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Abstract. This work deals with Backlund transformations for the principal
SL(?2,(C) sigma model together with all reduced models with values in
Riemannian symmetric spaces. First, the dressing method of Zakharov,
Mikhailov, and Shabat is shown, for the case of a meromorphic dressing
matrix, to be equivalent to a Backlund transformation for an associated,
linearly extended system. Comparison of this multi-Backlund transformation
with the composition of ordinary ones leads to a new proof of the per-
mutability theorem. A new method of solution for such multi-Backlund
transformations (MBT) is developed, by the introduction of a "soliton
correlation matrix" which satisfies a Riccati system equivalent to the MBT.
Using the geometric structure of this system, a linearization is achieved,
leading to a nonlinear superposition formula expressing the solution explicitly
in terms of solutions of a single Backlund transformation through purely linear
algebraic relations. A systematic study of all reductions of the system by
involutive automorphisms is made, thereby defining the multi-Backlund
transformations and their solution for all Riemannian symmetric spaces.

1. Introduction

In two previous papers [1, 2], the solution of iterated sequences of Backlund
transformations (BT's) for principal U(n) and SL(n,C) sigma models were found.
The equations defining such models are:

Aη + Bξ=0, (1.1)

and

A = gξg~\ B = gηg-\ (1.2)

* Supported in part by the Natural Sciences and Engineering Research Council of Canada, and by
the "Fonds FCAC pour Γaide et le soutien a la recherche"
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where g(ξ, η) is a group [SL(n, C) or U(n)] valued function and (ξ, η) are light-cone
coordinates on two-dimensional Minkowski space. The Backlund transformation
[1-3] determines a new solution, g, from a given one through the first order
system:

gηg~1-gηg~1=h(gg~\>

subject to the constraints

where μ0, λ0 are arbitrary complex parameters for SL(w,(C) and μo=λo for U(n).
The method of solution developed in [1, 2] consisted of converting the BT into

pseudopotential equations of matrix Riccati type, interpreting these geometrically
in terms of the action of SL(2rc, (C) on the Grassman manifold Gn((£2n), and
linearizing through an algebraic procedure based upon the subgroup reduction
SL(2rc, (C)DSL(n, (C) x SL(rc, C). The iterated sequence was solved through a re-
cursive procedure leading to a nonlinear superposition formula expressing the
resulting solution directly in terms of solutions to (1.3), (1.4), with various values of
the input parameters (μQ9 λ0).

The linearized equations are exactly those of Zakharov and Mikhailov [4, 6]
and Zakharov and Shabat [5], (henceforth ZMS)

which, in their approach, form the starting point of the "dressing method." The
equivalence of the two methods for the generation of solitons was also established
in [1, 2].

In another previous work, one of the authors [7] applied a reduction
procedure to pass from the principal O(n) sigma model to real Grassman
manifolds SO(p + q)/SO(p) x SO(q), obtaining the Backlund transformations and
multisoliton solutions for that case. This required the introduction of a new type
of BT in order to satisfy nontrivially the appropriate reality conditions. Within
the ZMS approach, this corresponded to the introduction of a pair complex
conjugate poles in the dressing matrix.

In the present work, we generalize and extend the results of [1, 2, 7] in several
ways. First, we show how the correspondence between the ZMS procedure and the
Backlund transformation approach may be extended beyond the level of single
poles or complex conjugate pairs through the introduction of a "multi-Backlund
transformation" which has the effect of generating, in a single step, a new solution
identical to that obtained by solving an iterated sequence of simple BT's. This
multi-Backlund transformation may be obtained either by composition of simple
BT's or by replacing the original system of Eqs. (1.1) and (1.2) by an equivalent,
extended system obtained by evaluating all derivatives of Eq. (1.5) at λ = 0 up to
the number of iterations involved. The transformation equations which extend
Eqs. (1.3) and (1.4) are obtained by repeated differentiation of the ZMS dressing
matrix at λ = 0 and may be interpreted as a simple Backlund transformation for
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the extended system. This procedure is developed in Sect. 2 and used to give a new
direct proof of the permutability theorem for BT's which does not require the
explicit integrated form of the solution to an iterated sequence.

In Sect. 3, a new method for analysis of multi-soliton solutions (in any
background field) is developed by introducing what we call the "soliton-
correlation matrix." This matrix, which is constructed by using the ZMS dressing
matrix and its inverse as creation and annihilation operators for solitons, is shown
to satisfy a matrix Riccati equation corresponding to the action of SL(2πK,(C) on
GnX(C2"^), where K is the number of solitons. Generalizing the procedure applied
to single solitons in [1, 2] we obtain in Sect. 4 a linearization based upon a
subgroup reduction from SL(2rci£,(C) to products of SL(rc,(C)'s and SL(2n,(C)'s
(depending upon parameter degeneracies), thereby determining the solution again
in terms of the ZMS equations (1.5) through a linear fractional transformation of
the initial data. This approach has the virtue of giving an explicitly constructed
nonlinear superposition formula without the need for a recursive procedure.
Moreover, the various degenerate cases involving coincident poles in the dressing
matrix and its inverse are treated uniformly, the distinction arising only in the
Jordan normal forms defining the subgroup reductions. The method of solution
thus reduces the problem to elementary linear algebra and is somewhat simpler
than the one used by Zakharov and Mikhailov [6]. Moreover, it lends itself
conveniently to the formulation of the reduction procedure.

In Sect. 5 we recall how reductions of the sigma model to all possible
Riemannian symmetric spaces may be obtained from the Cartan immersions of
such spaces into their group of isometries through the use of involutive automor-
phisms [8]. Applying these reductions to the soliton correlation matrix, we derive
corresponding constraints within the Grassman manifold GnK(<E2nK\ and prove
through the geometrical interpretation that these are consistent with the matrix
Riccati equations defining the evolution of the system. Each such reduction
involves a constraint determining a submanifold of GnK(<E2nK), consisting either of
totally isotropic subspaces of C 2 π X under some hermitian, quadratic or symplectic
form, or of subspaces invariant under certain linear maps, and a corresponding
reduction of the group SL(2nK,<£) preserving these submanifolds. The constraints
are also expressed in the notation of [6], and the results for all reductions defining
the irreducible classical Riemannian symmetric spaces are given in Tables 1 and 2.

2. Multi-Backlund Transformations

Consider the system (1.5), whose integrability conditions are Eqs. (1.1) and (1.2).
Now define the sequence of matrix functions

ΊϊJλ'

In particular, ψ(λ) may be normalized so that

gι=ΊϊJλ'ψ{λ)lλ=0'

(2.2)
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is the solution of Eqs. (1.1) and (1.2). The remaining functions satisfy the following
linear equations, obtained by differentiating (1.5) repeatedly at λ = 0

gι,ξ + Qι-i,ξ = ΛQι> 9ι,η-9ι-i,η = B9ι> ί = l , . . . , K - l . (2.3)

These equations determine the extended system {0o> >0κ-i} from the original
one (1.1) and (1.2). Since the integrability conditions for (2.3) are just (1.1) and (1.2),
given a solution g to the latter, the remaining {#J ί = !,...,#-1 are determined up to
arbitrary initial conditions by the linear system (2.3). Now, following ZMS, we
introduce a dressing matrix χ(λ) which together with its inverse χ~γ{λ) is
meromorphic in λ with simple poles at {λi}ί=ί κ and {μi}i=ίt..mtK, respectively,
and normalized such that

In terms of the residues

2πί λ. ^/tt βι

(the contours taken so as to include only the pole indicated). We have:

χ(λ) = l +

A new solution to (1.5) is obtained from a given one (A,B,ψ)
transformation:

provided the dressing matrix satisfies the differential equations:

χ(λ)A Bχ(λ) χ(λ)B

ί+x i + r Λ f Λ ; l-A

This is equivalent to the system of equations:

Qiξ= l + V ^ίη~ i-λ{~ l - i .

or, equivalently

AR, RΛ R B

ut l+μ.'

together with the set of constraints:

j = 1 λ i μ j j = 1 μ i λ j
j*i j*'

K

Σ = -(λ,-μt) ft+Σ
J=iλι-μJ

(2.4)

(2.5)

by the

(2.6a)

(2.6b)

(2.7)

(2.8)

(2.8')

(2.9a)

(2.9b)
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The latter are written in a form valid whether λt and μ. are distinct or not. The
other {μ.}, {λj} for zφj may without loss of generality be taken as distinct.

