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Abstract. A global algebraic formulation of SU3 tensor operator structure is
achieved. A single irreducible unitary representation (irrep), K, of <j^(6,2) is
constructed which contains every SU3 irrep precisely once. An algebra of
polynomial differential operators sέ acting on V is given. The algebra stf is
shown to consist of linear combinations of all SU3 tensor operators with
polynomial invariant operators as coefficients. By carrying out an analysis of
stf, the multiplicity problem for SU3 tensor operators is resolved.

1. Introduction

The theory of tensor operators has been fully developed only for the symmetry
group SU2—the quantal angular momentum group—and the resulting theory is
of fundamental importance in almost all applications of angular momentum in
physics [1]. It is to be expected that the development of an analogous theory of
tensor operators for the symmetry group SU3 might possibly be of comparable
importance since this symmetry—SUcolor—is held to be exact and of fundamental
importance in hadronic physics; a distinct SU3 symmetry is known to be of
practical importance as an approximate symmetry of the nuclear shell model.

Quite early in the development of the theory of tensor operators, Wigner [2]
achieved a classification of those symmetry groups for which a direct analog to
the SU2 tensor operator construction was possible. Such groups were termed
simply reducible, and there are two conditions: the group must be (a) ambivalent
(g and g'1 belong to the same class) and (b) multiplicity free (in the reduction of
the Kronecker product of two irreps, no irrep occurs more than once). The group
SU3 fails both criteria; it is neither ambivalent nor multiplicity-free. Mackey [3],
however, showed that ambivalence could be weakened to quasi-ambivalence (the
group possesses an involutive anti-automorphism). SU3 is indeed quasi-ambivalent
[4] (using conjugation as the involution), but the problem of multiplicity is far
more difficult to resolve.
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A constructive resolution of the multiplicity problem for SU3 was achieved in
[5], but the construction was computationally-based and complicated. What was
needed for the full acceptance of this result was a global, coordinate-free resolution
of the multiplicity problem in purely conceptual terms. Toward this end a basic
theorem extending the concept of the universal enveloping algebra for SU3 has
recently been obtained [6].

The purpose of the present paper is to develop this result, in a more physically
oriented manner, and to use it to resolve the multiplicity problem for SU3 in a
remarkable, and satisfying, way which permits a global view of the set of all SU3
tensor operators to be achieved. In the course of this we actually find a new proof
of the main result of [6].

The essential element in this development is the demonstration that the set of
all tensor operators for SU3 can be identified as a simple algebra, with no
(non-trivial) two-sided ideal, which is a quotient algebra j/ of the enveloping
algebra of o#s. The Hubert space on which these tensor operators act is shown
to be a single irreducible unitary representation of the Lie algebra ^(6,2) (a
non-compact real form of ό&8 having Cartan index -4).

The plan of the paper is as follows: in Sect. 2, we review previous results on
tensor operators for SU3 and in Sect. 3 use the basic structural result (the product
law, Eq. (2.11)) to demonstrate the embedding in ό#%. With benefit of the insights
achieved in Sect. 2 and 3, we then develop, ab initio, a more elementary construction
of both the underlying Hubert space (Sect. 4) and the algebra j/ (Sect. 5), as well
as the explicit embedding in < 8̂ (Sect. 6).

The decomposition of the algebra jtf under the Lie algebra o#8 is carried out
in Sect. 7. The basic result of the present paper—the decomposition under SU3
of the algebra <$# (the algebra of SU3 tensor operators) is then achieved
(Theorem (8.12) in Sect. 8).

The concluding section, Sect. 9, discusses the results obtained and the signifi-
cance of these results in effecting a complete resolution of the multiplicity problem
for SU3 tensor operators.

2. Resume of Previous Work

We wish to review briefly the basic results on tensor operators belonging to SU3
symmetry [7-9]. (A reader familiar, or partly familiar, with this material is
encouraged to go to Sect. 3).

Let ^ be the Lie algebra of the Lie group SU3. The unitary irreps (irreducible
representations) of SU3 are uniquely labelled by two-rowed Young frames
[m13w230], with the integers m l3 obeying m 1 3 ̂  w23 ^0. The orthonormal vectors
|(m)> belonging to each irrep are uniquely labelled by the Gelfand-Weyl pattern:

m 1 3 m2 3 m3

m12 m22 (2.1)
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where the integers m ( j obey the "betweenness" conditions:

m1 3 ^ m1 2 ̂  ̂ 23 = mz2 = m33 — 0> (2-2)

m1 2 ^ wn ^m2 2. (2.3)

The Hubert space, Jf, on which the tensor operators act is defined to be the
direct sum of the vector spaces belonging to the unitary irreps of SU3, each irrep
(and hence each Gelfand-Weyl vector) occurring once and only once.

In order to preserve the underlying symmetry between the labels 1,2,3—and
moreover to make this symmetry evident—it is convenient, in defining the space
on which the tensor operators act, to admit formally U3 irreps having three-rowed
Young frames, [w13w23m33], but then to declare an equivalence relation on U3
irreps :

[ m 1 3 + f c m 2 3 + / c m 3 3 +/c]-[m 1 3 m 2 3 m 3 3 ] . (2.4)

The Hubert space jjf then consists of a direct sum of U3 irreps, exactly one
representative taken from each equivalence class.

Let us now recall the definition [10] of a tensor operator on Jjf belonging to
SU3 symmetry. A tensor operator is a set of linear operators 0(M) indexed by
SU3 Gelfand-Weyl patterns (M) and obeying the equivariance condition:

U g O ( M ) U ~ l = Φ ( g ( M ) ) (2.5)

for every 0eSU3, where Όg is the unitary transformation of Jtf associated with g.
An irreducible tensor operator is indexed by patterns belonging to a single

SU3 irrep [M13M230]. The unit tensor operators are not uniquely specified by
the SU3 labels (M) alone. A linear basis for the tensor operators in SU3 is provided
by the unit tensor operators (operators with unit norm phased conventionally),
having scalar operators as multipliers [7]. The unit tensor operators are continuous,
and may be uniquely determined by giving all matrix elements on the basis
{|(m)>} ofJ^.

It has been shown [7] that irreducible unit tensor operators having the same
(M) index may be distinguished by a second triangular pattern of integers (obeying
the constraints of a Gelfand-Weyl pattern) called the operator pattern (Γ):

M13 M23 0
(2.6)

The signifance of this operator pattern may be seen in this way: the action of
a tensor operator is a transformation of Jf into jf; for unit tensor operators, the
operator label (Γ) specifies the shift (Δ1Δ2Δ3) induced by the operator when acting
on vectors belonging to the irrep [m]. That is:

ΘΓ: [m] - [m13m23m33] -> [m + Δ~\ = [m13 + Δl9m23 + Δ29m33 + z!3], (2.7)

where: z!1 =yll9 (2.8a)

^2 = 712 + 722-711, (2-8b)
Δ3 = M13 + M23 + M33 - 7l2 ~ ^22- (2'8c)
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(Recall that we deal with equivalence classes in jf, which permits this more
symmetrical notation with A3^0. It is useful to extend this notation to the
operators as well.)

