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Abstract. We consider isolated point singularities of the coupled Yang-Mills
equations in R3. Under appropriate conditions on the curvature and the Higgs
field, a removable singularity theorem is proved.

Introduction

The original removable singularity theorem of Uhlenbeck [19] in R*, states that
apparent point singularities in finite action pure Yang-Mills fields may be removed
by a gauge transformation. Uhlenbeck’s theorem was extended by Parker [13] to
coupled Yang-Mills fields in R*.

In R3, finite action is too stringent a condition and may be relaxed to the
assumption that the solution (i.e., the curvature) is in L2 In recent work [17], it
was shown that point singularities of solutions in L*? of the pure Yang-Mills
equations are removable.

In the following, we consider the coupled Yang-Mills equations in R3. From
the point of view of mathematical physics, our equations describe the Higgs model
and have been studied extensively by Jaffe and Taubes [11]. We prove an isolated
removable singularity theorem for solutions of these equations. The sign of the
dominant lower order non-linear term plays a crucial role in this problem. In one
case, no assumptions whatsoever are needed on the Higgs field to remove the
singularity. In the other, a little more smoothness than is expected is required and
an example of a singular solution is given which shows that the requirement is
necessary. In both cases, we assume that the curvature is in L%/2,

To prove the theorem, we first show that the Higgs field is bounded. This
implies that its covariant derivative is square integeable and satisfies a strong
growth condition on small balls about the puncture. This is then used to show that
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the curvature is in L? for p> 3/2. Once this is known, a theorem of Uhlenbeck [20]
may be applied to obtain a “Hodge gauge” and this can be done without twisting
the underlying bundle. Then, we are able to apply the results of Hildebrandt and
Widman [8-10] for systems in diagonal form to conclude that ¢ and F are C* in a
neighborhood of the puncture.

The first section consists of preliminary geometric and analytic results.
Section 2 is devoted to showing that the Higgs field is bounded. This is proved for
any n=3. In Sect. 3, scalar subelliptic theory is used to obtain a first growth
condition. This section is independent of dimension and the results are true for
coupled Yang-Mills fields in dimension n, provided the curvature belongs to L"?
and the Higgs field to HY?2 In Sect. 4, we use the method of broken Hodge gauges
[17,19] to obtain the final growth condition. To illustrate the method, we do it
first in four dimensions. Because this is a purely L? argument, and our solutions
are in L*'? in dimension three, we are required to work with weighted L? norms
and the proof is technically more complicated. In the last section, all results are
combined to prove the theorem.

We note that the corresponding theorem in higher dimensions does not follow
directly from the techniques used here. However, by keeping track explicitly of all
constants involved, the theorem can be extended to dimensions n=35, 6, and 7. See
[17], where this is carried out for the pure Yang-Mills equations.

We also obtain as a corollary a result for pure Yang-Mills fields in R* having
an apparent line singularity; namely, if the field is independent of x, and the
curvature is in L*'? in dimension four, then a possible singularity on the x, axis is
removable by a gauge transformation. This follows from dimensional reduction (see
[11,11.6]) to a coupled field in R* with a point singularity.

1. Preliminary Results

Let M be a domain in R", and # a vector bundle over M, with compact structure
group G, and Lic algebra g. Let d be exterior differentiation, ¢ its adjoint and
denote by [,] the Lie bracket in G.

A connection A is a Lie algebra valued one-form which locally defines a
covariant derivative D=d+ A in . On p-forms o,

Do=dw+[A4,w]. (LY
The operator adjoint to D is the Yang-Mills operator D*. On p-forms, w,
D¥*w=0w+*[A4,*w]. (1.2)
The curvature F of the connection is a Lie algebra valued two-form defined by
F=dA+1[A, 4]. (1.3)
Curvature forms of connections automatically satisfy the Bianchi identities:
DF=0. (1.4)

Gauge transformations are sections of Autn which act on connections and
curvature forms according to the transformations:
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(a) A°=g~'Ag+g'dg,

(b) F=g~'Fyg.

The pair (4, F) is gauge equivalent to (4, F) if there is a gauge transformation g
such that A= A4 and F=F".