The system (2.8) with constraints (2.9) may be expressed in a different form
which defines a Backlund transformation from the extended system
{go,gv •• ,0£-i} to a new extended system {go,gv • •.,§£_ i) satisfying the same
Eqs. (1.1), (1.2), and (2.3) as follows. A meromorphic function on the Riemann
sphere which is analytic at 0 and oo and has K simple poles at given points is
uniquely determined by its value at 0 and oo, together with its first K— 1
derivatives at 0. We therefore introduce the K matrix functions:

which, because of the normalization χ(oo) = l, may be expressed in terms of the
residues {g j as:

*o = l - Σ τ = Λ vι=- Σ Jτ> l=U . ,κ-l. (2.11)
i=l λi ί=lAi

By evaluating derivatives of the system (2.7) at the origin, we find:

1=0,...,K-l. (2.12)
ί = 0 i = 0

Furthermore, from the contour integral of (2.7) around oo, we have:

K K

i= 1 i=ί

The pair of relations (2.12) and (2.13) are thus equivalent to (2.6b) and (2.7).
Equation (2.13) may be re-expressed in terms of the PJ's, using the following
identity, which is a consequence of Eq. (2.11):

K K

ι = l j=ί

The resulting system is:

K

X (-iYλil9...,λiVJ_ltξ = A-A9 (2.15a)

• < = 1 <

K

B9 (2.15b)

(2.15c)

Vι n~
vι-1 n = BVι~VιB (2.15d)

Conversely, by re-summing Eq. (2.15) and making use of Eq. (2.11), we can
derive Eq. (2.8) with (A,B) given by (2.6b).
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The significance of this linear change of coordinates is that the extended system
{#o> -->9κ-ι} obtained from the new solution ψ given by Eq. (2.6a) by successive
derivations:

dίp , / = O , . . . , K - 1 , (2.16)m~Hdλι

 λ = 0

is simply expressible in terms of the {Vt}:

i

9ι= Σ Vi-iβi- (2-17)

Therefore, Eq. (2.15) may be interpreted as a Backlund transformation from

{go> ',gκ-i}t0 {go> >gκ-i)>where

and {g, ...,§ x_1} is determined by Eq. (2.17).
Equation (2.17) may be explicitly inverted to express the {Vx} in terms of {grj,

{gj} by solving:

i

ί = l

recursively. Therefore, Eqs. (2.15a)-(2.15d) may be regarded as a differential
system relating {g0, ...,^_1} and {g0, . . . J ^ - J } . It is immediate from Eqs. (2.15a)
and (2.15b) that if {g,A,B} satisfies Eqs. (1.1) and (1.2), then {g,A,B} does as well,
and from Eq. (2.15c) and (2.15d) it follows that if {#JZ = O κ-i satisfy Eq. (2.3),
then so does {§J/ = o,...,χ-i a s defined by Eq. (2.17). Summarizing these results, we
have:

Theorem 1.1. The system (2.15), subject to the constraints (2.9a) and (2.9b) defines a
Backlund transformation for the extended system {g0,..., gκ_ 1} and is equivalent to
Eqs. (2.8) and (2.6b) for the residues of the dressing matrix.

Note that, whereas the constraints (2.9a) and (2.9b) involve both the residues
{g j and {.RJ, the latter may also be expressed explicitly in terms of {gt} and {§J
through relations of the same form as Eq. (2.11) derived from χ~ι(λ). In terms of
the original system A, J3, Eqs. (2.15) determine a new solution equivalent to that
obtained by solving an iterated sequence of K simple Backlund transformations
and therefore should be interpreted as a multi-Backlund transformation. The case
K = 1 reduces to Eq. (1.3) with constraints (1.4). The relationship between the case
K = 2 and the composition of two successive Backlund transformations may be
used to prove the following :

Theorem 2.2 (Permutability Theorem). // two successive Backlund transformations
are applied to a given solution {g,A,B} of Eqs. (1.1) and (1.2),

(g, A, B) >(gv Av Bγ) >(g, A, B),
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there exists another sequence

(g, A, B) >{g2, A2, B2) >(g, A, B)

with the same resulting solution (g, A, B).

Proof. The equations defining the first BT are:

-λίϋιi = λί-Ali XJJXn = Bx-Bx> A1ί/1+μ1[/-1=(A1+μ1)ll,(2.19)

where

U^g.g-1. (2.20)

And similarly the second one is defined by

-λ2U2ξ = A-A1, λ2U2η = B-Bίt λ2U2+μ2U;i={λ2 + μ2)i, (2.21)

where

U^ggl1- (2.22)

Define the new quantities:

o-j-V.-j-V^ (2.23)

Then Eqs. (2.14) and (2.21) are equivalent to the following:

together with the constraints (2.9) for k = 2, where

F = 1 _δi_δ2
AΛ A*,

- — 12 02 '

(2.25)

define Qv Q2, Rv and i^2. Thus, the composition of two simple Backlund
transformations is equivalent to the K = 2 double Backlund transformation which
is manifestly symmetric under the interchange of parameters (β1λί)<->(μ2λ2).
Therefore, by suitable choice of initial conditions, the two successive transfor-
mations with parameters exchanged gives rise to the same solution (g9 A, B).
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3. The Soliton Correlation Matrix

In order to solve the multi-Backlund transformation (2.15) or, equivalently, the
system (2.8), it is convenient to introduce a new quantity, the soliton correlation
matrix M, which is an nK x nK dimensional matrix whose entries of n x n blocks
Mtj are defined in terms of the residues of the product χ~ί(μ)χ(λ):

In the case that μ^λj, the evaluation of these contour integrals gives:

Pi - λj

If μi = λj, the expression (3.2) is undefined, but (3.1) is still valid provided the
integration contours are chosen as disjoint, i.e., one contained in the other. The
choice of inner and outer contours in this case does not affect the result of the
integration in (3.1). The residues Q{, Rj may be recovered from the M matrix by
summing over the row blocks or column blocks:

Lemma 3.1.

Qt= Σ Mjt, (3.3a)
7 = 1

Rt=- ΣMu- ( 3 3 b )

Proof. If μ.φ/lj, these relations are equivalent to the constraints (2.9), but in
general they are shown to be valid by deforming the integration contours,
choosing the λt contour to be the outer one in the case of a degeneracy μj = λi:

>dλ
μ-λ 1 μ-λ

— j
Z 7 Γ ί λ

and similarly for the other relation.
The constraints may be expressed equivalently in terms of the M-matrix alone.

Lemma 3.2. The M-matrix satisfies the following constraints, which together with
(3.3) are equivalent to (2.9)

-A,M ;.= - X M i 4 M 0 . . (3.4)
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Proof.

Conversely Eqs. (3.3) and (3.4) imply Eq. (3.2) for μ^λj. Substituting this relation
in (3.3a) and (3.3b) and adding gives Eq. (2.9a). If μ f + Af, Eqs. (3.3a) and (3.3b) is
also equivalent to (2.9b), while if μ. = Λ,ί5 Eq. (3.4) implies R.Q. = 0, and hence (2.9b)
is still implied.

One further form of the algebraic constraints on M will also be useful in the
following section.