The shift labels (A) do not in general distinguish among all unit tensor operators
with the same Gelfand-Weyl label but the complete operator pattern (Γ) does
provide such a distinction. Since the Gelfand-Weyl pattern and the operator
pattern share a common row (the irrep label [M]), it is convenient to designate
a unique irreducible unit tensor operator by writing the two patterns together:

7ιι

M 23

m12 m22

m11

(2.9)

/ ω \
or more briefly by( [M] ) or <M>.

\(m)/

The fundamental irreducible unit tensor operators, <100> and <110>, are
distinguished in several ways:

(a) the shift label (A) suffices to determine the operator pattern itself,
(b) the matrix elements for these operators are completely known and can be

given quite simply in terms of the pattern calculus rules [8], and
(c) these operators provide an algebraic "basis" for constructing all unit tensor

operators.

Remark 2.10. It is convenient to make use of (a), above, to simplify the notation
for the fundamental operators. Since the Gelfand-Weyl pattern is also uniquely
determined by the SU3 weights (w) of this pattern (just as the shifts (A) determined
the operator pattern), we may conveniently label the fundamental operators by;

1. This abbreviated notation uniquely designates the 18 operators <100> and

<(110>, and proves very convenient in the sections to follow.
The details of the construction noted in (c) above are, as yet, not completely

explicit, which is one of the points addressed in this paper. What is known is the
formal algebraic structure of the products of unit tensor operators. The basic
relation is the product law [7].

(2.11)
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Expressed in words, this law states that the product of two unit tensor operators

(the left-hand side) is a sum over unit tensor operators—the terms / [M"]

on the right-hand side above—multiplied by both numerical (Wigner or "(3j)"

coupling) coefficients—the terms
\

(m) /

above—and invariant

operator (Racah or "(6j)") coefficients—the terms / [M"]

\(y")

above. Note that the shifts in a product of operators—like the weights-are additive.
• For the fundamental unit tensor operators, all terms occurring in the product

law are explicitly known [9].

3. Derivation of the ό&8 Commutation Rules using Structural
Considerations

The fact that the fundamental unit tensor operators <100> and <110> generate,
algebraically, the space of all unit tensor operators in SU3 is very suggestive. In
particular, an investigation of the Lie algebra generated by these fundamental
operators seems clearly indicated. As we shall see, there are difficulties in any such
straightforward attempt.

Let us begin by considering the product of two <100> operators having the
same upper pattern. The abstract product [100] x [100] can only lead to [200]
and [110], which are symmetric and antisymmetric, respectively. Since, however,
the upper patterns are the same and the shifts extremal, the shift of the product
operator is also extremal, and hence belongs uniquely to the irrep [200]. It follows
that the commutator, being antisymmetric, must vanish. An analogous result follows
for the [110] operators.

Thus we have shown [8] Proposition 3.1: For the 18 fundamental operators
A\

1, any two operators having the same operator shift (upper label, A) commute.

This is, however, as far as one can go in a direct approach and obtain simple
results; further commutators fail to vanish and generate more and more new
operators.

The way out of this impasse is to recognize (with some surprise) that the
fundamental unit tensor operators are not the proper elementary objects to consider.
The correct objects are the fundamental unit tensor operators re-normalized to
remove the (SU3 invariant) denominators (defined in [8]).

In order to understand why this renormalization is so essential, let us consider
again the product of two <100) operators, but this time having the same lower
(Gelfand-Weyl) pattern. Once again, the product pattern is extremal and hence
only < 200 > can occur. But we can no longer appeal to symmetry to eliminate the
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commutator since an invariant (Racah) operator appears (unsymmetrically) in the
product law (2.11). The key observation is that removing the SU3 denominator has the
effect of removing this invariant operator so that the result is symmetric and the
commutator vanishes.

Thus we have obtained Proposition 3.2: For the 18 re-normalized fundamental

operators I I, any two operators having the same SU3 weight (w) commute.

Remark 3.3. Note that re-normalization does not affect the previous result (3.1).

Hereafter we shall consider the ( 1 always to be renormalized, and denote the
W

renormalized fundamental operators by <100>κ and <110>κ.
Now let us consider the product of < 100 >κ with < 110> R, where the shifts are

such that the sum is a permutation of (210). Since the resultant (product) shift is
extremal, only [210] operators can occur on the right-hand side of the product
law, Eq. (2.11). It is remarkable that, once again, the renormalization removes the
invariant (Racah) operator that occurs for this term with extremal shift. Since the
numerical ("(3j)") coefficient in the product is symmetric, we obtain, once again, a
vanishing commutator.

Thus we have shown Proposition 3.4:

• The three ί \ commute with the three I 1 and the three ( 1.

/010\ , , , / O l l λ , , /HO
• The three commute with the three and the three

The three ( 1 commute with the three 1 ) and the three

101

The results (3.1,2,4) establish all the vanishing commutators. Let us consider next
the non-zero commutators.

Consider the commutator of two < 100 >Λ operators, where, to avoid vanishing,
the two shifts and the two weights involved both differ. Because of the re-
normalization the invariant operator in (2.11) multiplying the <200>κ term has
been replaced by unity. Since the numerical (Wigner) coefficient in (2.11) multiplying
the <200>R term is symmetric, we see that the commutator can only result in an
operator <110>. This argument is not enough to show that the commutator is a
numerical multiple of < 110>κ with the appropriate A and w; the possibility of an
invariant operator multiple cannot a priori be ruled out. But using the pattern
calculus [8] it is easy to evaluate the explicit form of the operators involved
verifying that <110>Λ does indeed occur with a numerical coefficient.

Using similar considerations, it can be verified that the < 110>R commutators,

when non-zero, yield numerical multiples of the <100>^ operators.
Finally let us consider the commutators of <100>R with <110>Λ. To be
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non-vanishing, the shifts of these two operators must be complementary, so that
the resultant (product) shift is (111). The right hand side of (2.11) now contains,
in general, three possible terms: operators transforming as the adjoint irrep [210],
for which there are two possible types, the so-called F and D operators (the
generators and "non-generators" of SU3, respectively) and operators transforming
invariantly, i.e. as [000]. Once again the remarkable effect of re-normalizing
intervenes to remove the Racah operator multiplying the non-generator <210>
terms, so that symmetry eliminates all such terms.

Using the pattern calculus rules verifies that the commutators of < 100 >^ with
<110>Rj when non-vanishing, close on the Lie algebra ^ of SU3 (the generators
<210» and three SU3 invariant linear operators, X19 whose matrix elements on
2tf are:

= (Pi3 +P23 +Ps3 ~ 3pί3), (3.5)

where we have used the symmetrical notation:

Pi3 Ξ ^3 + 3 - i. (3.6)

Only two of the three Xi are independent, since it is clear that ]Γ Xt = 0.

