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A Uniform Bound on Trace (etΛ) for Convex Regions
in Rn with Smooth Boundaries

M. van den Berg

Dublin Institute for Advanced Studies, Dublin 4, Ireland

Abstract. We prove a bound (uniform in t >0) on trace (etΔ) for convex domains
in Rn with bounded curvature.

1. Introduction

Let D be a bounded domain in JRΠ with a smooth boundary dD. Let λ1>λ2

ztλ3 ^ . . . be the eigenvalues of the eigenvalue problem

Aφ=λφ on D9 (1)

and

φ=0 on dD. (2)

It is well known that
00

Z(ί) = trace(e ί J)= £ ^ (3)

exists for all £>0? and that Z(t) has an asymptotic expansion [1] of the form

Z(f)- * • Σ c / / 2 - O ( ί ( x " n + 1 ) / 2 ) ; ί-*0. (4)

(4πί)"/2

 kf0

The coefficients c0, c1 ? and c2 have been calculated by McKean and Singer [4].
They depend on the geometrical properties of the domain D. For example

c0 = \D\ = volume of D, (5)

and

c1 = — - — \dD\ = — - — surface area of dD . (6)

In the special case of a two-dimensional domain (n = 2) the coefficients cQ9cv . . .,c 6

are known [2-7].
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On the other hand it was shown [8] that for convex domains in Rn there exists
a bound on Z(t) which is uniform in t:

z(ή-
\D\

(4πί)"/:

enl2 \dD\

2 (4πί) ("-1 ) ί>0. (7)

Bounds like (7) are useful in quantum statistical mechanics [8, 9]. In this paper we
will derive such a uniform bound on Z(ί) taking the first two terms of its
asymptotic expansion into account. The main result is the following

Theorem. Let D be a bounded convex domain in Rn (n = 2,3,...) with a boundary δD

such that at each point x of δD the curvature is bounded from above by —(R> 0),
R

then for all t

Z{t)~
\D\

+ •
\dD\

(4πt)n/2 4 (4πί)( " ~ 1 ) / 2

where

and

- I (8)

(9)

(10)

We see from (8) that the bound is small compared to the second term in the

asymptotic expansion of Z(t) for —j much smaller than one.
R

2. Pointwise Estimates on the Heat Kernel

In order to prove the theorem we need some pointwise estimates on the heat
d

kernel KD(x, y t) corresponding to the operator Δ — —. By means of the

Feynman-Kac formula we see that KD(x, y\t) is increasing in the domain D.
Exploiting this we are able to prove the following lemmas.

Lemma 1. Let D be a domain in Rn with a smooth boundary δD, and let x be a point
in D with distance δ(x) to δD. Then

KD(x,x;ή-
1 In δ\x)

nt(4πt)n/2

For the proof we refer to [10].

Lemma 2. Let D be a convex domain in Rn, then for x in D

ί>0. (11)

1
1 — exp —

δ2(x)
M Λ ' Λ ' ι / = ( 4 π ί ) " / 2 1

This inequality appears in Kac's paper [3].

ί>0. (12)
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Lemma 3. Let D be a convex domain in Rn with a boundary δD such that at each

point of δD the curvature is bounded from above by — (R>0), then for all xeD such
R

l-2(n-l)exp - — —

tπ2k2 I . πk δ(x)-ε\2

R ε fc=1

Σ e χp 4(R~ε):
(13)

Proof For all xe D such that ε < d(x) <RWQ can find a cylinder C in jRn with radius
(εR)1/2 and an axis Λc with length 2(R — ε) such that:

1. xeQ
2. CCA
3. XEΛC and x has a distance d(x) — ε to the endpoint of the axis.
By the monotonicity of KD(x, x t) we obtain

1
Σ e χp

ί Λ 2 Unπ±d-^)\ (14)
R-ε

where i£Θ(0,O ί) is the heat kernel corresponding to A— — with zero boundary
ct

conditions o n a ( n - l)-dimensional sphere O with radius (εJR)1/2, evaluated at the
centre of 0 .

By Lemma 1 we find

1
— 2(n— l)exp

which proves Lemma 3. •

If we write KD(x, y t) in its eigenfunctίon expansion

00

KD(x, yiή= Σ etλjΦj(χ)Φj(y)

ί(n-l)
(15)

(16)

[where 0x(x), Φ2(x), Φ3W, ••• is the orthonormal set of eigenfunctions of the
problem (1), (2)], we see that

Z(ί)= (17)

3β The Proof

In order to prove the theorem we will make extensive use of Steiner's theorem (4.3
of [11]) which we will state here in a modified form.

Theorem (Steiner). Let D be a convex domain in Rn with volume \D\, a boundary
δD with surface area \δD\ and at each point of δD a curvature bounded above by

— (R>0). Let D be a family of regions contained in D with a surface δD parallel
R
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to dD at distance y, then

\ = \D\-$\dDy\dy,
0

\δPx\^\δP\ [l-
(n-ί)x

R

\Px\^\Py\, \δPx\S\δPy\,

and the curvature at each point of Py is bounded above by(R — yYί for all 0 ^

Proof of Theorem. If we integrate (11) with respect to x over P we get

(18)

(19)

(20)

Z ( ί ) -
\D\

(4πίf

n3l2 \δD\

2 (4πί)( n- D/2
(21)

Notice that (21) is a sharper bound than (7) for n = 3,4,.... From (21) it follows
that

\D\
T"

\dD\

(Aπtf12 4 (4πί)("~

\δP\-t

(4πtfl2-i
n. 1 (22)

for all fZ
R2

By Lemma 2, (18) and (19) we obtain an upper bound on Z(t):

\D\ 1 f \ δ2(x))
: (4πtf

12 ί exp - dx

\dD\

\D\ \dD\
: (4πί)"/2 4 (4πί)(

\
Λ ~ 1 ) / 2

\dD\

(n-l)\dD\ t

(4πί)"/2 2i?

n-lR

Let

and

A(t)=

so that Z{t)^A(t) + B(t). We use Lemma 1 to obtain a lower bound on B{t):

(23)

(24)

(25)

(26)
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For A{t) we find

529

tπ2k2
. πk y-ε
m

(27)

The second term in (27) is bounded from below by

1

(4πί)"'ι/2 (\dD\.R-\D\ + \DR\), (28)

since \dDx\<*\dD\.
The first term in (27) is bounded from below by

1
in-1)12(4πί)'

for all ε<R and

l-2(n-l)exp
εR

Σ
tπ2

1
l-2(n-l)exp -

t(n-ί)\J 2

εR 1\ \dD\ / R-ε 1.

exp
εi? 1

t(n-l)\ 2(n-l)

Combining (26), (28), and (29) we have

D \dD\ \dD\ \n2t

(29)

(30)

(4πί)«/2 4. (4π ί)(»- υ/2 ( 4 π ί )«/2 + ε + 2(n-l)i?exp

subject to (30). Choose

ί(H-l) /2R2

l θ g
R T

(31)

(32)

Combining (31)—(33) we get for t^
R2

5-:

(4πtf2 4 (4πί)(< n - 1 ) / 2

(4πί)"/2 Rl2

(33)

n2 / n2\

But log— <log H for all t >0, and the theorem follows since

Sπί/2n(n3/2+±), n = 2,3,.... D
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