The determinant of the volume bundle over M is a line bundle of conformal
weight n. We denote by L, the determinant bundle raised to the 1/n power. Sections
of this bundle are constant in a fixed coordinate system but have weight 1 under
scale transformations.

The Higgs field ¢ is a section of # @ L. Therefore, in a fixed coordinate system,
¢ may be regarded as a matrix valued function. Under scale changes, y=rx, ¢(y)
=p(x)/r.

The mass m is defined to be a section of L, and hence, constant in a fixed
coordinate system, but having weight 1 under scale changes.

(For a careful and rigorous discussion of conformal weights, see Parker

[13,14])
With these definitions, the Yang-Mills-Higgs equations are
D¥*F=[D¢, $], (YMH,))
A
D*D¢= §(|¢lz—m2)¢, (YMH,)

where 4 is a physical constant.

Since d increases weights by 1, the equations are invariant under scale
transformations of the form y=rx.

We will make use of the fact that certain norms are invariant under scale
transformations. For example, ||¢| ;. is invariant, and if y is any p-form, ||| . is
invariant. This leads us to

Lemma 1.1. Suppose pe L"? with ||y|| .., invariant. Then, given any y >0, there is a
metric g,, conformally equivalent to the Euclidian metric, in which on bounded sets in
R",

[hplrdx <. (1.5)

The lemma follows from invariance and the continuity of the L norms (see
[19]).

In the following, we will assume that y has been chosen sufficiently small for
our purposes, and we point out, as we go along, the bounds needed for y in the
proof.

Many of our estimates are obtained by using scalar subelliptic theory. We
require several known inequalities [11, 19] valid for Lie-algebra valued sections
and p-forms:

V() =[Dy]. (1.6)

Letting V2=D*D+DD*+curvature, denote the covariant derivative
Laplacian, we find that

$A(w?) =, V) +1Dy|* = (p, Vy), (L.7)
[wlA(wl) =, V) + [Dy|* — [P yl|* = (p, Vy), (1.8)
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where V and 4 are the ordinary gradient and Laplacian on functions. The relation
between solutions of equations whose principle part is the covariant derivative
Laplacian and scalar subsolutions is given by:

Lemma 1.2. Let y be a p-form with values in g which satisfies an equation of the form

V2w+G1(x7ws DIP)sz(x: w)lpv (19)

where G is a p-form with values in g, and G, is a scalar function. Then, the scalar
function || is a solution of the sub-elliptic inequality

Ay +1G, (x, w, Dy)| 2 G,(x, ) [wl. (1.10)
Proof. Taking inner product with v in (1.9), we obtain

W, 7?p)+(G L) =Gyl
From inequality (1.8) and the Schwarz inequality,

[lA(lypl) +1G v =2 Gyl

Dividing by |y|, proves (1.10) and the lemma.

We will require the Morrey-Moser iteration [12, Theorem 5.3.1] for sub-
solutions and next state the version of it that we use.

A function f(x) satisfies a Morrey growth condition if on small balls in M,

[IfI"*dx <ke™, (1.11)
B(xo, )
with «>0 and k independent of ¢.
n

Remark. If fe L? with p> > then (1.11) is automatically satisfied.

Theorem 1.3. Let Ue Hi(M) with U 20, and suppose that for some 2, 1<2<2,
W= U" is a subsolution of an elliptic equation, i.e.,

[ WP+ fW()dx <0, (1.12)
M

for all non-negative (e CF(M), where f satisfies (1.11). Then U is bounded on
compact subdomains of M, and, for xe B(x,, 0),

C
IU(x)l2<—,,BI [U(y)I*dy. (1.13)
(x0, 0t a)

(Note that the constant C depends on k and a.)
We frequently use two basic inequalities for functions ge L"? and we Hj. With
C,=Sobolev’s constant,

[lglwlPdx < C,ligll,, [ IVwl*dx. (1.14)

This follows from Holder’s inequality and the Sobolev inequality. Also, for any
u>0, there is a constant C(u) such that

Flgliwl?dx < u [ IPwldx + C(u) | |wl?dx. (1.15)
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2. A Regularity Theorem for the Higgs Field

