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Borel Summability of the Unequal Double Well
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Abstract. Unlike the ε = 0 case, the perturbation series of the unequal double
well p2 + x2 + 2gx3 + g2(l + ε)x4 are Borel summable to the eigenvalues for any
ε>0.

The best known example (see e.g. [13, Sect. XII.4]) of a non-Borel summable
perturbation series is represented by the Rayleigh-Schrόdinger perturbation
expansion (hereafter RSPE) of the standard double well oscillator H(g) = p2 + x2

+ x2{l+gx)2 in Z2(1R), geΊR. This fact is of course due to the instability of the
eigenvalues as 0->O, i.e. to their asymptotic degeneracy as gf->0. However there are
examples, such as the Herbst and Simon [5] one, K(g) — p2 + x2(l + gx)2 — 2gx — 1,
in which there is stability but no Borel summability to the eigenvalues. Hence, also
on account of recent investigations on Borel summability in four dimensional field
theories [6, 7], it could be interesting to relate the lack of summability to some
other more subtle physical mechanism of well defined meaning also in a more
general context. To this end, T. Spencer has suggested considering the following
"unequal" double well oscillator

H(g, ε) = p 2 + x\l + gx)2 + εg2x4, (1)

which in the limit #—>0 has an infinite action instanton for any ε^O. (A standard
reference for the notion of instanton in problems of this type is Coleman [1]
additional discussion can be found in [2, 11].) This model could in addition have
some interest in itself: as a matter of fact, in some sense it represents the slightest
modification of the non-summable example, and it is natural to ask to what extent
the non-summability as "accidental," i.e. how sensitive is its dependence on the
choice of the parameters in H(g)Ί Furthermore it can be easily proved through the
Hunziker-Vock technique [8] that any eigenvalue E of H(0,ε) = H(0) = p2-\-x2 is
stable for g e IR small as an eigenvalue of H(g, ε), ε > 0, because the second minimum
of V(g,ε) = χ2(l+gχ)2 + εg2x* tends to + oo as #-•(), ε>0.
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In this note we prove that, for ε>0, any eigenvalue E is actually stable as an

eigenvalue E(g,ε) of H(g,ε) for g complex, \g\ suitably small, |argg|g —, and that

the RSPE near E is Borel summable to E(g, ε) for g positive and small. To this end,
let us first collect some well known results on the operator families H(g, ε) acting in
L2(IR) under the form of a proposition whose proof can be easily traced out of [13,
Sect. XII.3,4].

Proposition 1. Let ε > 0 be fixed and ge<E, g = \g\Jθ, 1^1=0, \θ\<~. Let the

operator family H(g, ε) in L2(1R) be defined as the action of p2 + V(g, ε) on the domain
D(H(gfε)) = D(p2)nD(x% g + 0, and H(0) as the action of p2 + x2 on D(0)
= D(p2)nD(x2) for g = 0. Then for any fixed g, H(g,ε) has compact resolvent, and
any eigenvalue E(g, ε) is a locally holomorphic function of g in the complex sector

S={flfeC:|0|>O,|0|<|}.

Our result can be stated as follows.

Proposition 2. Let ε > 0 be fixed. Then:
(i) There is B(E) > 0 such that any eigenvalue E of H(0) is stable (in the sense

of Kato [9, Sect. VIIIA A~]) as an eigenvalue E{g,ε) of H(g9ε) for \g\<B(E\ \θ\<*j.

(ii) E(g, ε) is a holomorphic function of g at least in the sector

and is continuous as \g\->09 \Θ\S j

00

(iii) Let X 4,(6)0" ~ £(0,ε) be the RSPE of E(g,ε) near E,RN(g,ε) = E(g,ε)
N-l n=0

- X Λn(ε)gn its Nth order remainder. Then A2n+1{ε) = 0 Vn, and there is D > 0
n = 0

independent of g such that

\R2N(g,ε)\^DN\\g2\N, N = 1,2,... (2)

00

Remarks, (i) Statement (iii) implies the Borel summability of ]Γ An{έ)gn to E(g, ε)
n=0

for O^gSB(E). For Λ2n+1 = 0 Vn implies that E{g,ε) is a function of g2, which by

(ii) is holomorphic for 0<\g\2<B(E)2, |argg 2 |^—, and continuous as |#|->0,

|arg^f2|^ —. Then (2) holds with g replaced by g2 in the left-hand side so that by

the Watson-Nevanlinna theorem (for details see Sokal [14]) the summability takes
place for g as above.