The commutation relations for the SU3 generators, ,̂ with the 18 operators
Δ\ ίΔ\

are, of course, known to yield numerical multiples of the , since this

is a consequence of the tensor operator condition (2.5). Clearly the commutators
|>,AV1=0.

(Δ\The commutators of the with the invariant operators Xt do not vanish

(Δ\
(since the I 1 effect changes (shifts) in the irrep labels of the vectors in Jf7), but

the results are numerical multiples of the [ 1 since the matrix elements of the
w

X^ Eq. (3.6), are linear in the pί3.
fΔ\

It follows that the commutators among the 18 I , the 8 ^ and the 2
\ w /

independent invariants, say, Xl and X2, close. The resulting Lie algebra of these
28 operators is isomorphic, as we shall show below, to the complex simple Lie
algebra ^8.

We shall deal much more explicitly with this Lie algebra in the following
sections. Our purpose in the discussion above is intended to show how information
on the SU3 tensor operator structures allows one to "understand" the commutation
relations a priori—from the structural properties of the product law (2.11)—once
the all-important condition of re-normalization has been imposed.

Remark 3.7. The fact that the unit tensor operators <100> and <110> obey the
simplest commutation relations only after renormalization has important further
implications.

First of all, let us recall that the re-normalization consisted of removing the
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SU3 norms of the <100) and <(110> tensor operators. The use of normalized
operators originated in the requirement that the operators be continuous, and
hence defined everywhere by their matrix elements on a given basis.

The removal of the normalizing factors thus means that we achieve the simplest
commutational rules for unbounded operators. This suggests that these more

(Δ\
elementary operators, the I , can be realized by polynomials (over C) in the

boson operators, in particular without adjoining square roots of rational functions
of invariant operators as given by the normal form [9].

Once we have recognized the role of polynomial operators it is clear that one
should go further and introduce unnormalized state vectors as basis vectors of Jtif.
Such a step is familiar from angular momentum theory, where the matrix elements
of the raising-lowering operators, which have the (un-normalized) form:

J+-»[(»»i2-'»ιι)('Wιι-'«2 2 + l)]1/2

J_ -»[(mu — m22)(m12 — m22 + 1)]1/2 acting on states

take on the much simpler polynomial form:

when one uses un-normalized state vectors:

m m22

(Here α1 2 is the determinant of two pairs of independent bosons.)
Thus we see that considerably simpler structures enter if we use orthogonal

but unnormalized state vectors, which are polynomials in the bosons (multiplied
on the right by the ground state ket), and also use polynomials in the bosons as
operators.

It is also useful to recognize that the commutation relations (for the renormal-
ized operators) introduce invariant operators of a very special type (see Eq. (3.6)).
There are in SU3 two invariant operators, the quadratic invariant /2,

18/2 -> [(P13 - P23)
2 + (P23 - P33)

2 + (P33 ~ P Ί3)
2 ~ 6], (3.8)

and the cubic invariant 73,

162/3 -> Q?13 + p23 - 2p33)(2p13 - p23 - P33)(p13 - 2p23 + /?33), (3.9)

where we have used the partial hook variables:

Pi3 = mi3 + 3 — ί, (3.6)

instead of the Young frame labels [^ι3m23m33] of the U3 state |(m)> on which /2

and /3 act.
Note that the operators I2 and /3 are invariant to a shift in the m 3 by a

constant, and are symmetric under an S3 group acting on the indices i= 1,2,3 of
the p 3. (It was to achieve this latter symmetry [8] that required the use of the
partial hook variables.)
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The invariant operators, X19 introduced by the commutation relations are quite
different, with eigenvalues linear in the partial hooks. In order to express the
symmetric variables pi3 in terms of the SU3 invariant operators I2 and /3, it is
necessary to explicitly break the S3 symmetry (by taking roots). Thus an ordering
has been imposed on the structure, and this ordering is the same as the ordering
that defined the highest weight vectors in the Gelfand-Weyl basis |(m)>.

The operators X. are, however, still invariant to constant shifts in the mί3. (A
more symmetrical way to proceed would be to introduce all three Xi operators
together with the constraint ]Γ X. = 0, but for brevity we shall not do so.)

ί
• We propose in the next section to utilize these insights and to begin ab initio,

using boson polynomials over C both as operators and as states to realize this
simplest of algebraic structures for SU3.

4. The Representation V

We shall use two sets of three bosons for SU3. The first set: ai9at (ί = 1,2,3), with

L^aj] = δίp (4.1)
and

[fl/,^] = [άI,αJ]=0 (4.2)

realizes the representation [100] under the commutation action of ,̂ the com-
plexified Lie algebra of SU3:

Eij = aiάj9(iίJ9i9j=l9293)9 (4.3)

^i = £11 ~ E22 = a^ - a2ά2, (4.4)

A2 = E22 - £33 = a2ά2 - α3ά3. (4.5)

The second set of three bosons will not be the (usual) determinantal forms in
pairs of independent bosons but will instead be a second triplet of bosons, indexed,
however, by pairs of integers:

«i2^235

f l3i and aί29ά239ά3l9 (4.6)

Obeying the boson commutation rules:

fa,«β]=δΛβ, (4-7)
[άα, άβ] = [αα, aβ-] = 0, (α, β = 12,23,31). (4.8)

Moreover, all at, άϊ are defined to commute with all αα, άβ.
In order that this second triplet realize the representation [110] (conjugate to

[100]) we extend the definition of the SU3 generators, ,̂ now to be:

E\2 = aιά2 ~ a3ia2i>E2i = Ma ~ «i2«3i> (4.9a), (4.95)

£13 - fljά:, - a12ά23,E21 = a2ά1 - fl23fl31, (4.9c), (4.9d)

£32 = α3α2 - a31ά12,E31 = a^ - a23ά12, (4.9e),(4.9f)

^1 = Ell - E22 = aiaί ~ a2ά2 + fl31«31 ~ ̂ 23^23, (4 9g)

^2 = #22 - £33 = α2«2 - fl3«3 + ai2a!2 ~ fl31«31 (4-9h)
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This structure is defined so that the involution:

/ : a £ -* άjk9 άt -> ajk, (ijk) = (123) cyclic (4. 10)

acts as a conjugation on ,̂ that is,

-*• (4.11)

Now let us consider the set of all polynomials over C formed from the six
boson (creation) operators; that is, the polynomial ring

W = C[al9a2,a3,a12,a23,a3ί]. (4.12)

The action of the Lie algebra # on the polynomial ring W is by commutation:

(4.13)

The polynomial ring W can be made into a space of ket vectors, as is customary
in physics by first defining the vacuum ket |0> by:

αί|0> = α j.k |0>=0, alliJΛ (4.14)

and defining for wεW the associated ket vector |w> by:

| W > Ξ Ξ W | O > . (4.15)

Noting now that (from Eqs. (4.9)):

0, (4.16)

we see that the action of the Lie algebra on this ket-vector space agrees with the
action on the polynomial ring, that is: (for gep)

^: |w>^ |w>' Ξ ^ |w>-^w|0> = [^,w]|0>-|fe,w]>, (4.17)

which accords with Eq. (4.13).
The action of ^ on the space of ket vectors {|w>}, weW defines W as a

representation of .̂ It is clear, however, from the fact that the polynomial:

M+ Ξ α1α23 + α2α31 + α3α12, (4.18)

commutes with ,̂ i.e.,

|>,M+]=0, (4.19)

that the vector |M+ > is annihilated by all #. Thus the identity subrepresentation
is not unique in W.

