Exponential Bounds and Semi-Finiteness of Point Spectrum for *N*-Body Schrödinger Operators

Peter A. Perry*

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. For a large class of *N*-body Schrödinger operators *H*, we prove that eigenvalues of *H* cannot accumulate from above at any threshold of *H*. Our proof relies on L^2 exponential upper bounds for eigenfunctions of *H* with explicit constants obtained by modifying methods of Froese and Herbst.

Communications in Mathematical

© Springer-Verlag 1984

In this note we study the point spectrum of certain *N*-body Schrödinger operators. To specify them, let $m_i > 0$ and $x_i \in \mathbb{R}^v$, $1 \le i \le N$, denote the mass and position of the *i*th particle, let $x \in \mathbb{R}^{Nv}$ be given by $x = (x_1, \dots, x_n)$, and let

$$X = \left\{ x \in \mathbb{R}^{N_{\nu}} : \sum_{i=1}^{N} m_i x_i = 0 \right\}$$

with norm

$$|x|^2 = \sum_{i=1}^N 2m_i x_i \cdot x_i,$$

where \cdot is the usual inner product on \mathbb{R}^{ν} . We consider operators H on $L^{2}(X, dv)$ (with volume measure determined by the norm $|\cdot|$) of the form

$$H = -\varDelta_X + \sum_{1 \leq i < j \leq N} V_{ij}(x_i - x_j),$$

where $-\Delta_X$ is the Laplace-Beltrami operator on X and the $V_{ij}(y)$ are real-valued, measurable functions on \mathbb{R}^{ν} . Throughout, we assume that

$$V_{ij}(-\Delta+1)^{-1} \quad \text{and} \quad (-\Delta+1)^{-1}(y \cdot \nabla V_{ij})(-\Delta+1)^{-1}$$

are compact as operators on $L^2(\mathbb{R}^v, d^v y), \ 1 \le i, j \le N.$ (1)

Here $-\Delta$ is the Laplacian on $L^2(\mathbb{R}^v, d^v y)$ and ∇V_{ij} is the distributional gradient of V_{ij} . Under these assumptions, H is well-defined as an operator perturbation of $-\Delta_X$ and the crucial "Mourre estimate" holds [1, 4, 6].

^{*} Bantrell Research Fellow in Mathematical Physics

We will study point spectrum of H embedded in its continuous spectrum. To state known results, we recall that the set of thresholds of H, denoted $\mathcal{F}(H)$, is defined as follows. Let $C = \{i_1, ..., i_k\} \subset \{1, ..., N\}$, let $X_C = \{x \in X : x_i = 0 \text{ if } i \notin C\}$, and denote by H(C) the operator

$$H(C) = -\varDelta_{X_C} + \sum_{i < j: i, j \in C} V_{ij}(x_i - x_j)$$

on $L^2(X_C)$ if $k \ge 2$, or the zero operator on \mathbb{C} if k=1. H(C) is the cluster Hamiltonian for the cluster C, and if |C| denotes the number of elements in C, H(C)is a |C|-body Schrödinger operator. A real number E is a threshold of H if there is a partition of $\{1, ..., N\}$ into clusters $\{C_1, ..., C_\ell\}, \ell \ge 2$, such that $E = E_1 + ... + E_\ell$ and E_i is an eigenvalue of $H(C_i), 1 \le i \le \ell$. $\mathcal{T}(H)$ is the set of all such E.

For N-body Schrödinger operators with two-body potentials V_{ij} obeying hypothesis (1), $\mathcal{T}(H)$ is a closed, countable set and eigenvalues of H can accumulate only at points of $\mathcal{T}(H)$ [4, 6]. Recent work of Froese and Herbst [2] has revealed the close connection between $\mathcal{T}(H)$ and the spatial decay of eigenfunctions of H. To state a slight extension of one of their results (cf. [5]) which we will use below, define for $E \in \mathbb{R}$ the function

$$\Lambda(E) = \inf \{ \lambda \in \mathcal{T}(H) \colon \lambda > E \},\$$

where we set $\Lambda(E) = +\infty$ if no such λ exists. Then we have:

Theorem 1 [2, 5]. Let H be an N-body Schrödinger operator with V_{ij} satisfying hypothesis (1), and let $H\psi = E\psi$ with $\psi \in L^2(X)$. Then:

(i) $\sup \{\alpha^2 + E : \exp(\alpha |x|) \psi \in L^2(X)\}$ is either $+\infty$ or an element of $\mathcal{T}(H)$.