(ii) Proposition 1 allows us to apply the standard complex scaling argument
(see e.g. Simon [12] for details). Hence the operators H(g.ε) and e~2ίφH(g,ε,φ\
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H(g,ε,φ) defined as the action of p2 + e*iφV(geiφ

9ε) on D{H(g9ε)) have the same

eigenvalues as long as \θ + 3φ\<—.

Let us now proceed to prove Proposition 2. By Remark (ii) we can consider

H(g,ε,φ) instead of H(g,ε). Given δ, 0<δ<—, we take φ= — Θ=Ξ — argg for

|0|^--<5, i.e. we consider H(\g\9ε9-Θ) as long as |0 |^-<5. For θ=j-θ\

O^θ'^δv δ<δ1<—, we take φ= — — +η, δί<η<—, 77 < arctg ]/ε", i.e. we

consider H(\g\9ε9χ) = p2 + e'iiπ~4η)V(\g\eiχ

9ε) with χ = η-θf, δ^δ^χ^η. For

θ= \-θ' we obviously consider H(\g\,ε, —χ). The condition ^ < a r c t g | / 7

ensures that the zeros \g\x = (l+ε)~1e~ίχ(—l±i]/ε) of V(\g\eίχ,ε) have non-
vanishing imaginary part.

It is clearly enough to prove Proposition 2 for H(\g\,ε,—Θ) and H(\g\9ε9χ)
separately. We proceed by means of ODE techniques of WKB type because, while
H(\g\, ε, — θ) can be analyzed by means of the Hunziker and Vock [8] stability
theorem, this is not the case for H(\g\,ε,χ), because the union over |# |>0 of the
numerical ranges is the whole of (C.

Lemma 3. Let ε>0, \g\^09 0<χ<,η. Then the ODE H(\g\9ε9χ)ψ = O9 i.e.

-ψ" + e-
i(π-4η)x2[(l + \g\eiχx)2 +ε\g\2e2iχx2]ψ = 0 (3)

admits a unique solution ψ-(x9\g\,ε,χ) (respectively ψ+(x9\g\,ε,χ)) which is L2 at
— 00 (respectively at +00), and such that

uniformly with respect to (x,z)e[ —α,α] x \_X,η\ 0 < α < + oo, 0<χ<η. An anal-
ogous statement holds for the solutions ψ±{x9\g\9 e, θ) of the ODE H(\g\,ε,— θ)ψ = 0,

\^δ, and for the solutions ψ±{x9\g\,ε,—γ) of the ODE Hi\g\9ε9—γ)ψ = Q9

Proof We limit ourselves to consider the case of ε > 0 suitably small, because this
is clearly the most interesting and delicate situation. The general case requires only
lengthier computations. For any ε > 0 the function V(\g\ eiχ, ε) vanishes only at x = 0
if x e R Therefore we can define:

/+(xj0|,ε,χ) = e / ( π / 4 ^ (4)
\ 0 /

It is known (see e.g. Sibuya [10, Lemma 13.1]) that ψ + ( ) exist, with ψ + (x9 \g\,ε,χ)
= (1 +o(l))/±(x, \g\9ε9ψ) as x-> ± 00, uniformly with respect to (\glχ\ but this does
not necessarily imply /_ (x, \g\, )->/_ (x, 0, ). Consider now /_(•)• For x < 0, setting
R(u, ε) = (1 — u)2 + εu2 we have :

] J
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where

) 3 / 2F(\gx\, X, β) = i(l + ε)" ̂ -"tRdgxl έ\ ε)