To achieve uniqueness let us introduce the operator M_ :

M_ = ά^ά23 + ά2ά31 + α3ά1 2. (4.20)

This operator, M_, and the polynomial M+ (viewed as an operator) together
with the operator M0:

M0 Ξ aίάί + α2α2 + α3α3 + a12ά12 + a23ά23 + α31α31 + 3, (4.21)

generate an ̂ 2 Lie algebra.
• Let us now impose the constraint M_ ->0 on the vector space W, thereby

defining a new space V:
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Definition 4.22 V is the set of all we W such that M_|w> = 0.
We observe that the new space V is a representation of ,̂ since it is easily seen

that:

[>,M_]=0. (4.23)

(In fact, one sees that [̂ ,M + ] = [^,M0] = 0 also.)
The importance of the space V lies in the fact — which we shall now

demonstrate — that V contains every irreducible representation of SU3 each irrep
occurring once and only once.

Consider the homogeneous polynomials of degree k (k an integer ^ 0) in W\
call this the space Pk. Let Hk be the subspace of polynomials h in Pk which obey
the constraint: [M_,Λ]|0> =0.

The space Pk may be characterized group-theoretically as the carrier space of
an irreducible representation (fcOO) of the symplectic group Sp6 whose generators
are defined in this way:

Using the fact that d/6 ^=> #9 we take for 8 of the 21 generators of d/6 the Lie
algebra ^ of SU3. Introduce the generator:

^3 = Ml + a2a2 + M3 -
 ai2aί2 ~ ̂ 23^23 ~ %1«31> (4 24)

which commutes with the Lie algebra ^ (and forms the third commuting element
of an d/6 Cartan sub-algebra, the other two being ̂  and ^2). The remaining 12
generators transform as [200] and [220] under ^ and have the form :

[200] d/6 generators = S t J :

Sn = 2aίά239S22 = 2α2α31,S33 - 2α3ά12, (4.25)

^31 =^3^23+^1^12- (4 26)

[220] d/6 generators = T^:

Tn - 2Λ 2 3 Λ 1 9 Γ22 - 2fl31ά2, T33 - 2α12α3, (4.27)

T12 = ̂ jά! + β23^2?

 T23 = β31^3 + fl!2^2>

T 3 1 -α 1 2 α 1 +α 2 3 ά 3 . (4.28)

It is now easily seen that the polynomials in W generated from the monomial
(«1)

k carry an irreducible representation (fcOO) of Sp6. To verify that this is precisely
the space Pk requires only checking the dimensions: both spaces have the dimension

5
Now consider the space: M+Pk. Clearly this space is contained in Pk + 2, and

hence in the irrep (k + 200). Because M+ commutes with ,̂ every SU3 irrep
belonging to Pk also belongs to (k + 200).

Next consider the polynomial associated with the Sp6 highest weight vector
in (k + 200). This vector is of the form: \(al)

k + 2}.
Applying the ofi6 lowering operator T31 to this vector, we obtain a non-zero

multiple of the SU3 highest weight vector \(aί)
k + ίaί2y belonging to the SU3 irrep
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Successively applying the same lowering operator, we obtain in Hk + 2 non-
vanishing vectors belonging to the sequence of SU3 irreps:

[fc + 200],[fe + 210],[fc + 220],...[fc + 2 fc+1 0],[fc + 2 k + 2 0]. (4.29)

This sequence of SUB irreps, combined with the SU3 irreps from M+Pk,
completely exhausts the space of the Sp6 irrep (k + 200) as demonstrated by a
dimensionality argument :

• The dimensionality of the space (4.29) is given by:

"v2 Λ rdim [

• This is the same as dim (A: + 200) — dim(W)0).
• There can be no overlap between M + Pk and (4.29).
Accordingly we have demonstrated:

Pk~2, (4.30)

and hence by applying this result successively,

Pk=Σ ® (M+)pHk~2p, (4.31)

since P° = H° andP 1 =H 1 .
Moreover this result shows that the space Hk is itself the sum of SU3 irreps

given by:

Hk = [MO] Θ [k 10] Θ . . . 0 [MO]. (4.32)

We have thus proven: Proposition 4.33. The SU3 representation V is a
multiplicity free sum of all finite dimensional irreducible representations of SU3.

Moreover we see that:

Corollary 4.34. The algebra of operators on V generated by ^ is isomorphic to the
universal enveloping algebra of p.

5. The Algebra d

We have now obtained K, a space of (unnormalized) boson polynomial ket-vectors
which is, by Proposition 4.33, a multiplicity-free sum of all irreps of SU3. This is
the precise equivalent — except for normalization — of the Hubert space 3? which
was introduced, by fiat, as the appropriate space for discussion of SU3 tensor
operators in Sect. 2. It will be recognized that the space V is obtained much more
naturally and in a completely elementary way.

The next step is the construction of the minimal set of tensor operators —
containing at least < 100> and < 110> — which closes under commutation. This set
closes on o#s — as we know from Sect. 3 — and the objective now is to determine
this set of operators as boson polynomials. We simply state the result.

Let us define the six boson polynomial operators — denoted again by ( I — to

be:
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ΊOO\ 2 _

-a2a31ά23-a3al2ά23, (5.1)

(uo) = a^-a3A' (5-2)

P-»
no\ 2 _
l lθj fl12+«12«12+ai2a23fl23+«12«31«31 α^^l + «2«12«2

— α α a — a a3 a , (5.4)

IM' - - (,5,

(5.6)

• Calculation shows that each of these operators carries the space V into itself.
Define twelve more operators on V.
For J = 100, 010, 001:

(5.7)
\ ιw/J \uuiy [_ \ u ι u / j

For J' = 110, 101,011:

• The algebra of operators on V generated by the eighteen I ) will be denoted

<$/. (To avoid confusion, let us note explicitly that products of operators (and not
just commutator products) are admitted in j?/, as well as linear combinations.)

Observe that $0 contains the SU3 Lie algebra ^ and hence also the enveloping
algebra of ̂ .

Γ / ι m \ /mn\Ί Γ / ι m \ /πm\Ί
(5.9)

We can therefore view jtf as the space of an < 3̂ representation p through the
action: p(x)a = [x,a] for xe^ aejtf,

Each of the eighteen generators of j/ has been written in the form

where (as before) we refer to A and w as the upper and lower labels. These labels
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are interpreted as weights: the upper label is the "weight" of the SU3 operator
pattern uniquely associated to the operator and the lower label is the weight of
the Gelfand-Weyl pattern associated with the operator. As discussed in Sect. 2,
the upper label is the shift induced by the action of the operator: if λ = [p<?0] is

an irrep of V then is (possibly the null space) contained in the irrep

λ + A of V. (Recall that λ + A ~ [p + A, - A3,q + A2 - 43,0].)