In this section, we assume that the Higgs field is a C* solution of the field equation
A
D*D¢ = §(I¢|2—m2)¢ (YMH,)

in the punctured unit ball B— {0}. Assumptions on ¢ at the origin depend upon
the sign of A. (Note that =0 is the case considered by Jaffe and Taubes [11].)
The main result of this section is

Theorem 2.1. Let ¢ be a C*® solution of (YMH,) in B—{0}. We assume
(a) no conditions on ¢ if >0,
(b) ¢peL**(B) for some >0, if n=3 and A<0,
(c) ¢eL*(B) if n=4 and A<0,
(d) peL¥"~2(B) if A=0.
Then ¢ is bounded in B.

That condition (b) is the right one follows from the following

Example 2.2. Suppose the structure group G is commutative and n=3. Then, there
are solutions of (YMH,) which are C* in B—{0}, belong to L3(B), having
singularities at the origin which are not removable.

The example follows from results of Aviles [1], who has shown the existence of
solutions of the equation

Au+u>=0,
satisfying the inequality
C, C,
—— —1/2=5u(x) = S —V
Xl (—logl) = = loghed

The inequality shows that ue L?, but u¢ L3*¢, for any ¢>0. It is also known
that the Dirichlet problem has multiple solutions (see [18]).

The result (d) for 2=0 is due to Joel Spruck (private communication).

To prove Theorem 2.7, we make strong use of the fact that || is a scalar
subharmonic function.

From (YMH,) and Lemma 1.2 with G, =0 and G, = —([({)Iz—m ), we find that

406102 50017 )91 @)

First, we dispose of case (a). The function V= k|¢| is a solution of
—AV+ V3 Zconst (2.2)

for an appropriate k. Boundedness follows from the following

Theorem (Brezis and Veron [3]). Let V be a C* solution of (2.2) in B—{0}. Then, V
is bounded in B.



6 L. M. Sibner and R. J. Sibner

A
Next, assume A<0 and letting h= — —({¢|2—m ), and u=|¢|, we find from
(2.1),

—AuZhu. (2.3)
Integrating by parts, u is a non-negative subsolution of
[ Vu-Vidx < [ huldx (2.4)

for all non-negative (e Cg(B—{0}).

To prove (b) and (c), we will show that u?e H3(B) for sufficiently large g
depending on dimension and is a weak solution of (2.4) in all of B. We then apply
Theorem 1.3 of Morrey and Moser.

Throughout this section, we assume that the invariant norm j [pl"dx =y <y,
where 7, depends on dimension.

Proposition 2.3. (i) If condition (b) is satisfied, then Vue L*(B) and for ne Cg(B),

[n?IVul*dx <K [ |Vn|*u?dx. (2.5)
B B

it) If condition (c) is satisfied, Vule L*(B)
ne Cg(B),

[ Vu?dx < K | [Vn|*u*9dx. (2.6)
B B

First, we show

Proposition 2.3 implies Theorem 2.1. In case (i), the estimate (2.5) shows that (2.4)
holds with (e CZ(B), or u is an H? weak subsolution in all of B. Since he L¥**%/2 a
Morrey growth condition holds and u is bounded by Theorem 1.3. In case (ii),
since ¢> 1, u? is a subsolution satisfying (2.4). The estimate (2.6) shows again that

L . -2
u? is an H? weak subsolution in all of B. Since ¢> nT, it follows from Sobolev’s

lemma that |¢|e L? for p>n, and therefore he L? for p>n/2. As before, u is
bounded by Theorem 1.3.

The remainder of this section is devoted to the proof of Proposition 2.3.
Following Gidas and Spruck [7], we will make use of the Serrin test function
[15, 16].

For u=0, let

ul for 0=Zu

IIA

F(u)= l

q—(fH‘l—qou'JO +(qo— )1 for I=Su.
0

We assume 1 <g,<q and let G(u)= F(u)F'(u). We obtain the following properties
of F and G:
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F< 4 a0 (2.72)

9o
uF' <qF and hence, uG=gqF?, (2.7b)
G'=CF?, with C>0. (27¢)

[Note that (2.7c) fails if g, =1/2.]