Set now I#Λ;| = 1 + j/, — l ^ j ^ + oo. For ε and η<ε suitably small, we can replace

e-iπ/2 + 2ίη|^| - 2 ^ _|_ ^ ^ ε^ though its first order Taylor expansion up to a relative
error of order ε2, which is uniform with respect to y: namely, on account also of
η ^ χ, we have:

Ime2ί»\gΓ2F(l+y,χ,ε)^Ime2ix\gΓ2F(l+y,Lε)

for some a(y ε, χ) bounded independently of (y ε, χ). Hence

lm[e2ίt]lV{\g\eiχ,ε)ιl2dt) > 0
\ /

strictly, independently of x and \g\, as long as η>0, χ > 0 , i.e. —^θ^ — —η.

Therefore given ε>0, there is M(ε)<0 independent of \g\ such that \f_( )\<ε for
x < M(ε), and hence \ψ_ (x, \g\9 χ, ε)| < ε for x < M(ε), uniformly with respect to (\g\, χ).
This implies lim τp_(x, |g|,χ,ε) = φ_(x,0,χ), with the stated uniformities by the

theorem of the continuous dependence on the parameters applied to the ODE
H(\g\,ε,χ)ψ = 0. For ψ + (x9\g\9χ,ε) the statement is obvious because the real part of
the integrand never undergoes a cancellation. An even simpler argument applies to
ψ±(x, \g\,θ9ε): in this case indeed one has to consider the real part of

\g\χ

±\g\-2e~2W j tR(-\g\t9ε)1/2dt9
o

which for \θ\ < — is trivially uniformly positive as x-> ± oo, respectively. This

proves Lemma 3, and explains why a different scaling is needed for θ = ± π/4.

Remark. The above statement is not true for ε = 0. Taking indeed 0 = 0, the double

zero of V(g9 0) = x 2(l + gx)2 at x = forces the exponent of the WKB solution to

switch sign near — oo as g-+0. &

Lemma 4. Let
denote the resolvent, of H(\g\, ε, χ) and H(\g\, ε, — θ\ respectively, which are compact
operators in L2 by Proposition 1 for zφσ(H(-)). Let R(0,θ,z) = (p2+ e~4iθx2-z)~\
R(0, η, z) = (p2 + e ~ιπ + 4ιηx2 — z)"1 denote the unperturbed scaled resolvents,
z + e~2ίθ(2n+l), z + e~iπ/2 + 2iη(2n+l), n = 0,l,..., respectively. Then, as \g\->09 and
z + e-2iθ(2n+l), z*e-iπ/2 + 2ίη(2n+ί), respectively, \\R(\g\,ε,θ,z)-R(0,θ,z)\\^0,
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\\R(\g\,ε,χ,z) — R(0,η,z)\\^>0 the convergence being uniform with respect to

θ,\θ\^ j — ^ > and χ,O<χt^η, respectively.

Proof. Denote by Wθ(\g\,ε), Wχ(\g\,ε) the Wronskians of {φ_(x9 \g\, ε, θ).
ψ + (x>\g\9ε9θ)) and (ψ_(x,\g\,ε,χ\ Ψ + Mg\,ε,χ))> respectively, and by Wθ(0), Wη(0)
the Wronskians of (φ_(x,O,0), ψ + (x9θ9θ))9 (ψ-(x9θ9η), ψ + (x9θ9η))9 respectively.
Since W (̂0) + 0, Wη(0) + 0, by Lemma 3 there is g>0 independent of θ, χ, re-
spectively, such that J4^(|g|,ε)Φθ, W^(|^|,ε)Φ0 for \g\^g. Then, through standard
ODE arguments (see e.g. Hellwig [4]), one can easily check the following Green's
function representations, valid for any ueL2