The lower label w of the operator I ) is a weight of the SU3 representation
w

(Δ\
in s0 carried by the tensor operator. In the action of on the SUB vectors

W
belonging to V, the weight w of the operator adds to the weight of the vector to
give the weight of the new vector.

• It is useful to note at this point that the algebra #0 is exactly the right "size"
for the study of all the SU3 tensor operators. It is shown in [6] that: if U is any
finite dimensional vector subspace of V, and T is any linear transformation U into
U, then there exists an element of s/ whose restriction to U equals T.

It follows from this result that:
i) // a transformation T of V commutes with stf then T is a scalar multiplication.
ii) The center of stf is C, the scalar multiplications.
iii) V is a simple ^-module.

6. The <j&8 Lie Algebra

Direct calculation with the eighteen generators of j/ shows that the same three
useful rules for the commutators hold as for the (similarly denoted) operators in
Sect. 2. That is:

• The three operators with a given upper label commute.

• The three operators with a given lower label commute.

• The three ( j commute with the three ( 1 and the three

/010\ / O l l λ /110\
• The three I 1 commute with the three I I and the three I I.

/100\ /101\ t• The three I commute with the three I I and the three

We define six more elements of j/:

H! = — 1 — a2ά2 — <23ά3 — a23ά2^

H2 = - 1 - a1άl - α3α3 - α31ά31,

H3 = - 1 - a1άί - a2ά2 - a12ά12,

H4= -1- a12ά12 - a23ά23 - a31ά31,

X = 1 + a1ά1 + a2ά2 + α3α3,

Y=-H4.
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Notice that X and Y commute with .̂ On the Q?gO] sub-representation of K,
X acts as scalar multiplication by p — q -f 1 and Y as scalar multiplication by q -f1.

The outcome of a great many laborious commutation calculations may now
be summarized by the following result (which is exactly the result established
earlier and more abstractly for the operators <100>Λ, (110)^ in Sect. 3).

• The eighteen generators of jtf, ,̂ X, and Y span a twenty-eight dimensional
complex Lie algebra isomorphic to ό#%. (6.1)

Moreover it is clear from the construction:

• stf is isomorphic to a quotient of the universal enveloping algebra of o&%. (6.2)

• V may be viewed as an irreducible representation of ό#%.
It is useful to give explicitly the isomorphism with the Lie algebra 4#s.
Let J = ( δ i > 9 _ f ) be the 8 x 8 matrix all of whose entries are zero except those

on the second diagonal which are equal to one. We will take for d^8 the Lie algebra
of 8 x 8 complex matrices A such that 1AJ -h JA = 0. These are precisely the 8 x 8
matrices which are antisymmetric with respect to the second diagonal.

The identification of matrices in ##s with elements of jtf is given in Table 1,
where F f j is the 8 x 8 matrix all of whose entries are zero except the i/h which is one.

We wish to find a real form of the j#s given in (6.1) for which the representation
V is unitary. It will have a maximal compact subalgebra / whose action on V
splits up into finite-dimensional sub-representations. Clearly the sub-algebra d^3

of ,̂ as well as X and Y, belongs to I. Of the 18 remaining basis elements of < 8̂

we can eliminate immediately all those having A = (100) on the following grounds:
100s

If any operator with A — (100) lies in /, then so must I 1 since d^3 c /.
\100y

But the action of I I on V is unbounded, since ( ) on any highest
x^lOOy ylOOy

weight vector of any SU3 irrep λ of V yields a non-vanishing vector of λ + [100].
A similar argument eliminates operators with A = (110). Since we seek a compact
structure we must admit the conjugate operator to every admitted operator as
well: this eliminates the operators A = (Oil) and A = (001), conjugate to A = (100)
and (110) respectively.

We are thus left with the six operators: I J and I

The following results are then easily verified:

• ,̂ X — Y, and six Hermitian combinations of the I J and the ί )

span a fifteen dimensional real Lie algebra d^4.
• Each of the subspaces Hk of V is irreducible as a representation of this d^4.
• Adjoining X -f Y we see that the subalgebra I is isomorphic to <)^4®^1.
• In fact, I is a maximal compact subalgebra of a real form of ό&8 corresponding

to the (noncompact) Lie algebra 00(6, 2) ̂  D^ D^2 [11].
Let L be the 8 x 8 diagonal matrix, L = diag(l, 1,1,1, - 1, - 1, - 1, - 1). We

can take for o#(692) the real Lie algebra of all 8 x 8 complex matrices A in d^8

such that - UAL = A.
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Table 1. jtf and o#»

oιo

010

OOl

100

100 \ /OlΓ

ΌOI/ Flί~Fs2 \ι

Hi = Fli-F9_i9_l i = l,2,3,4.

It follows from the main theorem of [15] that:
• The irreducible representation V of 4#(69 2) is unitary.

1. The Decomposition of the Algebra stf under ̂ 8

We have already noted that the complexified SU3 Lie algebra, denoted by ,̂ acts
on si to define a representation p by the action:

p(x)α=[x,α] for ae^.xe^. (7.1)

Since the ̂ 8 Lie algebra contains ^ we can extend the action of ̂  on j/ to the
d^8 Lie algebra, thereby obtaining a representation, also denoted p, of d^8 on ^/:

p(x)α = [x, α] for αej/, xe^8. (7.2)

Our objective in this section is to obtain an explicit decomposition of p into
irreps of ό#8. The result is remarkably simple:
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Proposition. 7.3. The representation p is a direct sum o/irreps ofo#8 of the form (OpOO)
each irrep occurring once and only once. That is:

oo

p = 0 (OpOO).
p=0

(The notation for the orthogonal group irreps is that of [12], with (0000) being
the identity irrep and (0100) the 28 dimensional adjoint irrep of <3*>8.)

To prove this result we shall make use of the known branching rules [13] for
the decomposition of the orthogonal groups, using in particular the sub-group
chain: D4 ^ B3 => D3 ~ A3. Using the branching rule A^-^A2 (encoded by the
Gelfand-Weyl pattern) we can then determine the SU3 irreps contained in each
(OpOO) ό#s irrep.

Let us begin by noting two facts that are evident upon examining the
B3 ID A3 ID A2 branching rules.

• Every finite dimensional B3 irrep contains the identity irrep [000] of SU3 at
least once, (7.4)

• Every B3 irrep of the form (abO) contains precisely one [000] irrep of SU3.
(7.5)

To proceed further we use the D4 => B3 branching rule for the irrep (OpOO):

(OpOO)D4= ®(k p-k 0)B3. (7.6)
k = 0

Combining this result with the fact (7.5) noted above we see that:
• The irrep (OpOO) of D4 reduced with respect to A2 in the chain

D4 =3 B3 ID A3 ID A2 contains precisely (p + 1) SU3 irreps [000].