We will also use a sequence 7, of test functions which vanish for |x| Z¢,, tend to
1 as g, tends to zero, and such that leﬁkl”dx—»O, k—o0. (Such a sequence is
constructed in [7].)

Proof of Proposition 2.3 (i). Let ne C3(B) and 77 be a C* function vanishing in a
neighborhood of the origin. With qo=%+% and g=1, we use the test function
{=(n7)*G(u) in (2.4). Using the properties (2.7), we find that
k § (i)*VFPdx <[ 1207V V(i) Fldx + [ (ri7)*hF?dx
=1,+1,.

Now, I, Su [ ui)*IVF|*dx+ C(w) { IV(n#)|* F2dx, and the first term on the right may
be absorbed on the left.
Also,

SIQI2N@MF|Z, + K, [ (i)F I -
<V1’2ll1717)VFl|Lz+K InAF iz,

and for y, sufficiently small, the first term on the right may be absorbed on the left.
With a new constant we obtain

K § min)?\VF|2dx < [ 72[Vy|> F2dx + [ n*|Vij|* Fdx..
Using (2.7a),

§n?vl
< CUL @) ([ I7lPdx)?3(f ub%dx)'?.

From our choice of g,, 6g,=3+¢, and choosing 7] =7j, defined above, we see that
the right hand side tends to zero. In the limit,

K {n?IVFIPdx < [ |Vy|*F?dx . (2.8)

We now let [—>o0. F converges strongly to u in L> By Lebesgue dominated
convergence, VF converges strongly to Vu in L?, and Proposition 2.3(i) is proved.

. . -2
Proof of Proposition2.3 (ii). Now let (=ni)*G(u) with ‘JoznT and

~, -<g= g Repeating the argument, for n=4, we obtain the inequality (2.8).

Since, 2g<n, F converges to u! in L?, and Proposition (2.3) (ii) is proved.
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An important consequence of Theorem 2.1 which will be used later is

Corollary 2.4. Under the hypothesis of Theorem 2.1, D€ L*(B).
Proof. Integrating by parts in (YMH,),

A
[ (Do, DC)=§5(I¢IZ—m2) (@.0). (2.9)

Letting ¢ =(#7)*¢ with 7=0 in a neighborhood of the origin, we find that
[ (@i)*(De, Dp)dx <K [ (ni))*|§|>dx +1[ (Db, (2nimd(nin)p)] .
With new constants,
Jim)? D12 dx < K [ ((nif)> + [V (nip)|?) || dx .
Since ¢ is bounded, we can let #—1, and
in*IDIPdx <K [ (n*+Vnl*) [p|*dx,

which proves the corollary.

3. A Sub-Elliptic Estimate for (F, ¢)

In this section, we assume that (F,¢) is a smooth solution in B— {0} in R", of
(YMH,) and (YMH,), and that F and D¢ belong to L"?*(B). We define the total
field h(x)=|F|+|D¢|+|¢|>. The main result of this section is a preliminary growth
estimate which shows that |x|2h(x)=o0(1) at the origin.

Denote by V, = {x|o/2<|x| <2¢} the reference ring about the puncture. Let C,
be the Sobolev constant in dimension n. We require that ||h|,, <y <7,, where y, is
an explicitly given constant depending on A, C, and dimension. The main theorem
of this section is

Theorem 3.1. There is a constant C such that for |x|=r
IXI2h(x) < CllA ey, - 3.1)

To prove Theorem 3.1, we consider solutions of the Higgs model in a bundle
over the unit reference ring V, {y|1/2<|y|£2}. We will obtain a bound on the L*
norm of the total field h, which we state in the following:

Proposition 3.2. Let h be the total field of the smooth pair (F, $) in a bundle over V.
If [[hll,/2 <y, then there is a constant C such that
h()’)écnh“umvl) (3.2)
for y belonging to the unit sphere in V,, |y|=1.
Before proving Proposition 3.2, we show

Proposition 3.2 implies Theorem 3.1. Map the reference ring ¥, onto V] by the scale
transformation y=x/r. The field equations are invariant under this transfor-
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mation. By assumption, and norm invariance,

||h”Ln/2(V,) = ”h“Ln/z(Vr) =y< Y2

Therefore, in y coordinates, F, ¢, and h satisfy the hypothesis of Proposition 3.2.
Pulling back to V,, and using the fact that h(y) =r*h(x), the inequality (3.2) becomes
the inequality (3.1). This proves the theorem.