, ε, θ 0)u)(x) = J G(x, y \g\, β, θ)u(y)dy,
R

(R(\glε,χ 0)u){x) = j G(x, y \g\9

(R(0,0 0)ιι)(x) = I G(x, y 0, θ)u(y)dy,

(jR(O, ί? 0)K)(JC) = J G(x, y 0, ι/)φ)dj;,

where

-(y, )ψ

and analogous definitions for G(x9y;09θ)9 G(x9y;09η)9 with ^
replaced by Wθ(0)9 Wη(0), respectively. Starting from the asymptotic behaviours of
ψ + ( ), it is not difficult to check that G(x, y;\g\9 ε, χ) and G(x, y \g\9 ε, θ) are Hilbert-
Schmidt integral kernels, as well as G(-,0,η) and G( ,0,θ). Proceeding as in
Lemma 3, one easily proves that, given ε>0, there is M(ε)>0 independent of \g\
and θ9 χ (respectively) such that

ff \G{xir,\gUΘ

\l \G(x,y;\g\,ε,χ)\2dxdy<ε.

Therefore, by the continuity oΐψ±(x9 \g\9ε, θ)9 ψ±(x, \g\9ε,χ) as |^|-^0, uniform with
respect to θ and χ, respectively, and with respect to x in the compacts of 1R, and by
the uniform convergence of P^(|g|,ε), P (̂|<7l,ε) towards Wθ(θ) and Wη(0)9 re-
spectively, we have for |#|->0,

j |G(x,y \g\,ε, θ)- G(x,y,0, θ)\2dxdy^0,
R2

j \G(x, y |fl[|, β, χ)- G(x, y, O^
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This is enough to prove the assertion because the Hilbert-Schmidt norm majorizes
the operator norm, and the norm resolvent convergence for z = 0 implies the norm
resolvent convergence for all z as above. This proves Lemma 4.

Proof of Proposition 2. Let £ = (2/+1); j = 0,1,... be an unperturbed eigenvalue,

which is an eigenvalue also of e~2ίφH0(φ) = e~2iφ(p2 + e+Mφx2\ \Φ\<j By

Lemma 4 and standard arguments of perturbation theory (see e.g. Reed and
Simon [13, Sect. XII.3), E is stable both as an eigenvalue of e2ίθH(\g\, ε, - 0),

\θ\ Sj —δ, and as an eigenvalue of e~iiπ/2~2η)H(\g\,ε, ±χ), O^χ^η. This implies

that given the circle Γv:{z: \z-E\ = v} there is B(E)>0 such that e2iθH(\g\,ε, -θ)
and e~ι(7tf2~2η)H(\g\,ε, ±χ) have one and only one eigenvalue, denoted by E(\g\,θ)
and E(\g\; ±χ), respectively, inside Γv for all g such that \g\^B(E\ with

)= \im
iflfi-o

By rescaling the phase of g we can thus conclude that H(g, ε) has one and only one

eigenvalue E(g,ε) inside Γv as long as \g\<B{E\ |#| = |arg# |^ —, with E(g,ε)^>E as

#-•(). In addition E(g,ε) is a holomorphic function of g at least for 0<\g\<B(E),

|argg| S j . This proves assertions (i) and (ii). To see (iii), by the scaling invariance

of the RSPE and well known arguments of asymptotic perturbation theory (see
e.g. Reed and Simon [13, Sect. XII.4]) it is enough to check that both R(\g\,ε,χ,z)
and R(\g\, ε, θ, z) are uniformly bounded with respect to (\g\, z)e(0, B(E)) x Γ1 / 2. This
is once more a consequence of the norm resolvent convergence.

Remark. The limit ε-»0 of H{g,έ) is of course highly irregular. Examined in the

light of the stability of the boundary conditions, for g real it would clearly

correspond to a fixed choice of sign in ]/(l + gx)2+εg2x2 at the limit ε = 0 also for

x = while the square root is forced to switch sign at the double zero x= by
9 9

analyticity. Not surprisingly, the Borel sum of the RSPE oϊH{g) does not represent
an eigenvalue of the problem and has been identified [3] as a complex eigenvalue
of a non-self-adjoint problem described by the same equation with L2 conditions
at infinity imposed along complex directions.
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