Lemma 3.3. There exists a block diagonal nK x nK dimensional matrix S, consisting
of nxn blocks Si9 i=l,...,K with

S£ = 0, if λ. Φft,

such that the following relation holds:

M(D + S)M = M, (3.5)

where the nK x nK dimensional matrix D has as ifh block:

1
D.j = γ~2— * if λt Φμj (in particular, if i Φj) ,

n n * r i ( 3 ' 6 )

DH = 0 if λ^μ^
Proof. If λt + μj, Vf,j, then S vanishes identically and (3.5) is another form of the
constraints (3.4). In general, the proof is as follows. The following relation is an
identity which is derived by performing the inner two integrations and deforming
the summed contours to infinity:

(2πi)4ίr I I I I, (μ-λ)(λ-μ')(μ'-λ')

We can evaluate all the terms with λk φ μι explicitly to get:

=Mij9

)
μ$dλ

where the first sum is over all terms with λk=\=μι and equals {MDM)ip and the
second is over those diagonal terms with μx = λv Evaluating the interior integrals in
the second sum, we have

(2π/)2ί, I μ λ-μ' 2πil μ λt-μ'

2πιλι λ-λι

and hence there exists a matrix St such that:

λ — μ

(2πO2Γ /,
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Substituting gives

- — - Σ §dμ§dλ§dμ§dλ
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χ~1(μ')χ(λt)

which proves the relation (3.5).
We now derive the equations satisfied by M which are equivalent to the system

(2.8) and hence also the multi-Backlund transformation.

Theorem 3.4. The M-matrix evolves according to the following system of matrix
Riccati equations:

ξ = p+M-Ms+-Mr+M,

= p~M-Ms' -Mr~M,

(3.7a)

(3.7b)

where

= diag

s+ =diag s =

~B

(3.ί

integrability conditions for (3.7) αr^ Eqs. (1.1), (1.2), απJ ί/zβ constraints Eq. (3.4)
are preserved.

Proof. Differentiating χ~1(μ)χ(λ), and using (2.7) gives:

r , - ! (IX [
+ μ ) ( ί + λ ) ί + μ ί + λ

Integrating
μ — λ

around the poles μ. and λ̂  , the first term gives:

where the expression (2.6b) has been substituted for A. The integrals are evaluated
by deforming the σ, τ contours in:

1 r , r ,

- — Φ dμ Φ dσ

2πil μJ (

11 v r , r ,
= ) Φ dμ Φ do

y
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and, similarly

Evaluating the remaining terms in (3.9a) directly gives:

MikAMu AMtj MtjA
ijξ ΐ f ( l + W +

and similarly

which is exactly Eqs. (3.7a) and (3.7b) split into blocks. The verification that
Eqs. (1.1) and (1.2) are indeed the integrability conditions for (3.7) and that the
constraints (3.4) are preserved relies upon the geometrical interpretation of
Eqs. (3.7a) and (3.7b) and will be left to the next section.

4. Geometrical Structure and Linearization

Matrix Riccati systems of the type (3.7) have a natural geometrical interpretation
in terms of group actions on Grassman manifolds. This has been formulated in
detail in [1, 2, 9] and may be summarized briefly as follows. The M-matrix may be
regarded as defining a function on R 2 with values in the Grassman manifold
GnK((E2nK) of nxn planes in (£2nK, expressed in affine coordinates. The group
SL(2nK, (C) acts in a natural way on GnK((£2rtK), this action being expressed in affine
coordinates by the linear fractional transformation:

P

R
(4.1)

eSL(2nKX\ P,Q,R,S,Me£nKxnK.

The SL(2nKX)-valued 1-form

+ + \dξ — I _ \dη (4.2)

defines a connection on the trivial principal SL(2rci£,C) bundle

R 2 xSL(2rcK,C)-^IR 2 ,

with connection form:

1 d&. (4.3)
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The system (3.6) may be regarded as determining a covariant constant section of
the associated trivial Grassmannian bundle σ :IR2->IR2 x GnK(<£2nK\

σ(ξ9η) = (ίξ9η)9M(ξ9η))9 (4.4)

expressed in affine coordinates. The integrability condition for arbitrary initial
conditions is the vanishing of the curvature:

[ ω , ω ] = 0 , (4.5)

which reduces to the relation:

s/®Aη-0g®Bξ + jtfό9®AB-09jtf®BA = O9 (4.6)

where <stf9 & are the constant 2K x 2K dimensional matrices

1 i

(4.7)

l - λ t 1-μj I * l - λ ι

in terms of which

" 0

r+ s \r s

Equation (4.6) reduces to the field Eqs. (1.1) and (1.2), because of the identities

The general solution to Eq. (3.7) may be expressed in terms of the solution to
the corresponding problem of determining a covariant constant section in the
principal bundle

ξ η (4.11)

If we choose initial conditions at (ξ0, η0)

M(ξo,ηo) = m, <${ξo,ηo) = t, (4.12)

then M(ξ, η) is determined by the linear fractional transformation:

y\ (4.13)
where

iPίP nλ 0 \

(4.14)
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has lower block triangular form because of Eqs. (4.8), (4.11), and (4.12). The form of
the solution (4.13) remains unchanged if Eq. (4.12) is replaced by the more general
conditions:

-i m )-(Si °) ( 4 1 5 )
0 1 2 ' °' ° \0 S2)

for arbitrary SvS2eSL(2nK,<C).
To verify that Eq. (3.6) is consistent with the constraints (3.4), we introduce the

linear map T:(£2nK-^(£2nK with matrix representation:

T = τ®i , (4.16)

where

τ = r " 6 1 ^ _,. ° M 1 ) e C 2 K x 2 K , (4.17)
\ -E diag{A,}/

and
/l ... l\

(4.18)

This determines a map, also denoted T, on the Grassman manifold T: GnK-^>GnK,
which, expressed in terms of affine coordinates is the solution to the linear system

λj Ί\M)tJ - Σ T(M)ikMlJ = μtMt}. (4.19)
kl

Thus, the constraints (3.4) express the geometrical condition that M defines an
invariant point in GnK{d22nK) under the map T:

T(M) = M. (4.20)

The submanifold of GnK(<E2nK) consisting of T-invariant πK-planes is an orbit of
the subgroup of SL(2nK,(E) consisting of elements which commute with T:

T^T~1=^. (4.21)

The fact that @(ξ, η) takes values in this subgroup and hence the constraints (3.4)
are preserved follows from the fact that Eq. (4.11) determines ^ from the
SL(2nK,(L) algebra valued functions stf®A and &®B which themselves com-
mute with T:

0, (4.22)

or equivalently,

[ τ , ^ ] = [τ,Λ]=0. (4.23)

The commutativity of τ, J/, & is a consequence of the identities:

τ = ̂ - 1 - i=-*- 1 +l. (4.24)

This completes the proof of Theorem (3.1) and also suggests the procedure for
reducing the Riccati system (3.6) to a system of linear matrix equations in n or 2n
dimensions. Namely, choose a basis of eigenvectors or generalized eigenvectors of
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τ, thereby simultaneously transforming τ, J / , and $ into Jordan normal form. The
parameters {μ/5λ.} are the eigenvalues of τ and we may assume that the {μj and
{AJ are separately distinct and μ^λ. for i=\=j by suitable ordering. Therefore the
various cases are determined by whether or not the pairs (λt, μ.) are equal and the
Jordan blocks are all either 1 or 2 dimensional. It is sufficient to examine the two
cases where either:

(i) μ. + λj VίJ,
or

(ii) μtφλj if ΐφj , μi = λi Vi,
since the general case is a direct sum of these two.