To prove the proposition, we want to apply scalar elliptic theory and the
Morrey-Moser iteration to the scalar function h(x). The first step is

Lemma 3.3. The scalar function h is a solution of the subelliptic inequality
Ah+(ah+b)h z0. (3.3)

Proof. We use the notation and basic identites of [11, Chap. 4, Sect. 9]. Let f=*F,
g=D¢, and w=3(m>—|¢|?),

(a) Vi+ILf o) ¢1—-2x(gAg+fAf)=0,

(b) V2g+1lg. 91, 61— (¢, 9)+Awg —2+(f A g+g A f)=0.
Applying (1.10) of Lemma 1.2, and the triangle inequality,

@) AlfI+ (812 + 21 )1 f1+2lgl* 20,

(b) Algl+ (L +1A) 11> + Al [w] + 411 gl 20.

Using the field equation (YMH,) for ¢ and inequality (1.7),

© LGP+ 3 (91 + )9 20,

Adding the three equations gives (3.3) with a=10+2|A| and b=|A|m>.
In the following, B(y,, r)={y|ly—yo| =r} always denote balls which are strictly
contained in V.

Lemma 3.4. If y<7,, there is a constant k such that
k

[ wPdys — [ h*dy, (3.4)
B(yo, p) B(yo,e+a)
where p=n/4.
Proof. Integrating by parts in (3.3),
[ Vh-Vidy<{ah+b)h{dy (3.3)

for non-negative (e C{.
By a limiting argument, we may choose { =#2h?*’~ ! with # arbitrary to obtain

[P (h?)*dy <k, [laln®h*?* dy
+ky [ InV(hP) [Vnh?|dy
+ky [ bn2h2rdy
=k, I, +k, 1, +ky1s5.
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Estimating I, using (1.14)
I, C, |1kl § Vnh?)Pdy <ky [ [V(nh?)*dy . (3.6)
I, is estimated using Young’s inequality. For y<y,, we find
[PV 2dy < C [ (Pnl 4722 dy. 3.7
Letting #=1 on B(y,,0) with support in B(y,, ¢ +a) with [Vn| <2/a completes the
proof of Lemma 3.4.

Proof of Proposition 3.2. By Lemma 3.4, ah+b satisfies the Morrey growth
condition (1.11). We apply Theorem 1.3 with U=Ah** and W=U*? if n=3, and
U=W=h"*if n=4. Therefore, h is bounded and (1.13) implies that on compact

subdomains of ¥, C PR
h(x)éa—z( [ IO dy) " (3.8)

B(xo, 0 +a)
for xe B(x,, 0). Now, cover the unit sphere in ¥ by a finite number of balls, to
obtain, for |y|=1, BN S Cll .
This proves the proposition and therefore, Theorem 3.1.
Corollary 3.5. |x|%|F(x)| and |x|*|D$(x)| are o(1) near the origin.

(We note that by working in the reference ring V, we are able to obtain
estimates which are independent of the distance to the puncture. If one works
directly in the ring ¥, one has to keep track of the dependence of constants on r.)

4. An Elliptic Estimate

In this section, we improve our results to obtain a final growth condition on the
curvature F and on D¢. Dimension is now restricted to n=3 or 4. We assume that
FeL"?, ¢ is bounded, and, hence, Ddpe L? by Corollary 2.4. Since integration by
parts is crucial here, we are forced to work in an L? setting. This is natural if n=4,
but not if n=3, in which case, we use weighted L* norms. While the L? argument
can be carried out if n=35, 6, or 7 (see [17]) to prove the theorem, it is not strong
enough to obtain the corresponding result if n=8.