In terms of the algebra jtf, this means that if the sub-representation (OpOO)
occurs in j/, then this sub-representation contains precisely (p + 1) SU3 invariant
operators.

Consider now the algebra j/. It is generated as an algebra by the 28 generators
of <ι&8 which belong to the irrep (0100). By considering the highest weight

generator — that is, the operator I which commutes with the four raising

^ /OlOλ Λ /001\
operators: £12, £23, I and 1 — we see that we certainly must get

V UUi / \ UUi /

1 , and hence j/ must contain every irrep

(OpOO) at least once.
But we argue that the irrep (OpOO) cannot appear more than once since each

such irrep contains (p + 1) SU3 invariants and there are exactly (p + 1) linearly
independent homogeneous SU3 invariants of degree p in the two independent
invariant operators X and Y of the < 8̂ generating algebra.

Thus: each irrep (OpOO) occurs exactly once.
The same argument establishes that there are no other ^8 irreps in the
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00

representation p, aside from 0 (OpOO), since any additional irrep would
p=Ό

necessarily contain one or more SUB invariants, and the direct sum © (OpOO) has
exhausted all such invariants.

Closer examination of this proof shows that it contains an assumption,
which — though valid — nonetheless itself requires proof. This is the assumption
that: the sub-algebra of jtf, denoted J^, of all SU3 invariant operators is the
algebra of polynomials in the two invariants X and Y. That is:

, Y]. (7.7)

One can establish this result as follows. Let fee J$. Since h is SU3 -in variant,
it will act as scalar multiplication by f(kj) on the subspace [k +jjO] of V, where
the number f(kj) is determined by the condition that h\a\a{2y = f(kj)\ak

1a{2y.
Because h can be expressed as a polynomial differential operator in the α and the
αα, the function / must be a polynomial in k and 7. After a linear change of variables
from (kj) to (X, Ύ\ f becomes a polynomial in X and Y.

There is an equivalent form of the result (7.3), using now an algebraic
formulation, which is of interest :

The polynomial algebra C I 1 \ is the commutant of

(7 8)

Since the four operators {. . .} in (7.8) are the raising operators in 4^8, and

( j is the operator of highest weight, the equivalence of (7.8) to (7.3) is clear.

8. The SU3 Decomposition of the Algebra jtf

From Sect. 7 we know that the algebra $0 splits into a direct sum of the < 8̂

representations (OpOO).
Let us denote the operators belonging to the ό&8 irrep (OpOO) as the operators

belonging to level p. The space of operators at level p which are scalar multiples
(by which we mean multiples by elements of C[X, 7]) of operators at lower levels
will be called the old operators at level p. By the new operators at level p we shall
mean an d^3 subspace of (OpOO) complementary to the space of old operators.

The identity operator spans the space of new operators at level 0. There are
no nonzero level 0 old operators.

The operators belonging to level 1 are just the Lie algebra of ^^8, and among
them the operators of highest <5^3 weight are just the ones that commute with E12

and £23, namely the nine operators:

(8.D

The level 1 old operators are spanned by X and Y. The last seven operators of
(8.1) are new at level 1.



Tensor Operators 161

The operators (8.1) generate a nine dimensional Lie algebra. They also generate
a sub-algebra of si, which we shall denote by gβ. We shall see that there are
relations among the elements of J* so that the generators, (8.1), are not independent.
One of our major objectives is to prove that the commutant of {E129 E23} in si is
precisely the subalgebra $.

Let us now examine the operators at level 2. Decomposing (0200) in terms of
όu^ irreps using the branching rules, we obtain the following:

New operators at level 2:

1[420], 3[320], 3[310], 6[220], 7[210], 6 [200]. (8.2)

Old operators at level 2:

2 x (new operators at level 1) + 3 x (new operators at level 0). (8.3)

The identification of the set of new operators through level 2 by < 3̂ irrep and
shift labels is unambiguous with the exception of the operators transforming as
the adjoint irrep [210]. The [210] tensor operator at level 1 and one of the new
[210] tensor operators at level 2 both have shift label (111).

This problem was not unforeseen. The shift labels I the upper labels in I

are inadequate since there are in general several distinct operators with the same
< 3̂ irrep and shift labels. This is because the operators in j/, being generic
operators, actually achieve maximal multiplicity, which is known to be [5,14]
equal to the number of distinct Gelfand-Weyl patterns having the same < 3̂ irrep
and shift labels.

Notation 8.4. We shall denote by Γt(pqQ) (1 ̂  t ̂  min(/? - q + l,q + 1)) the set of
all weights (shifts), each taken once, that occur in [pgO] with multiplicity t or greater.

Simply as a way of enumerating the independent new operators at a fixed level,
we will write:

/ r \
(8.5)

for a set of highest weight tensor operators <pgO> with shifts belonging to Γt(pqQ).

Remark 8.6. It is one of the consequences of Theorem 8.12 that this labelling is
unambiguous.
For example, the shift (111) has multiplicity 2 for the irrep [210], so that there

/ Γ \ ( Γ \
are 7 operators in the set I * I, and one operator in the set ( 2 I. (Of

course, there are for each element in these sets dim [210] =8 independent
components of the associated tensor operator.)

The new operator at level 0 is labelled l . At level 1, (see 8.1), we can
000 /

label new operators by and

In this notation, the 26 new operators at level 2, (8.2), are given by the following
six labels:
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/o ' 7\
' { ' )

We are obliged to check that the new operators, (8.2), actually effect the shifts
implied by the notation (8.7).

In order to do this, we consider the highest weight operators at level 2 as
symmetrized products of the nine operators in (8.1). (We must use symmetrized
products in order to guarantee that the resulting operators belong entirely to
(0200). There are 45 such symmetrized products but, from (8.2) and (8.3), just 26
new tensor operators and 14 -f 3 = 17 old tensor operators at level 2. There must
be precisely two relations among the symmetrized products:

OOVOllλ / O l l V l O O λ / O l O V l O l λ /10lVθlO

oiovio Λoivoioλ /ooiVnoλ ΛWooΛ

These relations allow us to eliminate two of the symmetrized products, and
we choose to eliminate:

(8 10)

The 26 remaining symmetrized products not involving X or Y thus enumerate
exactly the new operators at level 2.

There is only one possibility for a [420] operator: the product (E13)
2 which

has shift (222). Since for [420] the shift (222) has multiplicity 3, and moreover the
set of shifts with multiplicity ^ 3 is exactly (222) itself, we see that the resultant
[420] operator is to be labelled by Γ3 as shown in (8.7).

Similarly the (symmetrized) products of E13 with the three ( '" 1 operators
\100/

yield three [310] operators with shifts: (211), (121) and (112). Since these shifts
have multiplicity 2, and since the set of shifts with multiplicity ^ 2 is just these
three shifts,' we conclude that the resulting operators are to be enumerated by

. The 1 operators follow in the same way.