(ii) The estimate $\|\exp(\alpha|x|)\psi\| \leq C \|\psi\|$ holds, where C can be chosen uniform in ψ and in those E, α such that $|E|, \alpha$ are uniformly bounded and $\Lambda(E) - (E + \alpha^2)$ is bounded below by a fixed, positive constant.

Conclusion (i) is due to Froese and Herbst [2] who proved their result by contradiction. Using their ideas and a slight rearrangement of their proof, one recovers the uniform estimate (ii) (cf. [5]).

Using Theorem 1, we can give the following characterization ("semi-finiteness") of point spectrum of H embedded in its continuous spectrum.

Theorem 2. Let H be an N-body Schrödinger operator with two-body potentials V_{ij} obeying hypothesis (1). Then:

(i) Points of $\mathcal{T}(H)$ are "isolated from above", i.e., if $E_0 \in \mathcal{T}(H)$ and $E_1 = \Lambda(E_0)$, then $E_1 > E_0$ (strict inequality).

(ii) Let E_0, E_1 be defined as in (i). Then for any $E' \in (E_0, E_1)$, point spectrum of H in (E_0, E') is finite and of finite multiplicity.

Conclusion (ii) shows that point spectrum of H is "semi-finite": eigenvalues of H may accumulate from *below* at thresholds, but never from *above*. Conclusion (i) shows that the statement of conclusion (ii) is never vacuous.

Proof of Theorem 2. We proceed by induction on *N*. For N=1, *H* is the zero operator on \mathbb{C} , $\mathcal{T}(H)$ is empty, and the point spectrum of *H* is {0}, so (i) and (ii) are trivial. Given an *N*-body Schrödinger operator *H*, we assume inductively that all H(C), $1 \leq |C| \leq N-1$, obey (i) and (ii).

Point Spectrum of N-Body Schrödinger Operators

We claim *H* obeys (i). If not, there is a point $E_{\infty} \in \mathcal{F}(H)$ and a decreasing sequence $\{E_n\}$ from $\mathcal{F}(H)$ with $E_n \downarrow E_{\infty}$ as $n \to \infty$. Hence there is a cluster Hamiltonian H(C) and a decreasing sequence $\{E'_n\}$ of its eigenvalues converging to a limit E'_{∞} which therefore lies in $\mathcal{F}(H(C))$. This contradicts (ii) for H(C): hence (i) holds for *H*.

We now show (ii) holds for *H*. Let $E_0 \in \mathscr{T}(H)$, let $E_1 = \Lambda(E_0)$, and let $E' \in (E_0, E_1)$. On the one hand, for any fixed α with $\alpha^2 < E_1 - E'$ and any L^2 eigenvector ψ of *H* with eigenvalue $E \in (E_0, E')$, the estimate

$$\|\exp(\alpha|x|)\psi\| \leq C \|\psi\|$$

holds, with C uniform in such E, by Theorem 1(ii). On the other, the equivalence of the $\mathscr{D}(H)$ and $\mathscr{D}(-\Delta_X)$ graph norms $[\mathscr{D}(A)$ denotes the operator domain of A] implies that for a fixed C' and any eigenvector ψ with eigenvalue $E \in (E_0, E')$,

$$\|(-\Delta_X + 1)\psi\| \leq C' \|\psi\|.$$

Hence the set of all such normalized ψ is compact, hence finite-dimensional, so (ii) holds. \Box

Remark. After this work was done, Ira Herbst informed me that one can also prove Theorem 2 by combining estimates of [2] with an argument involving weakly converging sequences. Hence, one can prove Theorem 2 without the use of Theorem 1(ii) [3].

Acknowledgements. It is a pleasure to thank Percy Deift and Barry Simon for helpful conversations, and to thank the referee for pointing out an error in an earlier version of this paper.

References

- 1. Froese, R., Herbst, I.: A new proof of the Mourre estimate. Duke Math. J. 49, 1075-1085 (1982)
- 2. Froese, R., Herbst, I.: Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys. 87, 429–447 (1983)
- 3. Herbst, I.: Private communication
- 4. Mourre, E.: Absence of singular spectrum for certain self-adjoint operators. Commun. Math. Phys. **78**, 391–408 (1981)
- 5. Perry, P.: In preparation
- Perry, P., Sigal, I., Simon, B.: Spectral analysis of N-body Schrödinger operators. Ann. Math. 114, 519–567 (1981); see also [1]

Communicated by B. Simon

Received March 31, 1983; in revised form September 12, 1983