Case (i). μ^λj, Vi,;.
The matrix of eigenvectors is of the form:

where

( 4 2 5 »

The diagonalized forms of τ, si, & are

(4.27a)

(4.27b)

(4.27c)

It follows that J / ® ^ 4 , &®B and hence ^ may be block diagonalized by the same
transformation:

y = S($0S-1 (4.28)

(using S here as abbreviated notation for S®ί), where ^ 0 satisfies the equations:

/diag
1+ft

Ό,ξ i A

0 diag
^ 0 '

1 + λJ
(4.29)

/diag

^ 0 . , =
1—Λ*ί

0 d i a g
1 - A w
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Choosing initial conditions such that &0(ξ0,η0) is block diagonal, this is just 2K
copies of the ZMS Eqs. (1.5) evaluated at {λ^μj and hence:

».-(? r)-
where

Ψ = άi&g{φ(μ$, V^diagίvKA,)} (4.31)

are determined by ψ(λ) at the various eigenvalues. Substitution in (4.28) gives

Ψ

DΨ-ΨD Ψj9 * * 3 2 )

where

D^d®ίnxn, (4.33)

and hence the solution M(ξ, η) as expressed by the linear fractional transformation
(4.13) is:

M(ξ,η)=Ψm[(DΨ- ΨD)m+ ΨT1. (4.34)

Case (ii). μ^λj, if iφj; Λj = μt .
The matrix of generalized eigenvectors is:

It 0

where

1 J (4.36)
= 0 if i=j. K

The Jordan normal form (up to normalization) is:

e-!,o /diagUJ 0
( 4 3 7 )

(4.38)

(4.39)
/ 1 \ I

diag — -—— diag —

Once again ^ is determined by

q = S <% S'1 ί4 40̂ l
— 0 0 0 ' \̂ ~.™w^
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where %?

o i s now of the form:

0

Ψ
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with
Φ = diag {φ{λy\, (4.42)

and φ(λ) is determined by the linear 2n x 2n matrix equations:

A

(4.43a)

(4.43b)

These equations are obtained from the ZMS Eqs. (1.5) by differentiating with
respect to the l-parameter, and the general solution for φ is given by:

(4.44)
dλ

where ψ(λ) is the general solution to (1.5) and C(λ) is an arbitrary constant n x n
matrix.

Substitution in (4.40) gives

) (4 45)
D0Ψ-ΨD0 + Φ Ψ)9 K

where

Do^d°®lnxn, (4.330

and hence, the solution M(ξ, η) as expressed by the linear fractional transformation
(4.13) is:

M(ξ, η) = Ψm[(D0 Ψ - ΨD0 + Φ) m + Ψ] ~x. (4.46)

Combining these two cases, we may summarize the general result as follows:

Theorem 4.1. The general solution of Eq. (3.7) is given by the linear fractional
transformation :

M=Ψm[(DΨ- ΨD) + Φ)m+ψy1, (4.47)

where

(4.48a)

(4.48b)
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D is as defined in Lemma 3.3, Φ is the block diagonal matrix with nxn blocks

φi=-ψ'(λi) + ψ(λi)ci if μι = λ i

= 0 if μ + λt,

c e(C"x" are arbitrary constant matrices and me(EnKxnK satisfies the constraints (3.4)
of Lemma 3.2.

The solution may be expressed in another form which corresponds to that
determined by Zakharov and Mikhailov for U(ft), O(n\ and SP(rc) in [6].

Theorem 4.2. The residues Qt, Rt defining the dressing matrix χ(λ) and its inverse
χ~1{λ), respectively, are of the form:

(4.50)
Hi,Kie€"xr>,

where the rectangular matrices F;, Hi are determined from their initial values f, ht by

Fi = ψ+-\λ^fι, H^ψiμ^, (4.51)

and Xt, Kt are solutions to the linear system

Σ Xfi^Hj, (4.52a)
i= 1

ΣKf^-Fj, (4.52b)
i = 1

with F + H

ΓijΞΞ-T1—L, if λi^μj (in particular J+j), (4.53a)
λi-μj

and
Γ^-F+ψ'iλJψ-^λJHi + f+ch if λ^ft, (4.53b)

where c/£(C"x" is arbitrary and f^ht = 0 in the latter case.

K

Proof Let Vt stand for C for i= 1, ...,K, and write (£nK= φ Vv We prove below
ί = l

that if we assume that for the initial value m = M(ξ0, η0) the kernel K of M splits as
a sum k=@ki with £ f Cϊ< and similarly for the range R= 0 £ with JRfC^,
then this is true for all (ξ, ή). Under this assumption let Ft be an n x qt matrix
representing a basis for the orthogonal complement of K( with respect to the
standard hermitian structure on C" let Hi be an n x rt matrix representing a basis
for Rt, and let p = rankM= Σ η = X ^ Then M can be represented

= HWF+ =

/Hi 0

0 if,,

\0 0

for an invertible pxp matrix PΓ.

0

0

... 0

... 0

... Ft

(4.54)



346 J. Harnad, Y. Saint-Aubin, and S. Shnider

By Theorem 4.1, M is determined as the solution to the linear system

M[(DΨ- ΨD + Φ)m+Ψ'] = Ψm, (4.55)

as long as the quantity in brackets multiplying M is invertible. Under this
assumption we will show that the kernel and range of M evolve according to the
block diagonal matrices Ψ and Ψ, respectively, and that if M is represented as in
(4.54) the matrix W is the inverse of (Γ^) as defined in (4.53).

By Lemma (3.3), there exists a block diagonal matrix s = diag{sj, s.e(EnXn with
s = 0 if μ. φ λt, such that

m(D + s)m = m. (4.56)

[Note that this is valid whether m is actually the initial value of M or is just related
to it by a transformation of type (4.15) with SX=S2 an arbitrary block matrix
determining the initial values of {ψ(λi),ψ(μi)}.'] Multiplying (4.55) on the right by

s)m and using (4.56) shows that it splits into the two equations:

(4.57a)

(4.57b)

where Φ — ΦΛ-Ψs is the block diagonal matrix with nxn blocks also given by
Eq. (4.49), where the constant matrices st are absorbed into the arbitrary matrices
cv It follows from (4.57a) and (4.57b) that Ψ'1 KerM = KerM^DKerm and
RngMjΨRngm. But

dim Ψ~x KerM + dim RngM = dim KerM + dim RngM = nk

= dim Ψ Rngra + dim Kerm

implying equality KerM = Ψ Kerm, RngM = Ψ Rngm. Therefore if the kernel of m
and the range of m split as direct sums the same is true for M.

If if. and F are defined as in the beginning of the proof, and ht and ft are the
initial values at (ζo,ηo\ then

Fr/^WΛ, (4.58a)

H^ψiμjht. (4.58b)

Let H and F be the block diagonal matrices with entries Ht and Fi9 respectively,
and let h and / be their initial values. Set M = HWF+, m = hwf+ and substitute in
(4.57a)

HWF+ID + Φψ-^ Ψhwf+ = Ψhwf+ =Hwf+ ,

which implies WF+[D + ΦΨ~1JίH = t W = Γ~K The invertibility of Γ is equiva-
lent to the solution considered as a function with values in GnK(<E2nK) remaining in
the domain of a fixed affine coordinate system. Let (y.j) represent the matrix W:

Mtj=HiyijFΐ- ( 4 5 9 )

Summing along the columns,
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Summing along the rows,

(4.61)

These equations are equivalent to (4.52), completing the proof.
The constraints (3.4) imply

F+H^f+h^O if μ ^ . (4.62)

This form of the solution reduces to that given by Zakharov and Mikhailov in
[6] if the reality conditions λ. = μi and Rt = Qf are added and the poles are chosen
in complex conjugate pairs. This amounts to a reduction of the SL(w, (C) problem
to SU(w) and is an example of the general reduction problem dealt with in the next
section.

5. Reduction to Riemannian Symmetric Spaces (RSS)

The reduction problem involves finding particular solutions to the system (1.1),
(1.2) taking values in a submanifold (real or complex) of SL(n, C). If the
submanifold is itself a Lie subgroup, this defines the principal sigma model for the
given group. More generally, it was shown by Eichenherr and Forger [8] that the
Cartan immersion of Riemannian symmetric spaces in their isometry groups
determines consistent reductions of Eqs. (1.1) and (1.2) which satisfy the field
equations defining the corresponding sigma model. By a Riemannian symmetric
space, we shall understand a Riemannian manifold with transitive isometry group
G, and an involutive automorphism of σ : G->G such that the isotropy group H at
some arbitrarily chosen origin satisfies

{Gβ)0QHQGσ, (5.1)

where Gσ is the subgroup of σ-invariant elements and (Gσ)0 is its identity
component. This group theoretical characterization is shown in standard texts
[10] to coincide locally with various geometrical characterizations, such as
covariant constancy of the curvature tensor. There also exist decomposition
theorems (de Rham) which reduce all RSS to products of irreducible symmetric
spaces and complete classifications of the latter in terms of the involutive
automorphisms σ.