The symmetric products of I 1 with themselves yield the 6 operators

[200] with the shifts: (200), (020), (002), (110), (101), (Oil) all of multiplicity 1 (and

the only shifts possible). These operators are accordingly denoted by
200

/vand similarly for

The enumeration of the [210] operators at level 2 is quite significant. We have

seen that the symmetric products of '" and lead to 9 [210] operators
100 / V 1 1 0 j
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of which—using Eq. (8.8) and (8.9)—only 7 are independent. Of these 7 operators,
6 have shifts which are permutations of (210); the 7th has the shift (111). These
are precisely the set of shifts that occur with multiplicity 1 or greater, and accordingly

we enumerate these operators as the set .

Thus we have verified the consistency of the notation in (8.7), since this
enumeration exactly accounts for all the new operators at level 2 as given by (8.2).

We are now in a position to analyze the SU3 structure of all the tensor operators
that belong to level p.

Theorem 8.11 A basis for the SU3 operators of highest weight belonging to the
irrep (OpOO) in stf is given by the totally symmetrized products:

/oioY/ioiY/iooV/oi iY/ooiy/i ioY'
S l 3 ) Vιooj \no) vioo; \no) ViooJ v110/

where £f]_. . .] denotes symmetrizatίon and with :a+b+c+d+e +/+ g + h + i = p,
and fg = hi = 0.

This result may be stated in a more structural way in the equivalent form :

Theorem 8.12. The SU3 decomposition of the new tensor operators in j/ belonging
to the <ύ&8 irrep (OpOO) (or, what is the same, the operators in 8.11 with a = b = 0)
is given by:

(2ppθJ

2p-lpθ; \2p-lp-lβJ

Γ \ / Γ \ i t1 2 \ I L 2 \ 1 2

Γ \ / Γ \ / Γ
M l 1 ) (

ppQj \pp-10J •" ' ' ΛP°°

Notice that we have already verified this for levels p = 0,1, and 2.
We wish to prove the two theorems together so that we can understand the

relationship between the structure in (8.12) and the exponents in (8.11). The
requirement fg =hί = Q has been imposed to take account of the relations (8.8)
and (8.9).

We begin by discussing the elements of the bottom row of (8.12), the Γ±. This
is the main part of the analysis from which all else will easily follow.

/ Γ \
Lemma 8.13. The highest weight operators in the set [ 1 I correspond

\p + qqQj
one-to-one with the set of elements

Γ/oιoγ/ιoιγ/ιooγ/oιιγ/ooιγ/ιιoVΊ
- |_\100/ \110/ \100/ \110/ \100/ v110/ J
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with: d + f + h = p,eJrg + i = q,fg = hi = Q and with
shift A = ( A 1 A 2 A 3 ) with A1 =e + / + z, Δ2 = d + g + i, A3 = e + g + h.

We give the proof for the case p ̂  q, the opposite case being similar. Let us

first consider arbitrary symmetrized products of the six operators

110

lϋϋ
and

Consider a product of degree p in the ( "' , which need not be symmetrized

since these operators all commute. The resultant operator must belong to the irrep
[pOO], for which all of the weights—and hence all possible shifts—occur with
multiplicity 1. Hence the product yields exactly those operators of highest SU3

Γ1 t r ι""" x ' 10n
weight denoted by . Similarly the product of q operators

precisely those operators denoted by
qqO

Now consider arbitrary products of the six operators and

restricted, however, to p operators I '" I and q operators ί "* ). Any such
V 1 vJU / \11U /

product will have a definite shift, A, and will belong to [p + qq 0] since the factors
have highest weight. Symmetrizing over all possible arrangements of the factors
will preserve A9 but the problem is to determine the number of distinct symmetrized
products with the same shift A. Since the ordering is not relevant to this distinctness,
one sees that the number of distinct such products is exactly the multiplicity of
the shift A in the set of products

A \( A"

This multiplicity exactly equals the multiplicity of the weight A in the (SU3) tensor
product [pOO] (x) [ggO]. We make use of the known decomposition (for p^q):

ίpWl®ίqqW = lp + qqO~] + [p + q-lq^ + - +lpqq~]. (8.14)

To enumerate the weights on the right-hand side we use another lemma.

Lemma 8.15. A weight w has multiplicity r ̂  1 in [α b c] if and only if it has
multiplicity r + 1 in [α + 1 b c — 1].

Proof. Examine Gelfand-Weyl patterns. The multiplicities of w = (w1 w2 w3) (with
wx -f w2 + w3 = α + b + c) in the two irreps equal the numbers of patterns possible
below with α + β = w1 + w2.
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There is clearly one more possibility for [a -f 1 be — 1] than for [αfoc].
Now let us re-consider the weights belonging to the right-hand side of (8.14),

this time as shifts. The shifts of multiplicity t in [p + q q 0] (for t == 1,2,..., (q + 1))
appear—according to Lemma 8.15—as weights of each of the irreps \_p + q — rqr\
for 0 I* r ̂  t — 1. It follows, therefore, from the multiplicities with which the weights
appear—as given by the lemma—that the set of shifts denoted by the sum:

9+1

(8.16)

(where t is a multiplicity) actually exhausts the set with multiplicities of shifts A
i— / \ „ / \ „ —i

appearing in the symmetrized products ,
I— \ / \ / I

We must next come to grips with the restrictions imposed on the exponents
in (8.13). We start with the shifts of multiplicity one.

Lemma 8.17. To every shift A of multiplicity one in [p -f ggO] there corresponds
an operator of (8.13) with the additional restriction that de — 0.
The weights which are of multiplicity 1 belong to the set of patterns of the types:

v: w V V χ/ -./ Y/ ,v

(A line here signifies that two integers in the pattern are equal.) Corresponding
operators can be written out explicitly in terms of the entries in the patterns, and
we shall do so at the conclusion of the proof of (8.13). The eight pattern types
shown correspond to the eight ways of choosing one exponent to be zero from
each of the pairs {d,e}, {f,g}, {h,i}. We shall in fact see that the correspondence
of (8.17) is bijective.

We now count the operators that can be built with Lemmas 8.15 and 8.17.
Each shift A of multiplicity t in [p + qqΰ] is by (8.15) of multiplicity 1 in

[p + q + 2 — 2tq + \—tO]. An operator with shift Δ and of this latter ό^3 type

can be constructed (by 8.17) from the product of p + 1 — t of the '" \ and
V1 0 0/

q + 1 — t of the ( ' ' ' I. We next multiply this product operator by I ) I
V llUy I V I U U / \yllU

[7iooγoιι\Ί<r/ooιγιιo\Ίm ,u / , ,, , ™ ft + u
L(ιooΛιιoJJL(ιooXιιoJJ Wlth k + l + m = t-l There are —
possible choices of the k, /, m.

From (8.16) we learn that the multiplicity of A in [>00]® [qqΰ] is also t(t 4-1)/2.
Thus we have constructed all the operators of shift A arising as a product of p of the

. and q of the I '" ' I. Lemma 8.13 now follows from the observation that
ιuu

exactly one of these operators satisfies the criteria of (8.13), the one with k = t — l
and / = m = 0.