Our first aim in this section is to obtain a growth condition on the Higgs field.
This will then be used to estimate the curvature. Integrating by parts, we find

{ ID¢lPdx= [ (¢.D*Do)+ ]j_ b A% (D). (4.1)

[x|=1 [x[=1 [x
Using the field equation (YMH,) and Schwarz inequality
lefélID¢I2dx§lef§1%I¢IZ(I¢I2+m2)d><+%lx|§:1(I¢I2+ID¢IZ)dS- (4.2)
Making the change of variables, y=ox, with ¢ <1, we find that
) (|D<l>|2dy§C| [ lpl*dy+ | Iy|‘2|¢|2dy+—§ [ (D> +1yI™2Ig1?)ds, .

IE yIZe Iyl=e yl=e 4.3)
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Denoting the left hand side by f(g), and using the fact that ¢ is bounded, (4.3)

becomes the differential inequality

flOSko+30f (@), if n=3,
fl@O=k,0*+30 (@), if n=4,

or,

0<k,0™?+3% (f(g)

d
=25, it =3,
do 92) b

oska 512, i ams

Integrating from ¢=r to g=1 gives

Theorem 4.1. The Higgs field satisfies the growth condition

| IDgPdx<Cr, if n=3,
|x]=r

1 .
{ |D¢|2dx§Crzlog(;), if n=4.
|x|=r

In three dimensions, we find from Holder’s inequality,

( | ID¢|3/2dx)2’3 <C'r,

|x|=r

which we will require in Sect. 5.
The remainder of this section is devoted to proving

Theorem 4.2. If n=3, for any a>1, | |x|*F(x)|*dx <0 and
|x[=1
'f IXI*F(x)Pdx < C, Ij |>€|°‘(ID<75|2'{‘l<l5l4)dx‘f“czI Ij [F|*dsS.
|x]=1 |x|=1 x|=1

If n=4,
| IFx)Pdx=cC, (D> +Igl*)dx+C, | |FI*dS.

x| =1 |x]=1 [x|=1
From Theorem 4.2, we obtain our final growth condition

Corollary 4.3. If n=3,
| IXPFIFG)Pdx S K,

|x|=r
with >0 and K and f independent of o. If n=4,
[ IFx)Pdx < Kr*

[x|=sr

with 3>0.

(4.4a)
(4.4b)

(4.4a")

(4.4b")

4.5)

(4.6)

4.7)

4.8)

4.9)

(4.10)

(4.11)
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We first show that

Theorem 4.2 implies Corollary 4.3. With n=3, make the change of variable y=px
in (4.8) to obtain

[ WIHFG)Pdy=sc, f yI*UDI* +1p[D)dx+ Cye | [yFIFIdS,.

[yi<e yIZe Iyl=¢
Using (4.5), this gives the d1fferent1al inequality (48)
fl@) = ao®+bof (o) (4.8")
with a and b constants. Since f* =0, we may assume b>1 to obtain
1-1/b "
o< d (f(@))' (48”)
= b dQ Ql/b

Integrating proves (4.10) with f=1/b. The same argument proves (4.11).

The remainder of this section is devoted to the proof of Theorem 4.2. The basic
idea of “broken Hodge gauges” is due to Uhlenbeck [19] with modifications if
n=3 which were proved in [17]. We recall the necessary results without proofin a
sequence of lemmas.

We first consider an eigenvalue problem for a 1-form w defined over a reference
ring U = {x|1 £|x| £7}. We denote by w; the tangential component of a form on
the boundary.

Problem I. Find o satisfying in U, the
(a) equations: dw=0 and ddw + pw =0,
(b) boundary conditions: 6,0, =0 for |[x|=1 and |x|=r7,
(c) homology condition: | (xw);=0, 1<¢=<rt.
|x|=e

Lemma 4.4. The eigenvalues of this problem are strictly positive if n=3. If n=3, the
first eigenvalue is greater than or equal to 2.

The lemma is proved in [17].

. 1 1 . 1
Now, let U'= {x py =Xl r’j} and §'= {x“xl r} The next lemma ex-

presses the existence of broken Hodge gauges over B= U U'. Here y; is an

additional restriction on y which comes from applying the Implicit Function
Theorem, u is the first eigenvalue of Problem I, and v is the first eigenvalue of the
Laplacian on co-closed 1-forms on $"~ 1.