The Cartan immersion of G/H in G is defined by

ί(gH)ι->σ(g)g-ί. (5.2)

The image is a totally geodesic submanifold ΣcG defined by the relations

g) = g-1}, (5.3)

and is covered a finite number of times. The constraint (5.3) defining i(G/H)~Σ as
a submanifold of G is compatible with the Eqs. (1.1) and (1.2), and, as shown by
Eichenherr and Forger [8], solutions lying in Σ coincide under the identification i
with the solutions of the sigma model with values in G/H.

In view of the decomposition theorems, it is sufficient to study sigma fields with
values in irreducible RSS's, and we shall limit ourselves here to those where the
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isometry group G is one of the classical groups. These are all listed in the first
column of Table 1, following the notations of [10]. As quotient spaces G/H these
are identified by first giving the constraints determining G as a subgroup of
SL(n,(C) and then the involution defining i(G/H) as a submanifold of G. The
subgroup conditions determining GcSL(n, (C) may also be defined in terms of
involutive automorphisms, since they involve one or two constraints of the form:

G={geSHn,<C)\σ{g) = (5.4)

In Column 2 of Table 1 all the involutions which are needed to determine i(G/H)
as a submanifold of SL(n,C) are listed, the subgroup conditions of type (5.4) being
denoted σ+ and the quotient conditions of type (5.3), σ_. Note that all the
involutions are of one of the following types

σ2{g) = t
(5.5)

where t is either a symmetric, antisymmetric, hermitian or antihermitian matrix,
which may up to conjugation be chosen as (following the notation of [10]):

/I \

- 1

" n

\

0 1,

-in 0

- 1 /

symmetric/hermitian

antisymmetric/antihermitian

symmetric/hermitian

\ -v

(5.6)

In order to apply the results of the preceding sections to these cases, we must
determine corresponding reductions of the ZMS system (1.5), and hence also of the
Backlund transformations. We follow a reduction procedure suggested by
Mikhailov [11], slightly generalized to include the involutive automorphisms.

Let 5 be a linear fractional transformation of the complex plane which satisfies
the two conditions that it leaves invariant the two poles ± 1 of the ZMS system
(1.5) and s2 = l. Then either

(i)

or

(ϋ)

s(λ) =

s{λ) =

(5.7)



Table 1. Irreducible Riemannian symmetric spaces

Type

I AI

All

AΠI

BDI

Dili

CI

CII

II an

K dn

cn

III AI

All

AIΠ

BDI

Dili

CI

CII

IV "an"

"K dn"

"cn"

RSS

SU(n)/O(n)

SU(2n)/Sp(n)

SU(p + q)/S(U(p) x \J(q))

SO(p + g)/SO(p) x SO(^)

SO(2n)/U(π)

Sp(n)/U(n)

Sp(p + 4)/SP(p)xSp(4)

SU(n)~SU(n)x SU(rc)/SU(κ

SO(n)^SO(w)xSO(w)/SO(n

Sp(rc)~Sp(rc)xSp(rc)/Sp(rc)D

Sl(n,R)/SO(n)

Sυ*(2n)/Sp{n)

SU(p, g)/S(U(p) x Ufa))

SO0(p, g)/SO(p) x SO(g)

SO*(2w)/U(n)

Sp(n,R)/U(n)

Sp(p, g)/Sp(p) x Sp{q)

Sl(n, C)/SU(n)

SO(n, C)/SO(n)

Sp(w, C)/Sp(n)

Involution

σ-(0) = 0
(J + (g) = g
(j _ (^) = JngJ~

σ_(g) = lpqglpq

σ + {g) = g+-1

σ + S = / /̂

σ+(g)=g
(j_(gj==j oj

(7 _)_ (g)= fl

c7 _ \Q)z= J ngJ

σ+(g)=g+~1

o + (g) = JngJ~1

σ_(g) = KpqgKpq

ι)D σ + (g) = g+-1

')D σ+(g)=g+~1

<r+(g)=g

σ + (g) = g+-l

σ + to) = J r ^J B " 1

(7 _ (ύf) z = ύf

σ + {g) = Jngj;1

σ_(g)=gn+-"

σ + {g) = Ipqg
+-Ίpq

σ_{g) = lpqglpq

σ + {g) = g
σ + {g) = Ipqg

τ~1Ipq

σ_(g) = lpqglpq

σ + {g) = gτ-1

σ + (g) = JngJ~!

(7 _ \Q) = Q

o _f_ \β)== g
O_L.\CJ)'=-J Q J

O _ \Cj) = ύ

(T^ygj^^J g J
σ + (g)=-Kpqg

+~1Kpι

σ_{g) = KpqgKpq

(J , in) = = ύf

0" _ (ύf) ==: ύ̂

(7 _L (ύί) ̂  J Q J

σΛg) = JngJ~n

ι

M i n i m a l set
of poles

A,, I/A,
A,, 1/A,

A,, 1/A£

A,, I/A,

A,, I/A,

41/;;

A£, 4 1/A£, I/A,
A,, A,, 1/At, I/A,

441/41/;;
4 4 1/41A

441/41/A,
A,, A,, I/A,, 1/A,

A,, A,, I/A,, I/A,
A,, A,, I/A,, I/A,

A,
A,

4 A,
A,, A,

4 ;
4 A,

A, , A,
l/A,, I/A,

Aj, A£

V4 l/A,

A,, 1/At

A,, I/A,

A,, 4 I/A,, l/A,.
A,, A,, 1/A, , 1/A£

A,, 4 l/A,, 1/A,

4 41/41A

A,, A,, l/A,, l/A,
A,, 4 l/A,, l/A,

441/41A

q iXΛIKΛΓK

A,
l/A,

A,, 1/A{

Aί5 1/Af

A,, l/A;

A£, 1/ ; ;

M i n i m a l set of
poles when

A,
A,

A,
A,

A, , A,
Af, Af

A,, Af

4 ^

A,,A,.

ii
A,, A,

4;;

4 A,

4;;

A,
A,

4 A,
A,, A,

A,, A,

A,, A,

4;;
A,, A;

4 A,

4 A,
A,, A,

4;;
A,, A,

4;;
A,, A;

Af, A,

4;;

4 ;
4;;

A,
A,

A,

A,

A,
A,
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The automorphism σ may either be holomorphic (σvσ3) or antiholomorphic
(σ2, σ4). We impose the invariance condition

ψ(λ) = fσψ(s(λ)), (5.8)

where either

(i) s(λ) = λ, f=l for σ + ,

(ii) s(λ) = l/λ, f = g for σ_,

and I = A if σ is holomorphic, 1 = 1 if σ is anti-holomorphic.
Since ψ(O) = 0, Eq. (5.8) implies the correct constraint on g:

σ+(g)=g, σ_(g)=g~\ (5.10)

and the ZMS equation is compatible with this reduction, since Eq. (5.10) implies,
in terms of the differential σ^ at the identity,

B ' κ " M for σ_. (5.11b)
{ί+λj 1+λ *\ί-λj 1-λ

The dressing matrix χ(λ) preserves the reduction under the transformation

ψ(λ) => ψ(λ) = χ(λ)ψ{λ), (5.12)

if

(5.13)

where / is defined analogously to / in terms of the new solution g = φ(0).
We shall now express these conditions in terms of equivalent ones on the

M-matrix defined by Eq. (3.1). To satisfy the invariance condition (5.13), it is
necessary that the set of poles {/ίj and {μj of χ and χ~ \ respectively, be invariant
under λ->s(λ) for σί and σ2, and that they be mapped into each other for σ2 and
σΛ. We define:

v (u)y(λ)
dμ § dλX ^ f if σ = σ i or σ2, (5.14a)

With these as preliminaries, we have the following theorem.