It is essential that we give the association established by Lemma (8.13) explicitly,
and we pause to do so before continuing with the proof of (8.11) and (8.12). The
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labels Γ, — which denote the highest weight operators, I 1 1, that have

shifts of multiplicity 1 or greater — can now be written as fully explicit operator
patterns :

(8.18)

^ π
+ q q 0

The shift associated to this pattern is: (A1A2A3) with A1 = y11?

Remark. For each shift A of [p -f- q q 0] there is a unique pattern which is special
in that either y12 or y2 2 is "tied" to its largest or smallest value respectively. This
is often expressed by saying that the pattern is "stretched". We always select for
Γ1 the stretched patterns.

To correlate the associated operator with the basis set (8.13) we distinguish
four cases:

(a) y12 = p +

r/,ooy-^oιoy---^ιιoy^ιoιy-J (8l9a)

and y, ! ^ q:

Ί \ p / 1 1 f l V 2 2 /Π11 \ 4 - y i i /1Π1 \ y i i - y 2 2 ~ ]
(8.19b)

^100; \no/ V 1 1^/

(c) 722 =® and 7n =^ :

/ Γl \ Γ/lOOλ^^YOlOV 1 2 " 7 1

\p + qqQJ LV 1 0 0/ \100/ V l O O

-Yooiy ^^^Yony-y^/ioiV 1 1

ggo;^ L V i o o y ViooJ ^110; VUG; /0 ^^
(8 19d)

These operators are independent since they belong to distinct shifts (as implied
by the definition of Γj).

Let us now complete the proof of Theorems 8.11 and 8.12.
We first note that the operators of (8.11) are linearly independent. This can be

shown by direct calculation [8].
We proceed by induction. Let us assume that both (8.11) and (8.12) have been

established for all levels less than p; we investigate level p.
The old operators of (8.11) are those with a > 0 or b > 0 or both. The rest are

new.
Factoring out all powers of X and 7, one is led to enumerate the old operators
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at level p by the symbolic formula:

p-l

]JΓ (p — k -h 1) x (new operators at level k). (8.20)
k = 0

Factoring out all powers of £13, one is (via 8.13) led to enumerate the new
operators at level p by the symbolic formula:

(821)(8'21)

Since £13 effects no shift and has group label [210] ~ [1 0 — 1], we can use
Lemma 8.15 to write

The combination of (8.20), (8.21), and (8.22) establishes Theorem 8.12.
It remains only to show that the operators belonging to level p as given by

(8.11) actually exhaust the complete set of independent SU3 operators in the ό#s

irrep (OpOO). That this is so follows directly from the branching law for the chain
D4 r> #3 13 D3 ~ A3 ID A2, completing the proof of (8.11).

Theorem 8.23. The algebra $ is the full commutant of {E12,E2^} in j/.

Proof. The commutant is the space of all SU3 highest weight operators in j/. All
such are explicitly written down in (8.11) and are seen to lie in &.

9. The Structure of Tensor Operators in SU3

In this concluding section we shall summarize the results obtained in earlier sections
and discuss the implications of these results for the structure of the tensor operators
in SU3. We will show that the algebra j/ contains a qualitative, complete, and
globally defined description of all tensor operators in SU3, which can be exploited
to resolve all multiplicities.

Let us recall the basic results established. First of all the Hubert space, K, on
which the tensor operators act, was shown to be a single irreducible unitary
representation of d^(6,2) which contains every irrep of SU3 exactly once. The
tensor operators — the algebra j/ — were shown to be a direct sum of d^8 irreps,
each d# 8 irrep of the form (OpOO), p = 0, 1, 2, . . . occurring once and only once.

The most important structural result is Theorem 8.12, which gives a detailed
description of the SU3 decomposition of the operators in each < 8̂ irrep (OpOO).

How do these results establish a splitting of the SU3 multiplicity?
To answer this, let us recall that only those SU3 tensor operators whose shift

labels are exactly of multiplicity 1 are free of multiplicity problems. To enumerate
the set of operators having fixed SU3 irrep and shift labels (called a multiplicity
set) we introduced (in Sect. 8) the operator pattern labels Γt, with t = 1, 2, ____

Consider the SU3 tensor operators transforming as the irrep [p#0]. To
enumerate the multiple occurrences, we use the sequence:
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\ \ / ΓN \-̂  \ / ™ \ ΛT

/ Γ \
By ( ' ) we mean the set of tensor operators whose highest weight components

/ Γ \
are the I * I of (8.12) and (8.11). This set contains at most one operator in

any multiplicity set.
This listing is not entirely satisfactory. Upon tracing it to its source one finds

/ Γ \
that it depends, through the definition of the I l L upon the arbitrary choice

\pqQj
(8.10).

Now observe the remarkable fact implicit in Theorem 8.12.
• The definition of that < p g O > tensor operator of a multiplicity t set which

occurs last in the list (9.1) (or equivalently, which belongs to lowest level) is
independent of the choice (8.10). The operator is determined as a subset of the ό#8

irrep (Op + 1 -fOO).
For example, the 27-plet operator belonging to the multiplicity 3 set with shift

/ Γ \
(333)—denoted by ( 3 }—is uniquely determined by being the only SU3

operator <420> in the ̂ 8 irrep (0200).
Suppose the first operator <p#0> in a multiplicity set (the last in the list (9.1),

or equivalently, the one belonging to lowest level) belongs to level s. Theorem 8.12
shows that the level 5 + 1 contains exactly one operator of the same multiplicity
set linearly independent of X(pqθy and Y(pqθy.

At each higher level, one more operator in the multiplicity set is defined. Aside
from the first operator in the multiplicity set the operators are satisfactorily defined
only up to linear combinations of previously defined operators. (This situation is
exactly the same as exists for the Poincare-Birkhoff-Witt theorem which establish-
es a basis for the enveloping algebra of a Lie algebra, but not a unique basis.)

To fully resolve the multiplicity problem, however, one seeks, if possible, to go
further. To achieve this goal, we must return to the orthonormal vectors and
orthonormal tensor operators of Sect. 2. Take the ordered (from right to left) basis
from (9.1) of tensor operators in a fixed multiplicity set. The first operator is defined
without having made any arbitrary choices. By carrying out a Gram-Schmidt
process on the second operator in the basis, we produce a tensor operator
orthogonal to the first which is also defined choice-free. We can continue the
process, in effect simply orthogonalizing a lower triangular ordered set.

• The ordered basis of (9.1) becomes a tensor operator basis free of arbitrary
choices upon orthogonalizing. This resolves all multiplicities in the set of SU3 tensor
operators.

Note, however, that in orthogonalizing we have left the polynomial algebra
j/, since square roots of rational functions have been admitted.

The SU3 decomposition of the algebra j / established in Theorem 8.12 has
another aspect:
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• Every operator in s$ is a linear combination of the SU3 tensor operators
Γ \

with invariant operators (the polynomials C[Z, Y]) as coefficients,
pqβj

The algebra <$/ is accordingly a global formulation of the set of all SU3 tensor
operators which resolves structurally the problem of multiplicity.
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