unique solution in 3Jί(ft, 5), where S is all bounded elements of ί), which is a
unitary process for which the maps 2Γt given by (8.1) form a completely positive
semigroup of which (8.3) is the generator. The case of infinitely many Lj can also be
treated by an extension of the stochastic calculus developed here [8].

The gauge generator W—I does not appear in the form (8.2); thus these
dilations are nonunique.

We consider perturbations of the semigroups (Tt) and (^). Let Fbe fixed in
B(R). Then there exists a unique map £->C(ί) from [0, oo) into B(ξy) satisfying

— = -CU(t)VU(ty\ C(0) = /, (8.4)

where differentiation is in the uniform sense; furthermore C(ί) has a bounded
inverse for all t ̂  0 and

dC~ι

= f7(ί)7l/(ί)" 1C" 1. (8.5)
at

Define operators ί7(ί) = C(ί)l7(ί), ί^O. Then ϋeWl(S) and satisfies

dϋ = U(LdA - VdA + (iE-\LU- V)dt).
Repetition of the proof of Theorem 8.1a) shows that Tt = Έ0(U(tj), ί^O, defines a
one parameter semigroup of bounded operators on ft of which the infinitesimal
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generator is \E.—\Ll)-V. Thus

exp(ί(ιΉ-iLL f- V)) = Έ0(C(t)U(ή). (8.6)

When the operators V(t) = U(t)VU(t)-1 commute, C(t) can be expressed as

expί — J V(s)ds ) and (8.6) takes the form of a Feynman-Kac formula as in [5].
\ o /

Similarly, the formula ^t(X) = Έ0\β(t)Xϋ(tyι~\ defines a uniformly con-
tinuous semigroup on B(R) with infinitesimal generator J?, where &{X) =«

. Thus

- ad V)} (X) - Έ0(C(t)U(t)XU(t) ~ι C(ί) ~ x ) , (8.7)

where ad V(X) = [V, X~\. Equation (8.7) is a Feynman-Kac formula in the sense of

[1].
There exist examples where (7.2) admits a unitary solution for which analogs of

Theorem 8.1 and (8.6) and (8.7) hold in which L, H, and V are unbounded
operators. We defer discussion to a later article.
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