Theorem 5.1. The invariance condition (5.13) is equivalent to one of the following
conditions on the M-matrix:

(i) If σ is of type σ1 or σ2 (linear over 1RJ, then either:

Mirσ(Mm-sU)) if s{λ) = λ, (5.15a)

or

iu)g-ί if s(λ) = l/λ. (5.15b)
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(ii) // σ is of type σ3 or σ4, then, defining the ̂ -linear anti-automorphism

σ = σo/, (5.16)

where J> is inversion

Λθ) = 9~\ (5.17)

either

MίΓ-σMMS)m if s(λ) = λ (5.18a)

or

MiΓμiλjgσM-sU)mg-1 if s(λ)=\β, (5.18b)

where the right-hand sides of Eqs. (5.15) and (5.18) are defined by Eqs. (5.14α) and
(5.14fc), respectively.

[Note that whereas σ and σ are defined as automorphisms of SL(n, (C), they
extend naturally to any n x n matrices and in fact are, up to a sign, equal to the
differential σ^, at the identity element.]

Proof. The condition (5.13) on χ is equivalent to

X~1iμ)χW = fσ{χ(mr1χ(s{λ)))f-1. (5.19)

Clearly (5.13) implies (5.19) and moving the μ independent terms to one side we get

σ(χ(s(μ))) Γ V \μ) = σ(χ(s(λ))) f~ \~ \λ), (5.20)

which implies that both sides are independent of λ or μ. Letting A-> oo, we find that
the common value is / ~ \ giving Eq. (5.13). Now, integrating (5.14) around the
poles {μt,λj} gives:

M ί d i d λ

(5.21)
§dμ§U

(2πi) μ. λj μ — λ

We shall first prove that the equality (5.21) implies (5.19) and hence is equivalent to
the reduction condition (5.13), and second that it reduces to Eqs. (5.15a) and
(5.15b) or (5.18a) and (5.18b) for the four types of involutions σv σ2, σ3, and σ4. To
prove the first implication, define

h(μ λ) = X { μ ) X { λ ) f σ { χ { s { μ ) Γ 1 χ { s { λ ) ) Γ * ( 5 22)
μ-λ

The function h(μ, λ) is holomorphic in (μ, λ) for μ φμ., λ φ λp and μ φ λ. In fact the
singularity at μ = λ for μ φ μ., λ φ λj is removable, since h may be re-written as:

-x <β)\—jz—+/σW5^))) jz \f ' ^5 2 3 )

and we can take the limit as λ — μ->0 as long as the poles of χ and χ~x are avoided.
To show that (5.21) implies that h(μ9λ) vanishes identically, consider the functions



352 J. Harnad, Y. Saint-Aubin, and S. Shnider

of one variable:

hi(λ)=§dμh(μ,λ)9

kj{μ)=§dλh{μ9λ)9
λ

(5.24)

which are meromorphic in λ and μ, respectively. Equation (5.21) implies that all
the finite residues are zero. From (5.22) we have an approximation

(5.25a)

uniformly for large λ if μ is in a compact set containing none of the poles of χ or
and similarly

for large μ. These estimates show

-
μ

(5.25b)

lim hi(λ) = 0 and lim k .(μ) = 0.
λ-> oo μ->oo J

For λ fixed and not equal to any λt, h(μ, λ) is meromorphic in μ, and if λ =j= μ{, it has
simple poles. Since all the residues are zero and the limit μ->oo is zero, we
conclude h(μ, λ) vanishes for λ φ λp μ. and all μ, and similarly for μ + λ , μ7- and all λ.
By continuity as a map into the Riemann sphere, it therefore vanishes identically,
implying Eq. (5.19).

To show that Eq. (5.21) is equivalent to Eqs. (5.15a) and (5.15b) or (5.18a) and
(5.18b) of the theorem, there are eight subcases to consider. Since the proofs are all
similar, we shall only give two representative cases: (5.15b) for σx and (5.18a) for
σ4. Making the change of variables λ-+s{λ) and μ-+s{μ) in the right hand side of
Eq. (5.21), we get:

dλ Γs(μ)-s(
s'(μ)s'(λ)Γ

(2m)2

s,l, sir (*-μ)μλ '
For the case (5.15b), f = g~1 and σ = σ1 is linear, hence this equals:

= -gσ

(μ-λ)μλ

-1 = -μiλjgσ(Msωs(β)g-1.

Now consider the case (5.18a) for σ of type σ4. In this case σ is anti-linear, s(λ) = λ9

/ = 1, and {s(μ-)} = {λj}. The right hand side of Eq. (5.21) is

(2πι)2l
jdμ

l μ-λ

(2πι)2l
dλ

μ
—=
-λ
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by the anti-linearity of σ. Make the change of variables μ->μ, λ-+λ which changes
the sign of each contour integral, but not the product, and reverse the order of
integration to get:

which proves the result for this case.
The interpretation of Theorem 5.1 in terms of Backlund transformations is as

follows. Suppose that φ is a given solution to the sigma model with values either in
a Lie subgroup HCG of a given group or a Riemannian symmetric space G/H.
Denote by X C G the submanifold of G corresponding either to the embedding of H
or the image Σ of G/H under (5.2). The Backlund transformation for the principal
sigma model with values in G, which is solved by the M-matrix given in
Theorem 4.1, restricts, by the imposition of constraints given in Theorem 5.1 to
one preserving X. Denoting both the inclusion map ί:H->G and the immersion
i: G/H-+G by i, the situation is summarized in the diagram below:

σ Model with Values in H or G/H σ Model with Values in G

i

Initial solution φ > g = i°φcX for all (ξ, η)

V I
New solution φ< ( l o c a l l y ' f f m v e r s e ) gCX for all (ξ,η)

The conditions of Theorem 5.1 may be given a simple geometrical in-
terpretation if, as in the previous section, the values of the M-matrix are
interpreted as affine coordinates of a point in GnK((£2nK). When σ is linear or anti-
linear (i.e. σ1 or σ2), the conditions (5.15a) or (5.15b) are equivalent to the fact that
the point is fixed under a linear or anti-linear transformation, which is defined in
Table 2 by the 2nK x 2nK dimensional matrices L and L, respectively. The explicit
form of L depends on whether the involution defines a subgroup reduction (σ+) or
a quotient reduction (σ_), but in all cases, the constraints on M may be expressed
as

L

or

where

M

(5.26a)

^ 1 , (5.26b)

™] = [M

G

G\ GsGL(nKX) (5.27)

denotes the equivalence class of points in (£2nKxnK defining the homogeneous co-
ordinates of a point in GnK(<£2nK). When σ = σ°J, as defined in Theorem 5.1 is
linear or anti-linear (i.e. σ3 or σ4), the conditions (5.18a) or (5.18b) are equivalent to
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Table 2. Constraints associated with involutions σ+

Involution Poles Constraints on

related

Constraints on

F ί 5 Ht, and rtj

(1) σ is linear anti-linear

σ + (g) = tgΓ1 λt

σ + ^ is linear μt

I
Ml \M no constraints on

7 + (g) = tgt 1 λt, λt

τ + % is anti-linear μb μt

\®t

M M

σ_A is linear

λi,\/λi

μt, 1/μt

{μ}\

-4
I

M

σ_^ is anti-linear

(n) (σ°J^) is linear or anti-linear

is linear

[ M τ

or

σ+ή. is anti-linear J f

= 0

or

[M +

[ M Γ = 0

[ίFJ =

Γ - -F Γτ

1 ij - V ji

r l 7=-ε tr; r
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Table 2 (continued)