Lemma 4.5 (Broken Hodge Gauges [19]). There exist gauges for n/U’ such that
(a) 94'=0,
(b) 6,4:=00n S" and S'71,
(c) [(xA",=0 on absolute cycles,
(@) |4 = p,7,

. 1
e) [14ix))2dx< —— [ |Fi|?dx,
()Jll (9] S — J.'
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a

©) [ M4 S 5 —— [ IXFIFoPdx, if n=3, for any a> 1,
Ui

= 2
(u—=73) v
(f) the gauges agree on boundary spheres S',
(2 fIA I2ds< [ IF*ds.
V3 50

The proof of the lemma is in [19] except for (¢) which involves the weighted L?
norm and is proved in [17].
A consequence of Lemma 4.5 is the inequality

o 1/2
if =3 (jlxl“lAi(x)l“dx)1/2§y3< ’ ) (] PN
i H—7Y3 Ui

(4.12)

1/2
if n=4, ( | |A"(x)l4dx>”2§v3 (u_ly ) (j |Ff(x)12dx)“2.
Ui

3 Ut

4.12))

We now turn our attention to the proof of Theorem 4.1. First, let n=4. We
integrate by parts over each U’ to obtain:

[IFi(x)|?dx= [ (A", D*F")— [ 3[A’, 4], F))
Ui U

U!
+ [ = [ ALA(xFY,.
S!— 1 Sl
=1,+1I,+boundary terms. (4.13)
Using the field equation (YMH,), D¥F =[D¢, ¢], we find
I,=[(4,[Dd,p]) = [ IDPdx+ [ |AT?|¢I*dx
Ui Ui U
<[|Dg|*dx+ | |A'*dx+ | |p|*dx.
U i

From (4.12),

Ilgyg( ! ) [ |F2dx+ [ (DY +16l*)dx,
Hn=y Ut

3/ U

/
1< y—s(u _ly ) [ IFGoPdx,
3

using the Schwarz inequality and (4.12').
Combining terms and replacing small constants by ¢, we find,

(1—e) | [F(x)|*dx< [ IDPPdx+ [ |p|*dx+ [ — [ ALA(+F),.  (4.14)
U U Ui Ssi—1 si

ut

Adding the integrals over each U’, we see that intermediate boundary terms
cancel, the boundary integrals tend to zero as i tends to infinity, and we are left
with

(1—¢) | IFPdx= [ (DPI*+|pN)dx+ [ |AS|IFdS. (4.15)
NY

[x[=1 [x|=1
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Using Schwarz’ inequality and (g) of Lemma 4.5 proves the inequality (4.9) of
Theorem 4.2.

Next, let n=3. We now require that t<2 and we also make an additional
restriction on y; namely, we assume y <y,, where

T \1/2 y
1+ <1.
<2“V4) ( * 2)<

We again integrate by parts over each U’ to obtain

J X IF 0P dx = | (AL D*(Ix"F) — | (G[A4', A, IxI*F")
g g g

+ [ = [ALA X (+F),
Si—1 Si
=1, +1I,+boundary terms. (4.13)
Now,

I, [ (AL Ix"[Dd, ¢+ [ alxl*~ H[A'l|F'ldx
U U

Taz 1/2 V_4 i . 2 4
< (5= oat+ 25 [ IXFIFPdx + [ |x"(IDgI* + [¢p|*)dx.
2 V4 2 Ut Ut

By the assumption on y,, and for « close to 1, the coefficient of the first integral is
small, and combining terms,

(1—¢) [ IxIIF(x)I2dx < | [XI(D$|* +¢|*)dx + boundary terms.  (4.14)
Ui i

The rest of the proof is exactly analogous to the 4 dimensional case, and we obtain
(4.8), and hence, Theorem 4.2.

5. Statement and Proof of the Removable Singularity Theorem
Let n=3 or 4. In this section, we combine the preceding results to prove:

Theorem 5.1 (Removable Singularities). Let # be a bundle over B— {0} with compact
structure group G. Suppose that (F, ) is a smooth solution of the Yang-Mills-Higgs
equations in B— {0}. We assume in all cases that Fe L"?, n=3,4. If >0, we make
no assumptions on ¢ or D¢ in a neighborhood of the origin. If 2 <0, we assume that
e L3*¥(B) for some £>0 if n=3, and ¢peL*B) if n=4. If A=0, we assume
¢e L"""%(B). Then, there is a continuous gauge transformation such that (F, ) is
gauge equivalent to a C* pair over B, and n extends continuously to a bundle over B.

