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A Uniform Bound on Trace (¢'*) for Convex Regions
in R" with Smooth Boundaries
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Abstract. We prove a bound (uniform in ¢ > 0) on trace (¢'¥) for convex domains
in R" with bounded curvature.

1. Introduction

Let D be a bounded domain in R" with a smooth boundary 0D. Let 4, >4,
3

=/, =... be the eigenvalues of the eigenvalue problem

Ap=Ap on D, (1)
and

¢=0 on 0D. )

It is well known that

8

Z(t)=trace(e') = '

et).] (3)

I

1

exists for all £>0, and that Z(t) has an asymptotic expansion [1] of the form

K

1 ,
Z(t) — ——5- e 0] (A N S | ) 4
() an)" k;} ¢ ( ) 4

The coefficients ¢,, ¢, and ¢, have been calculated by McKean and Singer [4].
They depend on the geometrical properties of the domain D. For example
co=|D|=volume of D, (5)

and

Vo op—_ V7

c,=- BN -5 surface area of 6D . (6)

In the special case of a two-dimensional domain (n=2) the coefficients ¢, ¢y, ..., ¢g
are known [2-7].
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On the other hand it was shown [8] that for convex domains in R" there exists
a bound on Z(t) which is uniform in¢:
Dl | e1oD|
(@nt)"2| = 2 (dme)n D2

Z(t) — >0. (7)

Bounds like (7) are useful in quantum statistical mechanics [8, 97. In this paper we
will derive such a uniform bound on Z(¢) taking the first two terms of its
asymptotic expansion into account. The main result is the following

Theorem. Let D be a bounded convex domain in R" (n=2,3, ...) with a boundary 6D
1
such that at each point x of 0D the curvature is bounded from above by ﬁ(R>O),

then for allt

Z(t)— (45;)'"/ S+ 4'(47%()"‘_1)/2{ < (A,Iigl/'ztR {bl(n)+b2(n) log(l + RTZ)} (8)
where
by(n)=n'"?n(n>?+3), )
and
b,(n)=n—1. (10)

We see from (8) that the bound is small compared to the second term in the

. . t
asymptotic expansion of Z(t) for e much smaller than one.

2. Pointwise Estimates on the Heat Kernel

In order to prove the theorem we need some pointwise estimates on the heat
. 0

kernel K(x,y;t) corresponding to the operator A_EZ' By means of the

Feynman-Kac formula we see that K, (x,y;t) is increasing in the domain D.
Exploiting this we are able to prove the following lemmas.

Lemma 1. Let D be a domain in R" with a smooth boundary 0D, and let x be a point
in D with distance d(x) to 0D. Then

Kp(x,x;t)— , t>0. (11)

2n 0%(x)
< -7
(@nty?| = (dmt)? e"p[

nt
For the proof we refer to [10].
Lemma 2. Let D be a convex domain in R", then for x in D

0*(x)
t

K,ﬂx,x;t)éW(l-exp{— ), t>0. (12)

This inequality appears in Kac’s paper [3].
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Lemma 3. Let D be a convex domain in R" with a boundary ¢D such that at each
1
point of 0D the curvature is bounded from above by E(R >0), then for all xe D such

that eZ0(x)=R

1 R
Kol 302 120w - 2
t2k? . 7wk d(x)—¢\?
_gkzl p[ AR— )Km? R-g)' "

Proof. For all xe D such that ¢ <d(x) < R we can find a cylinder C in R” with radius
(eR)'? and an axis A, with length 2(R —e¢) such that:

1. xeC,

2. CCD,

3. xe A, and x has a distance d(x)—e¢ to the endpoint of the axis.
By the monotonicity of Kj(x,x;t) we obtain

K352 0030 7 3 exp| - T e =

—& k=1

) ., (14)

0
where K(0,0;¢) is the heat kernel corresponding to 4~ & with zero boundary

conditions on a (n— 1)-dimensional sphere © with radius (¢R)'/?, evaluated at the
centre of ©.
By Lemma 1 we find