355

Involution Poles Constraints on

related

M
Constraints on

F f, H,., and ^

σ_^ is anti-linear

M
[ M Γ i i s r ; ι = o

[ M + 1 ] ^
M

= 0

h if t =

[ M 4 H] h
M

= 0

the fact that M determines a point in the submanifold of GnK(<£2nK) consisting of
completely isotropic rcK-planes under a bilinear or sesquilinear form. These forms
depend again upon the specific involution and type of reduction, but they are all
defined by a nonsingular matrix which is either symmetric, anti-symmetric,
hermitian or anti-hermitian. Denoting these, respectively, as s, a, h, ah9 the
condition of total isotropy may be expressed as:

IM+T\a
M

M

= 0,

= sτ,

a= —aτ,

= 0, h = h + ,

= 0, ah=-ah

(5.28a)

(5.28b)

(5.28c)

(5.28d)

The second column of Table 2 gives the minimal set of eigenvalues which are
invariant under the associated involution s and the third column indicates the
matrices L, Z, α, 5, h, and ah which define the constraints (5.26) or (5.28) upon M.
The matrix entries are ordered according to the following conventions. Denote the
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various residues in χ(λ) and χ~ι{μ) as:

residue in χ(A) at λt: Qf residue in χ~ 1(μ) at μ.: R.

residue in χ(λ) at X : QΓ residue in χ~~ 1(μ) at μt: Rj',

(5.29)

residue in χ(/l) at —: Q ; residue in χ~~ 1(μ) at —: Rt
λf μf

residue in χ(λ) at -=-: Qt residue in χ~ *(μ) at —: K f.
/ίί μ.

The matrix M is the submatrίx of the following Anl x 4n/ matrix, with k = l,2l or 4/,
obtained by deleting those Zn x In dimensional blocks corresponding to eigenval-
ues which do not appear:

ίij MtJ Mu M

Mυ Mπ Mυ Mτf

Mυ MtJ MVj Mtj

Mtj Mfj My Mjj

(5.30)

The fact that the conditions (5.15) and (5.18) of Theorem 5.1 coincide with the
constraints (5.26) and (5.28) for the eight cases listed in Table 2 follows by directly
substituting the various types of involutions σv σ2, σ3, and σ4 as defined in
Eq. (5.5). Using the explicit involutions which define the RSS's as listed in
Column 2 of Table 1, we arrive at the minimal set of eigenvalues listed in
Column 3 for the general case and Column 4 if the eigenvalues are chosen on the
unit circle. Examples of the use of these two tables to reconstruct all constraints
defining a particular RSS will be given later.

In order to verify that the reduction procedure is consistent with the multi-
Backlund transformation and hence that the solutions determined by Theorem 4.1
actually give rise to solutions of Eqs. (1.1) and (1.2) within the correct submanifold,
provided the input solution g is within it, we must demonstrate the consistency of
the constraints on M with the matrix Riccati system (3.7a) and (3.7b) determining
it. This result is proved easily through the geometrical interpretation of the system
and constraints.

Theorem 5.2. The reduction by involutions is propagated by the differential
equations for the dressing matrix. That is, let m be the initial value of the M-matrίx
at (ξo,ηo). If m satisfies the conditions of Theorem 5.1, then M(ξ,η) does for all

(ξ,η).

Proof The dependence on (ξ, η) of M is, according to Eq. (4.13) completely
determined by the SL(2πX,(C)-valued function &(ξ,η) satisfying Eq. (4.11),
through:
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According to the geometric formulation given above, the conditions of
Theorem 5.1 may be expressed, for case (i) (σ1 or σ2) as:

m\ \m\ \M] \M

or

~ \m\ \m M] \M

1 1

where Lo, Z o denote the initial values of L and Z, respectively, at (ξ0, η0).
In view of Eq. (5.31), it is sufficient to prove:

Teg — cqτ (^ ̂ 2aΊ

or

L^ — ̂ L (5.32b)

Similarly, for Cases (ii) (σ3 or σ4), the constraints on M are satisfied provided:

(5.33a)
3 ' (5.33b)

y+h% =h0) (5.33c)

<% + n q = n [ σ 4 ' (5 13d)
^ ak^ uh0J yj.jju.)

where s0, k0, h0, and αfto are the initial values of the symmetric, anti-symmetric,
hermitian, and anti-hermitian forms 5, a, h, ah, respectively, as defined in Table 2.
Since the function ^ defines a covariant constant section of the bundle
IR2 x SL(2nK,(£) and the functions L, Z, 5, α, h, ah may similarly be interpreted as
defining maps and forms on the associated vector bundle R 2 x <£2nK, the con-
ditions (5.32) and (5.33) have the simple interpretation that these quantities are
invariant under parallel transport. The relations (5.32) and (5.33), for given L,L, 5,
a, h or ah determine a reduction of the principal bundle to the subgroup
determined by the relations. Thus the verification of consistency with Eqs. (4.11)
determining ^ amounts to proving that the holonomy group of the connection
(4.2) is contained in the appropriate subgroup.

The proof for the eight cases is quite similar, so we again only give two
representative examples:

(A) σ+(g) = tgt~1 =g,

or (5.34)

(B) σ_(g) = tgτ-1Γ1=g-1.

Note that for σ+ reductions like (A), the appropriate map or form is itself constant
and hence the subgroup defined by (5.32) or (5.33) is a fixed subgroup of
SL(2rci£,(C), while for σ_ reductions like (B), it varies by a conjugation in
SL(2nK, (C) depending on the point (ζ,η), of the form g(ξ,η)®t2K, where g(ξ,rj) is
the input solution.
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Case (A). Since $(ξo,ηo) = ί satisfies the appropriate condition (5.32b) and L is
constant, it is sufficient to prove the differentiated relations:

(5.35)

where s/ and M are, according to Eq. (4.7)

diag 1 1 '

I diagί—M
I U + j " ί J
r —

1 i 1

1 1 i 1
i - —

V1+λ,

diag

i ί 1
i diagj

(5.36a)

1 1

1 1

diag

1 1

1 1

diag
1 - Λ J '

-I

~l

I diagj

(5.36b)

and, from Table 2, the matrix L has the form

where

According to Eq. (5.11a) for λ = 0, the reduction condition (5.34a) has the following
infinitesimal form:

(5.37)

(5.38)

(5.39)

(5.40)

Equation (5.35) therefore reduces to the commutation relations:

which are easily verified to hold.
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Case (B). The appropriate condition is (5.33a) or (5.33b) which, differentiating
with respect to ξ and η, is equivalent to

)s + sξ
= 0,

(or the same relation with s replaced by a) where, according to Eq. (4.7)

I
I
t -

(5.41a)

(5.41b)

1 1

1+1. r I d i a g {ττi:

1 I I
(5.42)

- ϊ j i
• i —

1 1 i ,.

\

and, according to Table 2:

where

Σ= -

- 1 (5.43)

(5.44)

The reduction (5.34b) has the infinitesimal form given by Eq. (5.11b) at λ = 0:

^(gty1 + (gt)~1A = 0, Bτ(gt)~1 -\-(gty1B — 0. (5.45)

The matrices si and J* do not commute with Σ but satisfy the following relation:

0, (5.46)

as a direct computation shows. The left-hand sides of Eq. (5.41a) and (5.41b) are
thus:

= 0,

which concludes the proof for Case (B).
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The content of Theorems 5.1 and 5.2 may be re-expressed in terms of the data
determining the residues Q. and Rt of the ZMS dressing matrix χ(λ) and its inverse
according to Theorem 4.2. These are: the rectangular matrices {F , H.} determined
from their initial values {/^ΛJ by Eq. (4.51) and, in the case of a degeneracy ^ = //i5

the diagonal block Γu determined from its initial value {f^cfa} by Eq. (4.53b). The
last column of Table 2 gives the constraints on Ff5 H , and Γip which are equivalent
to the constraints of Theorem 5.1. The equalities between the different rectangular
matrices {Fi9 Ht} are to be understood as equalities between the subspaces that the
columns of each matrix span. For example, the relation

(5.47)

should be interpreted as:

(5.47)

for some constant /l.eGL^,(C), r^rkH^ The constraints on Γ.j should be
understood accordingly, in view of Eq. (4.53a) and (4.53b). These are redundant for
λ Φμj, since they are reduced from Eq. (4.53a), but for λ = μp since the initial value
of Γu is undetermined up to the additive factor {/.+c /i }, the constraint must be
added to those on {F^HJ together with the orthogonality relation:

FΐH^O, (5.48)

which is not explicitly listed in Table 2 unless the minimal set of poles implies such
a degeneracy. The number εt is

ε ( = + l , if t = UM or KpΛ, ( 5 4 9 )

e ( = - l , if t = Jn.