We now put all previous estimates together to obtain
Proposition 5.2. For some 6>0,
x> F(x)l +D(x)) = C. (5.1)
Proof. From (3.1) with |x|=r, we obtain

IXI(F(x)| +|Dp(x))) = C”h”Ln/Z(Vr) =C, ”F”Ln/Z(Vr)
+ColIDPll gy + C3ll 2 vz, - (5.2)
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We now use the fact that ¢ is bounded and that D¢ satisfies (4.7) if n=3 and
(4.6) if n=4.
If n=4, from (4.11),

1/2
RO+ DY Sk o (log 1) kst

where >0.
If n=3, from Holder’s inequality and (4.10),

IXP(F |+ D)) S feyrt 12 (I |£2- IXI"IF(X)IZdX)”2

+kgr+kgr?
Sk TP Lk ko,

with >0 independent of «. Choosing o sufficiently close to one proves the
proposition.

Corollary 5.3. The curvature F is in L? for n/2<p<n/(2—90) and (F, ) is a weak
solution of the field equations in the full ball B.

(The proof is elementary.)

Proposition 5.4. If Fe LP(B)nC*(B— {0}) with p>n/2, then there is a connection
Ae HY(B) with p>n/2.

Proof. Using the broken Hodge gauge construction (Lemma 4.5), we obtain on
each U, a connection A’e L?? for p>n/2 and norm uniformly bounded by the L?
norm of F. Since dA'=F'—1[ A4, 4], dA’e L? for p>n/2. This, together with the
equation 4’ =0 implies that VA'e L? for p>n/2. Letting A= {A4'(x), xe U’} proves
the proposition.

We next apply the following theorem of Uhlenbeck [20],

Proposition 5.5. Suppose F is the curvature Jform of a connection A, with L™ norm
sufficiently small. If Fe L? for p>n/2, then (F, A) is gauge equivalent by a continuous
gauge transformation to (F, A), where

(i) 64=0,

(i) [Allgy =ClFllLs p>n/2.

From Proposition 5.5, we find in the new gauge that (A4, ¢) satisfies the system
of equations

(d6+6d)A+30[ A, A]++[A,*F1=[D¢, $], (5.3a)
54+ 504,61 ++[A,+[4,611= 5 (9P ~m?)p. (5:3b)

Computations similar to those in Sect. 3 applied to (5.3a) show that W=1+4]|
is a subsolution of an inequality:

[ (VW VL + fW0)dx <0 (5.4)
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for all non-negative {e CJ(B). From (ii) of Proposition 5.5, the boundedness of ¢,

and the growth conditions (4.5) and (4.6), it is not hard to see that a Morrey growth

condition (1.11) is satisfied by f. Therefore, W, and hence, 4, is bounded in B.
We now turn to Eq. (5.3b) which we write in component form :

AP =Fi(x, P, V). (5.5)

We want to apply the results of Hildebrandt and Widman [10] on regularity of
solutions of systems in diagonal form. Since the connection 4 is bounded, F' is
bounded, measurable. In the notation of [8], A% =6* in our case, and therefore,
the ellipticity constant A=1. More importantly, F' depends linearly on V.
Therefore, if ¢ is bounded by M, we find that

|Fi(x, §, V| SelVpl* +b (5.6)
with 2Me < 1.
We conclude [8, Theorem 6.6(iii)] that ¢» and D¢ are Holder continuous in B.
Returning to (5.3a), we find that the components of A satisfy a system exactly of
the form (5.5) with A% =6*, A=1, F' linear in VA', and also, F’ bounded since ¢
and V¢ are bounded. By the same theorem of Hildebrandt-Widman, 4 and DA
are Holder continuous. Standard elliptic theory now implies ¢ and 4 are C* in
B. This completes the proof of Theorem 5.1.

Note added. The corresponding theorem for these equations in two dimensions has been proved by
P. D. Smith and will appear in a forthcoming paper.
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