1 eR
0,0;0= [ 1-2(n— — T
K0,0;0)2 (4m)(n~1>/2( 2(n l)exp[ t(n-—l)D’ (15)
which proves Lemma 3. [

If we write K, (x, y;t) in its eigenfunction expansion

o«

Kplx,y;t)= ). ¢*¢(x)¢(y) (16)

j=1

[where ¢,(x), ¢,(x), ¢4(x),... is the orthonormal set of eigenfunctions of the
problem (1), (2)], we see that

Z(t)= f Kp(x,x;1)-dx. (17)

xeD

3. The Proof

In order to prove the theorem we will make extensive use of Steiner’s theorem (4.3
of [11]) which we will state here in a modified form.

Theorem (Steiner). Let D be a convex domain in R" with volume |D|, a boundary
0D with surface area |0D| and at each point of 0D a curvature bounded above by

1
R (R>0). Let D, be a family of regions contained in D with a surface 6D, parallel
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to 0D at distance y, then

IDJ=IDI- JI0D,ldy, 0Sx=R, (1)
0
-1
op.szionl-(1- "), 19
DJSID,.  10DJSID),  x2y, )

and the curvature at each point of D, is bounded above by (R—y)™ "' for all0Sy<R.

Proof of Theorem. If we integrate (11) with respect to x over D we get
Dl | _ n¥?joD]

(@no)"2| = 2-(dme)n D12

Notice that (21) is a sharper bound than (7) for n=3,4,.... From (21) it follows
that

21

'Z(t)—

D| D] | _ loD|-t
(@mt)"? " 4-(dme)"" V2| = (dnt)"? R

lZ(t)— -n1/2~n(n3/2+ %), (22)

RZ
forall t=z —-.
n

By Lemma 2, (18) and (19) we obtain an upper bound on Z(¢):

ol 5 az(x)} N
(dne)’?  (4mty? (xeD:0Z0(x) <R}

_ Dl = y?
" @m)y T (ma)? (j,e"p<— T) 190,14y

|D |0D| |0D| {w ( yz) n—1*% v
< _ _ - _r
= Gy " TG gy VP )R (f,e"p< " )y dy }

Z()=

exp

R
ID| loD| (n—1)|oD| -t
= @y " 4@ " [@uy? 2R 23)
Let
A= ) Kp(x, x;0)dx, (24)
{xeD:e<0(x) SR}
and
B(t)= [ Kyx,x;t)dx, 25)

{xeD:0(x)Z R}

so that Z(t)= A(t)+ B(t). We use Lemma 1 to obtain a lower bound on B(t):

1 © 2
B(t)> W{ID"' —2n|oD| }{ exp(— ﬁ—t) dy}

1
(4mt)"'?

2 G| DAl - leDl . (26)
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For A(t) we find

) 27,2 k __o\2
402 1o K000 5 5 exp| - (s T2y

- I (10D[—0D,)) —75 - dy - 27)

(4 t)n/z
The second term in (27) is bounded from below by

1
- W(|6D"R‘ID|+|DR|)’ (28)

since |0D, | Z|0D|.
The first term in (27) is bounded from below by

1 ¢R D ool & [_ tn2k2 }
(i) D2 -1l 2 &P T aRr=ey

1 ¢R |0D| 1
;(4m)<"-”/2<1*2(”‘”6""[ (—1)D 2 ((m)”fi) @)

for all e<R and

(1—2(11-— 1)exp|—

eR 1
— . 3
eXp[ t(n——l)} 21 (30)
Combining (26), (28), and (29) we have
D |oD| |oD| {nzt eR }}
> - 2n— ot
0= Gy ™ § e 07 Gmy | R E AT DR = e
(31)
subject to (30). Choose
_tn— 1 R?
D rog 2 ) s (32
2
Combining (31)—(33) we get for t< pes

) @bl |_ @bl (3., 2R
|Z(t) (4m)"/2+4.(4m)<"—1>/21§(4m)"/2-R{§(” Dtn*+(n l)log(T)}‘

(33)
R? R?
But logT <log( 1+ T) for all t>0, and the theorem follows since

n?+n—1)E+log2)=n?n(m*?+%), n=23,.... O
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