Theorem 5.3. The constraints on the matrix M defined in Theorem 5.1 are
equivalent to the constraints on the matrices {Fi9Ht} and Γtj given in Table 2. The
latter are valid at all values (ξ, η) if they hold at the initial data point.

Proof. Although the explicit constraints on M and on Ft, Ht, and Γ.j are different in
each of the eight cases, the proofs are identical, therefore we shall only treat one
case namely, the involution

σ_(g) = tg+~1ri=g-1. (5.50)

Denoting by Mfj the block corresponding to the eigenvalues <μ.= y,>iΛ5 the

constraint (5.18b) becomes:

M^^igήMligtΓ1. (5.51)
λ i

According to the Eq. (4.59), Mfj has the form:

Mtj = Htyt}F+, (5.52)

where

y = Γ~\ (5.53)
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and therefore

Hfy^Fi) = -J- (gtFj (γi Hi (gt) ~1). (5.54)

Since F. is of maximal rank, we have

Htγtj= ^-gtF^lHtigtY^F^F)-'. (5.55)

Multiplying on the right by Γ t and summing over j gives

(5.56)

for some matrix Av A similar process involving left multiplication gives

Htλ^gtFt, (5.560

and therefore Fi9 Hf are of the same rank and span the same space:

(5.57)

To prove that At in Eq. (5.56) may be assumed constant, note that H* and F are
determined from their initial values by

( 5 ' 5 8 )

where, by Eq. (5.9)

(jj (5.59)

and hence

Since h*, ft are constants, At may be taken as constant. From (5.56) we can deduce
the constraints satisfied by Fip provided μt + λj, since by the definition (4.53a) of Fip

we have:

and therefore, in view of Eq. (5.56)

_ 1 I . A

( 5 6 2 )

(with + if ί is hermitian, — if ί is anti-hermitian). This derivation is not valid,
however, if λ = \jλy To prove Eq. (5.62) in general, we again use Eq. (5.52), from
which follows



362 J. Harnad, Y. Saint-Aubin, and S. Shnider

since Hf, Fj are of maximal rank. From (5.51), (5.52), and (5.56) this implies

(5.64)

1
which is equivalent to Eq. (5.62) for all eigenvalues, whether λi = -=- or not.

λj

Conversely, suppose Eqs. (5.56) and (5.62) and hence also (5.64) are satisfied.
From Eq. (5.52) we have:

t) Ml(gt)-1 = ̂ -

proving the constraint (5.51).
Finally, to illustrate how the data in Tables 1 and 2 combine to determine the

reductions corresponding to all Riemannian symmetric spaces, we shall give the
full details for two illustrative examples:

(i) real Grassman manifolds Gp{W+q) = SO{p + q)/SO{p)x SO{q) and
(ii) the space SO(π,C)/SO(n), which is the non-compact analogue of the

principal SO(n) sigma model.

Example (i). SO (p + q)/SO (p) x SO (q).
From Table 1, the minimal sot of eigenvalues when \λt\ ή= 1 involves all four

terms </ί ,Xί5-τ-,y\, and hence the dressing matrix and its inverse are of the form:

=t+ Σ
A Λ A A

Q, , Qt

(5.65)

Ordering the In x In dimensional blocks in the M-matrix as in Eq. (5.30), the three
involutions involved in this reduction give rise to the following constraints
according to Table 2 :

I

[ M + ί ]

\

Ί

T 4- •
M

= 0, (5.66)
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or, equivalently,

363

(5.67)

(up to a change of basis in the spaces spanned by Fi9 Fτ, Fp F f, Ht, Hτ, Hv Ht)
together with the orthogonality conditions:

F+ TJ Γp+ TT 77+ TT 17+ TT f\ /C £Q\

/

1

\

1 1
1

1

11
f-

i
L _

1

1 -
1

! n

\

1

/

or, equivalently

Ml \M
i

(5.69)

(5.70)

U, }

[Ml _ ΓM1

or, equivalently,

gIpqHT =

(5.71)

(5.72)

λf λ2
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The conditions (5.67), (5.68), (5.70), and (5.72) reduce to the two constraints:

i f F . = 0 and ΓU=-ΓJ, (5.73)

with all other terms determined by:

Ft = FΊ = glm¥% = glj, = Hi = Hτ = gl^H, = g l ^ ,
(5.74)

Λ A

Assume now that all eigenvalues λt are on the unit circle: \λt\ = 1. In this case,
the minimal set of poles consists of {λi9 Xj and the dressing matrix reduces to:

χ(λ) =

I

V + •

K = 2l.

The M matrix now consists of only four In x In dimensional blocks:

MΊj Mvr
and the constraints (5.66), (5.69), and (5.71) reduce to:

1\

1
= 0,

\t i

1 I

1 [i

M 1 \M

U \ t

and

i 1

L _ _ τ

\

M U J ~ [ l

Equivalently the constraints (5.73) and (5.74) reduce to the relations:

r
r — rτ r — "

(5.75)

(5.76)

(5.66')

(5.69')

(5.71')

(5.73')



Backlund Transformations for Nonlinear Sigma Models 365

with the other terms determined by:

Ft = FΛ = Ht = H.τ, /;• = /:,. (5.74')

The particular case of the above with rH = riT=0 and Ft, Ht of rank one was
reported previously in [7] and reduces for the case Sp = SO(p+l)/SO(p) to the
Backlund transformation of Pohlmeyer [12]. A different type of reduction for this
case was also given in [3]. The general case treated here has not previously been
analyzed.

Example (ii). SO (n, (C)/SO (n).
According to Table 1, the minimal set of eigenvalues for |Λ,.| Φ1 is {λ , 1/Λ.J and

the dressing matrix is thus of the form:

(5.77)

with K = 2l
The M-matrix consists of four In x In dimensional blocks:

-(«:; iίj
There are, from Table 1, two involutions giving rise, according to Table 2, to the
following constraints:

or equivalently

Ft = Ht, Ft = Ht,
(5.80)

Γ Γτi- ~ιn >

together with the orthogonality conditions:

F+Hi = 0 F?Ht = 0. (5.81)

I I _ [Ml [M

i { . ^ - i j l ^ l i l l II
(5.82)
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or equivalent:

Λ-*. A-H,, (583)

r - - 5 t
" A -

The conditions (5.80), (5.81), and (5.83) reduce to the two constraints

F+Ft = 0 and Γti=-Γj, (5.84)

with all other terms determined by:

Ft = Ht = gFt = gHt, Γn=-λfΓu. (5.85)

Again, if \λt\ = 1, the minimal set of poles is reduced to just {AJ and the dressing
matrix is of the form:

χ(λ) = ί+ Σ Qί

frλ-λ,'
, (5.86)

Λ

The M-matrix consists of just one In x In dimensional block (Ml7) and the
constraints (5.79) and (5.82) become:

= 0, (5.79')
\JL u/ L ϋ J

and

I — — + -—-.— I (χ)# = . (5.82')

Equivalently, the relations (5.84) and (5.85) reduce to:

F^Ft = 0, Fi = gFi9 Γti==09 (5.84')

with

H^Ft. (5.85')

All other cases listed in Table 1 may be similarly treated using the data
defining the reductions in Table 2.
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